Data Structures and Algorithms Chapter 4

About sorting algorithms
 Heapsort

- Complete binary trees
- Heap data structure

3. Quicksort

- a popular algorithm
- very fast on average

Previous Chapter

- Divide and conquer
- Merge sort
- Tiling
- Recurrences
 - repeated substitutions
 - substitution
 - master method
- Example recurrences

Why Sorting

- "When in doubt, sort" one of the principles of algorithm design.
- Sorting is used as a subroutine in many algorithms:
 - Searching in databases: we can do binary search on sorted data
 - Element uniqueness, duplicate elimination
 - A large number of computer graphics and computational geometry problems.

Why Sorting/2

- Sorting algorithms represent different algorithm design techniques.
- The lower bound for sorting Ω(n log n) is used to prove lower bounds of other problems.

Sorting Algorithms so far

- Insertion sort, selection sort, bubble sort
 - Worst-case running time $\Theta(n^2)$
 - In-place
- Merge sort
 - Worst-case running time $\Theta(n \log n)$
 - Requires additional memory $\Theta(n)$

Selection Sort

```
SelectionSort(A[1..n]):
```

```
for i := 1 to n-1
```

- A: Find the smallest element among A[i..n]
- B: Exchange it with A[i]
- A takes $\Theta(n)$ and B takes $\Theta(1)$: $\Theta(n^2)$ in total
- Idea for improvement: smart data structure to
 - do A and B in $\Theta(1)$
 - spend O(log n) time per iteration to maintain the data structure
 - get a total running time of O(n log n)

Binary Trees

- Each node may have a left and right **child**.
 - The left child of 7 is 1
 - The right child of 7 is 8
 - 3 has no left child
 - 6 has no children
- Each node has at most one **parent**.
 - 1 is the parent of 4
- The **root** has no parent.
 - 9 is the root
- A **leaf** has no children.
 - 6, 4 and 8 are leafs

Binary Trees/2

- The **depth** (or **level**) of a node x is the length of the path from the root to x.
 - The depth of 1 is 2
 - The depth of 9 is 0
- The **height** of a node x is the length of the longest path from x to a leaf.
 - The height of 7 is 2
- The height of a tree is the height of its root.
 - The height of the tree is 3

Binary Trees/3

- The right subtree of a node x is the tree rooted at the right child of x.
 - The right subtree of 9 is the tree shown in blue.
- The left subtree of a node x is the tree rooted at the left child of x.
 - The left subtree of 9 is the tree shown in red.

Complete Binary Trees

- A **complete binary tree** is a binary tree where
 - all leaves have the same depth.
 - all internal (non-leaf) nodes have two children.
- A **nearly complete binary tree** is a binary tree where
 - the depth of two leaves differs by at most 1.
 - all leaves with the maximal depth are as far left as possible.

Heaps

• A binary tree is a **binary heap** iff

- it is a nearly complete binary tree
- each node is greater than or equal to all its children
- The properties of a binary heap allow
 - an efficient storage as an array (because it is a nearly complete binary tree)
 - a fast sorting (because of the organization of the values)

2 5

Heaps/2

Heap property A[Parent(i)] ≥ A[i]

Parent(i) return [i/2] Left(i) return 2i Right(i) return 2i+1

Heaps/3

- Notice the implicit tree links in the array: children of node *i* are 2*i* and 2*i*+1
- The heap data structure can be used to implement a fast sorting algorithm.
- The basic elements are
 - **Heapify**: reconstructs a heap after an element was modified
 - **BuildHeap**: constructs a heap from an array
 - HeapSort: the sorting algorithm

Heapify

- Input: index *i* in array *A*, *number n of elements*
- Binary trees rooted at *Left(i)* and *Right(i)* are heaps.
- *A*[*i*] might be smaller than its children, thus violating the heap property.
- **Heapify** makes *A* a heap by moving *A*[*i*] down the heap until the heap property is satisfied again.

Heapify Example

Heapify Algorithm

```
Heapify(A, i, n)
  1 := 2*i; // 1 := Left(i)
  r := 2*i+1; // r := Right(i)
  if 1 <= n and A[1] > A[i]
    then max := 1
    else max := i
  if r \leq n and A[r] > A[max]
    max := r
  if max != i
    exchange A[i] and A[max]
    Heapify(A, max, n)
```

Heapify: Running Time

- The running time of Heapify on a subtree of size *n* rooted at *i* includes the time to
 - determine relationship between elements: $\Theta(1)$
 - run Heapify on a subtree rooted at one of the children of *i*
 - 2n/3 is the worst-case size of this subtree (half filled bottom level)
 - T(n) \leq T(2n/3) + $\Theta(1)$ implies $T(n) = O(\log n)$
 - Alternatively
 - Running time on a node of height *h*: *O*(*h*) = *O*(*log n*)

- Convert an array A[1...n] into a heap.
- Notice that the elements in the subarray A[(|n/2| + 1)...n] are 1-element heaps to begin with.

BuildHeap(A) for $i := \lfloor n/2 \rfloor$ to 1 do Heapify(A, i, n)

- Heapify(A, 7, 10)
- Heapify(A, 6, 10)
- Heapify(A, 5, 10)

• Heapify(A, 4, 10)

• Heapify(A, 3, 10)

• Heapify(A, 2, 10)

• Heapify(A, 1, 10)

Building a Heap: Analysis

- Correctness: induction on *i*, all trees rooted at *m* > *i* are heaps.
- Running time: n calls to Heapify = n O(log n) = O(n log n)
- Non-tight bound but good enough for an overall *O*(*n log n*) bound for Heapsort.
- Intuition for a tight bound:
 - most of the time Heapify works on less than n element heaps

Building a Heap: Analysis/2

- Tight bound:
 - An n element heap has height log n.
 - The heap has $n/2^{h+1}$ nodes of height h.
 - Cost for one call of Heapify is O(h).

•
$$T(n) = \sum_{h=0}^{\log n} \frac{n}{2^{h+1}} O(h) = O(n \sum_{h=0}^{\log n} \frac{h}{2^{h}})$$

• Math: $\sum_{k=0}^{\infty} kx^{k} = \frac{x}{(1-x)^{2}}$ $\sum_{k=0}^{\infty} \frac{k}{x^{k}} = \sum_{k=0}^{\infty} k(1/x)^{k} = \frac{1/x}{(1-1/x)^{2}}$
• $T(n) = O(n \sum_{h=0}^{\log n} \frac{h}{2^{h}}) = O(n \frac{1/2}{(1-1/2)^{2}}) = O(n)$

HeapSort

The total running time of heap sort is
 O(n) + n * O(log n) = O(n log n)

```
HeapSort(A)
BuildHeap(A)
for i := n to 2 do
exchange A[1] and A[i]
n := n-1
Heapify(A, 1, n)
```

O(n) **n times** O(1) O(1) O(log n)

Heap Sort: Summary

- Heap sort uses a heap data structure to improve selection sort and make the running time asymptotically optimal.
- Running time is O(n log n) like merge sort, but unlike selection, insertion, or bubble sorts.
- Sorts in place like insertion, selection or bubble sorts, but unlike merge sort.
- The heap data structure is used for other things than sorting.

Quick Sort

- Characteristics
 - Like insertion sort, but unlike merge sort, sorts in-place, i.e., does not require an additional array.
 - Very practical, average sort performance
 O(n log n) (with small constant factors),
 but worst case *O(n²)*.

Quick Sort – the Principle

- To understand quick sort, let's look at a high-level description of the algorithm.
- A divide-and-conquer algorithm
 - Divide: partition array into 2 subarrays such that elements in the lower part ≤ elements in the higher part.
 - **Conquer**: recursively sort the 2 subarrays
 - **Combine**: trivial since sorting is done in place

Partitioning

Quick Sort Algorithm

• Initial call **Quicksort(A, 1, n)**

Quicksort(A, l, r) 01 if l < r 02 then m := Partition(A, l, r) 03 Quicksort(A, l, m-1) 04 Quicksort(A m r)

04 Quicksort(A, m, r)

2 9

Alternate Formulation of Quicksort (Lomuto)

First difference: we do not touch the middle element in the recursion

Quicksort(A, l, r)

- 01 **if** l < r
- 02 **then** m := Partition(A, l, r)
- 03 Quicksort(A, l, m-1)
- 04 Quicksort(A, m+1, r)

Alternate Formulation of Quicksort /2

Second difference: Partioning proceeds from left to right

```
Partition(A, l, r)
01 x := A[r]; ll := l-1;
02 for fu:=l to r-1 do
03 if A[fu] <= x
04 then Swap(A, ll+1, fu);
05 ll++;
06 m := ll + 1;
07 Swap(A, m, r); % put x into the middle
08 return m</pre>
```

Analysis of Quicksort

- Assume that all input elements are distinct.
- The running time depends on the distribution of splits.

Best Case

• If we are lucky, Partition splits the array evenly: $T(n) = 2 T(n/2) + \Theta(n)$

 $\Theta(n \log n)$

Worst Case

- What is the worst case?
- One side of the partition has one element.
- $T(n) = T(n-1) + T(1) + \Theta(n)$

$$= T(n-1) + O + \Theta(n)$$

= $\sum_{k=1}^{n} \Theta(k)$
= $\Theta(\sum_{k=1}^{n} k)$
= $\Theta(n^2)$

Worst Case/2

Worst Case/3

- When does the worst case appear?
 - input is sorted
 - input reverse sorted
- Same recurrence for the worst case of insertion sort (reverse order, all elements have to be moved).
- Sorted input yields the best case for insertion sort.

Analysis of Quicksort

• Suppose the split is 1/10 : 9/10

An Average Case Scenario

Suppose, we • alternate lucky and unlucky cases to get an average behavior $L(n) = 2U(n/2) + \Theta(n)$ lucky $U(n) = L(n-1) + \Theta(n)$ unlucky we consequently get $L(n) = 2(L(n/2 - 1) + \Theta(n)) + \Theta(n)$ $= 2L(n/2 - 1) + \Theta(n)$ $=\Theta(n \log n)$

n/2

An Average Case Scenario/2

- How can we make sure that we are usually lucky?
 - Partition around the "middle" (n/2th) element?
 - Partition around a random element (works well in practice)
- Randomized algorithm
 - running time is independent of the input ordering.
 - no specific input triggers worst-case behavior.
 - the worst-case is only determined by the output of the random-number generator.

Randomized Quicksort

- Assume all elements are distinct.
- Partition around a random element.
- Consequently, all splits (1:n-1, 2:n-2, ..., n-1:1) are equally likely with probability 1/n.
- Randomization is a general tool to improve algorithms with bad worst-case but good average-case complexity.

1 4 7 5

Randomized Quicksort/2

RandomizedPartition(A,l,r)

- 01 i := Random(l,r)
- 02 exchange A[r] and A[i]
- 03 **return** Partition(A, l, r)

RandomizedQuicksort(A,l,r)

- 01 **if** 1 < r **then**
- 02 m := RandomizedPartition(A, l, r)
- 03 RandomizedQuicksort(A, l, m)
- 04 RandomizedQuicksort(A,m+1,r)

Stability

- Quicksort and Heap Sort are not stable
 - swaps during partitioning destroy previous order
 - research has been done on making Quicksort stable, but did not lead to practical outcomes
- When stability is needed:
 - remember the original position and use it in sorting
 - use a different algorithm (e.g., Merge Sort)

Summary

- Nearly complete binary trees
- Heap data structure
- Heapsort
 - based on heaps
 - worst case is n log n
- Quicksort:
 - partition based sort algorithm
 - popular algorithm
 - very fast on average
 - worst case performance is quadratic

Summary/2

- Comparison of sorting methods.
- Absolute values are not important; relate values to each other.
- Relate values to the complexity (n log n, n²).
- Running time in seconds, n=2048.

	ordered	random	inverse
Insertion	0.22	50.74	103.8
Selection	58.18	58.34	73.46
Bubble	80.18	128.84	178.66
Неар	2.32	2.22	2.12
Quick	0.72	1.22	0.76

Next Chapter

• Dynamic data structures

- Pointers
- Lists, trees
- Abstract data types (ADTs)
 - Definition of ADTs
 - Common ADTs