I Data Structures and
I Algorithms

Chapter 4

I 1. About sorting algorithms

2. Heapsort
» Complete binary trees
« Heap data structure
3. Quicksort
 a popular algorithm
» very fast on average

Previous Chapter

» Divide and conquer
* Merge sort
 Tiling
* Recurrences
- repeated substitutions

— substitution
- master method

« Example recurrences

DSA M. Bohlen

Why Sorting

 “When in doubt, sort” — one of the
principles of algorithm design.

 Sorting is used as a subroutine in many
algorithms:

- Searching in databases: we can do binary
search on sorted data

- Element uniqueness, duplicate elimination

- A large number of computer graphics and
computational geometry problems.

DSA M. Bohlen

I Why Sorting/2

 Sorting algorithms represent different
I algorithm design techniques.

» The lower bound for sorting Q(n log n)

is used to prove lower bounds of other
problems.

DSA M. Bohlen

I Sorting Algorithms so far

sort
- Worst-case running time ©(n?)

I Insertion sort, selection sort, bubble

- In-place

* Merge sort
- Worst-case running time ©(n log n)
- Requires additional memory ©(n)

DSA M. Bohlen

I Selection Sort

DSA

SelectionSort (A[l..n]):

for i ;= 1 to n-1
A: Find the smallest element among A[1..n]
B: Exchange it with A[1i]

« A takes O(n) and B takes ©(1): ®(n2) in total

* Idea for improvement: smart data structure
to

- do A and B in ©(1)

- spend O(log n) time per iteration to maintain the
data structure

- get a total running time of O(n log n)

M. Bohlen 6

Binary Trees

« Each node may have a
left and right child.

— The left child of 71s 1 @
— The right child of 7is 8 \
- 3 has no left child 9
— 6 has no children /
» Each node has at most G

one parent.
- 11isthe parent of 4

e The root has no

parent. @

- 9 1s the root

e A leaf has no children.

- 6, 4 and 8 are leafs
DSA M. Bohlen

I Binary Trees/2

node x is the length of the

path from the root to x. @
— The depthof1is 2 \
— The depthof9is 0 6
e The height of a node x is the /
length of the longest path G Q

I e The depth (or level) of a

from x to a leatf.
— The height of 71is 2

* The height of a tree is the
height of its root. @

— The height of the tree is 3

DSA M. Bohlen 8

I Binary Trees/3

* The right subtree of a
I node x is the tree rooted
at the right child of x. @/ \
- The right subtree of 9 is the @\
tree shown in blue.

e The left subtree of a node @ @\ ‘

x 18 the tree rooted at the
left child of x.

— The left subtree of 9 is the
tree shown in red.

DSA M. Bohlen o]

I Complete Binary Trees

* A complete binary tree is a binary
tree where

- all leaves have the same depth.

- all internal (non-leaf) nodes have two
children.

* A nearly complete binary tree is a
binary tree where
- the depth of two leaves differs by at most 1.

- all leaves with the maximal depth are as far
left as possible.

DSA M. Bohlen 10

Heaps
» A binary tree is a binary heap iff

- it is a nearly complete binary tree

- each node is greater than or equal to all its
children

» The properties of a binary heap allow

- an efficient storage as an array (because it
is a nearly complete binary tree)

- a fast sorting (because of the organization
of the values)

DSA M. Bohlen 11

I Heaps/2

A[Parent(1)] = Al1] @ @
. SRS o« N
Parent(i) 7 9 (3)
return |i/2] VARV é
Left(1) @ @

I Heap property 2 /

return 21
Right(i) 1 2 3 4 5 6 7 8 9 10
return 2i+1 16 15 10 8 7 9 3 2 4 1
Level: o 1 o 3

DSA M. Bohlen -

Heaps/3

 Notice the implicit tree links in the array:
children of node 1 are 21 and 21+1

» The heap data structure can be used to
implement a fast sorting algorithm.

 The basic elements are

- Heapify: reconstructs a heap after an
element was modified

- BuildHeap: constructs a heap from an
array

- HeapSort: the sorting algorithm

DSA M. Bohlen 13

Heapify

e Input: index i in array A, number n of
elements

 Binary trees rooted at Left(1) and
Right(1) are heaps.

» A/i] might be smaller than its children,
thus violating the heap property.

- Heapify makes A a heap by moving
A[1] down the heap until the heap
property is satisfied again.

DSA M. Bohlen

14

I Heapify Example

7

Lo
P

| o
oy

9

T X

DSA M. Bohlen

o
WanW

/@“ y

N
14 10
b o ?\7@

1

~_ 3
10
e

®

1.Call Heapify(A,2)
2.Exchange A[2] with A[4] and
recursively call Heapify(A,4)
3.Exchange A[4] with A[9] and
recursively call Heapify(A,9)
4.Node 9 has no children,
so we are done

15

I Heapify Algorithm

Heapify (A, 1, n)

1 := 2%i; // 1 := Left (i)

r := 2*i+1; // r := Right (i)

i1f 1 <= n and A[l] > A[1]
then max := 1
else max := 1

1f r <= n and A[r] > A[max]
max := r

i1f max !'= 1

exchange A[1] and A[max]
Heapify (A, max, n)

DSA M. Bohlen

16

I Heapify: Running Time

e The running time of Heapify on a subtree of
size n rooted at i includes the time to

— determine relationship between elements: ©(1)
- run Heapify on a subtree rooted at one of the
children of 1

« 21n/3 is the worst-case size of this subtree (half filled
bottom level)

« T(n) <T(2n/3) + ©(1) implies T(n) = O(log n)

— Alternatively
 Running time on a node of height h: O(h) = O(log n)

DSA M. Bohlen 17

Building a Heap

* Convert an array A[1...n] into a heap.

* Notice that the elements in the subarray
A[(|n/2| + 1)...n] are 1-element heaps
to begin with.

BuildHeap(A)
fori:= |n/2| to1do
Heapify(A, i, n)

DSA M. Bohlen 18

Building a Heap/2

@'&? @)\‘ @'&?

3 216 91014 8 7 4 13 216 91014 8 7

e Heapify (A, 5, 10)

DSA M. Bohlen 19

Building a Heap/3

@'&? @)\‘ é‘k?

4 13 216 910 14 8 7 4 1 31416 9102 8 7

e Heapify (A, 4, 10)

DSA M. Bohlen

| o " 4@5”3\
Ly gy

Building a Heap/4

L
5

4 1 31416 9102 8 7 4 11014 16 932 8 7

e Heapify (A, 3, 10)

DSA M. Bohlen

Building a Heap/5

@1?@)\' é‘&?

4 1 10

14 16 9 3

2

8

7

DSA

4 16 10

147 9 3

2

8

1

e Heapify (A,

M. Bohlen

2y

10)

22

I Building a Heap/6

Lo
5

\
o %

| e e
Sop e e

416 1014 7 9 3 2 8 1 16 1410 8 7 9 3 2 4 1

e Heapify (A, 1, 10)

DSA M. Bohlen

23

Building a Heap: Analysis

* Correctness: induction on i, all trees
rooted at m > 1 are heaps.

* Running time: n calls to Heapitfy =
n O(log n) = O(n log n)

* Non-tight bound but good enough for an
overall O(n log n) bound for Heapsort.

e Intuition for a tight bound:

- most of the time Heapify works on less than
n element heaps

DSA M. Bohlen 24

I Building a Heap:

" T(n) 0<n2) =0(n

DSA

Analysis/2

Tight bound:
— An n element heap has height log n.
— The heap has n/2"* nodes of height h.
— Cost for one call of Heapify is O(h).

logn logn

I'(n) = 22“ (h) O(HZ

Math: kX k
%kx _(l-x)2 kZ:; Z (1/x)" =

logn

/2
A-1/27) 00

M. Bohlen

1/x

(1- 1/x)°

25

I HeapSort

» The total running time of heap sort is
O(n) + n * O(log n) = O(n log n)

HeapSort(A)
BuildHeap(A) O(n)
fori:=nto2do n times
exchange A[1] and A[i] O(1)
n :=n-1 O(1)
Heapify(A, 1, n) O(log n)

M. Bohlen 26

IHeap‘o:S 6 ‘-® @*- @ @

I Sort o

/@ / @
| s Taie dfae’e
®06 ©06 ©06
@ @ ®
ac%s %se’ o%as’e
©06 ©06 ©06
@

DSA M. Bohlen 27

I Heap Sort: Summary

improve selection sort and make the running
time asymptotically optimal.

* Running time is O(n log n) — like merge sort,
but unlike selection, insertion, or bubble sorts.

 Sorts in place — like insertion, selection or
bubble sorts, but unlike merge sort.

* The heap data structure is used for other things
than sorting.

I » Heap sort uses a heap data structure to

DSA M. Bohlen 28

Quick Sort

e Characteristics

- Like insertion sort, but unlike merge sort,
sorts in-place, i.e., does not require an
additional array.

- Very practical, average sort performance
O(n log n) (with small constant factors),
but worst case O(n3).

DSA M. Bohlen 29

Quick Sort — the Principle

* To understand quick sort, let’s look at a
high-level description of the algorithm.

» A divide-and-conquer algorithm

- Divide: partition array into 2 subarrays
such that elements in the lower part
< elements in the higher part.

- Conquer: recursively sort the 2 subarrays

- Combine: trivial since sorting is done in
place

DSA M. Bohlen 30

I Partitioning

i1]

17 | 12 19 (23| 8| 5 |10
Partition (A, 1, r) , .
0l x := A[r] 1 J
02 i := 1-1 < X=10 10 | 12 19 (23| 8 | 5 [17
03 j a= <
04 while TRUE 5 .
05 repeat j := j-1 J
06 until A[j] < x 10 | 5 19 (23| 8 |12 [17
07 repeat 1 := 1i+1
08 until A[i] > x . .
09 if i<j J 1
10 then switch A[i]<>A[]] 10| 5 8 [23]|19 |12 | 17
11 else return 1

10 | 5 8 |23(19 |12 | 17
DSA M. Bohlen 31

I Quick Sort Algorithm

I * Initial call Quicksort(A, 1, n)

DSA

Quicksort(A, 1, r)
o1ifl<r

02 then m := Partition(A, 1, r)
03 Quicksort(A, 1, m-1)
04 Quicksort(A, m, r)

M. Bohlen

32

I Alternate Formulation of

I Quicksort (Lomuto)

First difference: we do not touch the middle
I element in the recursion

Quicksort(A, 1, r)

o1 ifl<r

02 then m := Partition(A, 1, r)
03 Quicksort(A, 1, m-1)
04 Quicksort(A, m+1, r)

DSA M. Bohlen

33

I Alternate Formulation of

DSA

Quicksort /2

Second difference: Partioning proceeds from
left to right

Partition(A, 1, r)

01 x:=Alr]; 1l :=1-1;

02 for fu:=1tor-1do

03 1IfAf[fu] <=x

04 then Swap(A, l1+1, fu);

05 ++;

06 m:=1l + 13

07 Swap(A, m,r); % put x into the middle
08 return m

M. Bohlen 34

Analysis of Quicksort

» Assume that all input elements are
distinct.

* The running time depends on the
distribution of splits.

DSA M. Bohlen

35

I Best Case

evenly: T(n) =2 T(n/2) + ©(n)

A n » N

I If we are lucky, Partition splits the array

n/2 n/2 > n
n/4 n/4 n/4 n/4 ———» n

logn nﬂ% B

n/8 n/8/}/8 n//8 }/8 n/é}/SH n
/N /N /N /N /N /N /N /N

1 11111111111 111 1 —» n

O(n log n)
DSA M. Bohlen 36

I Worst Case

* What is the worst case?
* One side of the partition has one element.

e T(n) =Tn-1) + T(1) + ©(n)
=T(n-1) + 0 + ©(n)
_ Yoeu
= o3 h)
= ®(nl§

DSA M. Bohlen

I Worst Case/2

n >
b N
n-1 >
1 / \n—2 >
RN
n 1 n-3 >

DSA M. Bohlen

n-1

n-2

O(n)

38

I Worst Case/3

 When does the worst case appear?
I - input is sorted
- input reverse sorted

o Same recurrence for the worst case of
insertion sort (reverse order, all
elements have to be moved).

 Sorted input yields the best case for
insertion sort.

DSA M. Bohlen

39

I Analysis of Quicksort

I * Suppose the splitis1/10: 9/10

n > 1N
(1/10)n (9/10)n > n
19]og n — T~ — T

(1/100)n (9/100)n (9/100)n (81/10)n > 1N

wogn /\
1 (81/1000)n (729/1000)n ——» n
/ \ / \ —» =n
\/ 1 —————®» =n

Omlogn)

DSA M. Bohlen

I An Average Case Scenario

* Suppose, we
alternate lucky and
unlucky cases to get
an average behavior

n ----0(n)

S

1 n-1

N

(n-1)/2 (n-1)/2

L(n) = 2Um/2) + O(n) lucky
U(n) = L(n-1) + ®©(m) unlucky
we consequently get
L(n) = 2(L(n/2-1) + B(n)) + ©(n)
=2L(n/2-1) + 6(n)
=0(n log n)

» -~ 6(n)

DSA M. Bohlen 41

I An Average Case
I Scenario/2

lucky?
— Partition around the "middle” (n/2th) element?
- Partition around a random element (works well in
practice)
« Randomized algorithm

- running time is independent of the input
ordering.

- no specific input triggers worst-case behavior.

- the worst-case is only determined by the output of
the random-number generator.

DSA M. Bohlen

I How can we make sure that we are usually

42

I Randomized Quicksort

1475

e Partition around a random element.

* Consequently, all splits (1:n-1, 2:n-2, ...,
n-1:1) are equally likely with probability
1/n.

I Assume all elements are distinct.

- Randomization is a general tool to
improve algorithms with bad worst-
case but good average-case complexity.

DSA M. Bohlen 43

I Randomized Quicksort/2

RandomizedPartition(A,l,r)

01 1 := Random(1l, r)
02 exchange A[r] and A[1]
03 return Partition(A,1l,r)

RandomizedQuicksort(A,1l,r)
01 if 1 < r then

02 m := RandomizedPartition(A,1l,r)
03 RandomizedQuicksort (A, 1, m)
04 RandomizedQuicksort (A, m+1, r)

DSA M. Bohlen

DSA

Stability

* Quicksort and Heap Sort are not stable
- swaps during partitioning destroy previous order
- research has been done on making Quicksort stable,
but did not lead to practical outcomes
* When stability is needed:
- remember the original position and use it in sorting
- use a different algorithm (e.g., Merge Sort)

M. Bohlen

45

I Summary

e Nearly complete binary trees
I * Heap data structure

* Heapsort
- based on heaps
- worst case is n log n
* Quicksort:
- partition based sort algorithm
- popular algorithm
- very fast on average
- worst case performance is quadratic

DSA M. Bohlen

I Summary/2

Comparison of sor-
ting methods.

Absolute values are
not important;
relate values to each
other.

Relate values to the
complexity (n log n,
n2).

Running time in
seconds, n=2048.

DSA

ordered |random |inverse
Insertion |0.22 50.74 103.8
Selection |58.18 58.34 73.46
Bubble 80.18 128.84 |178.66
Heap 2.32 222 |2.12
Quick |0.72 1.22 0.76

M. Bohlen

47

I Next Chapter

- Pointers
— Lists, trees

» Abstract data types (ADTs)
— Definition of ADTsSs
- Common ADTSs

I » Dynamic data structures

DSA M. Bohlen

48

