
Data Structures and
Algorithms

Chapter 4

1. About sorting algorithms
2. Heapsort

● Complete binary trees
● Heap data structure

3. Quicksort
● a popular algorithm
● very fast on average

M. BöhlenDSA 2

Previous Chapter
● Divide and conquer
● Merge sort
● Tiling
● Recurrences

– repeated substitutions
– substitution
– master method

● Example recurrences

M. BöhlenDSA 3

Why Sorting
● “When in doubt, sort” – one of the

principles of algorithm design.
● Sorting is used as a subroutine in many

algorithms:
– Searching in databases: we can do binary

search on sorted data
– Element uniqueness, duplicate elimination
– A large number of computer graphics and

computational geometry problems.

M. BöhlenDSA 4

Why Sorting/2
● Sorting algorithms represent different

algorithm design techniques.
● The lower bound for sorting Ω(n log n)

is used to prove lower bounds of other
problems.

M. BöhlenDSA 5

Sorting Algorithms so far
● Insertion sort, selection sort, bubble

sort
– Worst-case running time Θ(n2)
– In-place

● Merge sort
– Worst-case running time Θ(n log n)
– Requires additional memory Θ(n)

M. BöhlenDSA 6

Selection Sort

● A takes Θ(n) and B takes Θ(1): Θ(n2) in total
● Idea for improvement: smart data structure

to
– do A and B in Θ(1)
– spend O(log n) time per iteration to maintain the

data structure
– get a total running time of O(n log n)

SelectionSort(A[1..n]):
 for i  1 to n-1
A: Find the smallest element among A[i..n]
B: Exchange it with A[i]

SelectionSort(A[1..n]):
 for i  1 to n-1
A: Find the smallest element among A[i..n]
B: Exchange it with A[i]

M. BöhlenDSA 7

Binary Trees
● Each node may have a

left and right child.
– The left child of 7 is 1
– The right child of 7 is 8
– 3 has no left child
– 6 has no children

● Each node has at most
one parent.
– 1 is the parent of 4

● The root has no
parent.
– 9 is the root

● A leaf has no children.
– 6, 4 and 8 are leafs

9

3

1

7

86

4

M. BöhlenDSA 8

Binary Trees/2
● The depth (or level) of a

node x is the length of the
path from the root to x.
– The depth of 1 is 2
– The depth of 9 is 0

● The height of a node x is the
length of the longest path
from x to a leaf.
– The height of 7 is 2

● The height of a tree is the
height of its root.
– The height of the tree is 3

9

3

1

7

86

4

M. BöhlenDSA 9

Binary Trees/3
● The right subtree of a

node x is the tree rooted
at the right child of x.
– The right subtree of 9 is the

tree shown in blue.
● The left subtree of a node

x is the tree rooted at the
left child of x.
– The left subtree of 9 is the

tree shown in red.

9

3

1

7

86

4

M. BöhlenDSA 10

Complete Binary Trees
● A complete binary tree is a binary

tree where
– all leaves have the same depth.
– all internal (non-leaf) nodes have two

children.
● A nearly complete binary tree is a

binary tree where
– the depth of two leaves differs by at most 1.
– all leaves with the maximal depth are as far

left as possible.

4

M. BöhlenDSA 11

Heaps
● A binary tree is a binary heap iff

– it is a nearly complete binary tree
– each node is greater than or equal to all its

children
● The properties of a binary heap allow

– an efficient storage as an array (because it
is a nearly complete binary tree)

– a fast sorting (because of the organization
of the values)

2 5

M. BöhlenDSA 12

Heaps/2
16

15

8 7

142

9 3

10
Heap property

A[Parent(i)] ≥ A[i]

Parent(i)
return ⌊i/2⌋

Left(i)
return 2i

Right(i)
return 2i+1 16 15 10 8 7 9 3 2 4 1

 1 2 3 4 5 6 7 8 9 10

 Level: 0 1 2 3

1

2

8 9 10

5 6 7

3

4

3

M. BöhlenDSA 13

Heaps/3
● Notice the implicit tree links in the array:

children of node i are 2i and 2i+1
● The heap data structure can be used to

implement a fast sorting algorithm.
● The basic elements are

– Heapify: reconstructs a heap after an
element was modified

– BuildHeap: constructs a heap from an
array

– HeapSort: the sorting algorithm

M. BöhlenDSA 14

Heapify
● Input: index i in array A, number n of

elements
● Binary trees rooted at Left(i) and

Right(i) are heaps.
● A[i] might be smaller than its children,

thus violating the heap property.
● Heapify makes A a heap by moving

A[i] down the heap until the heap
property is satisfied again.

M. BöhlenDSA 15

Heapify Example
16

4

14 7

182

9 3

10
16

14

8

2 4 1

7 9

10

3

16
14

4

2 8 1

7 9 3

10 1.Call Heapify(A,2)
2.Exchange A[2] with A[4] and
 recursively call Heapify(A,4)
3.Exchange A[4] with A[9] and
 recursively call Heapify(A,9)
4.Node 9 has no children,
 so we are done

1

2

4

8 9 10

5 6 7

3

1

2

4

8 10

5 6 7

3

1

2

4

8 10

5 6 7

3

9

9

M. BöhlenDSA 16

Heapify Algorithm
Heapify(A, i, n)
 l := 2*i; // l := Left(i)
 r := 2*i+1; // r := Right(i)
 if l <= n and A[l] > A[i]
 then max := l
 else max := i
 if r <= n and A[r] > A[max]
 max := r
 if max != i
 exchange A[i] and A[max]
 Heapify(A, max, n)

Heapify(A, i, n)
 l := 2*i; // l := Left(i)
 r := 2*i+1; // r := Right(i)
 if l <= n and A[l] > A[i]
 then max := l
 else max := i
 if r <= n and A[r] > A[max]
 max := r
 if max != i
 exchange A[i] and A[max]
 Heapify(A, max, n)

M. BöhlenDSA 17

Heapify: Running Time
● The running time of Heapify on a subtree of

size n rooted at i includes the time to
– determine relationship between elements: Θ(1)
– run Heapify on a subtree rooted at one of the

children of i
● 2n/3 is the worst-case size of this subtree (half filled

bottom level)
● T(n) ≤ T(2n/3) + Θ(1) implies T(n) = O(log n)

– Alternatively
● Running time on a node of height h: O(h) = O(log n)

6

M. BöhlenDSA 18

Building a Heap
● Convert an array A[1...n] into a heap.
● Notice that the elements in the subarray

A[(⌊n/2⌋ + 1)...n] are 1-element heaps
to begin with.

BuildHeap(A)
 for i := ⌊n/2⌋ to 1 do
 Heapify(A, i, n)

BuildHeap(A)
 for i := ⌊n/2⌋ to 1 do
 Heapify(A, i, n)

M. BöhlenDSA 19

Building a Heap/2

● Heapify(A, 7, 10)
● Heapify(A, 6, 10)
● Heapify(A, 5, 10)

4
1

2 16

7814

9 10

3

1

2

4

8 9 10

5 6 7

3

4 1 3 2 16 9 10 14 8 7

4
1

2 16

7814

9 10

3

1

2

4

8 9 10

5 6 7

3

4 1 3 2 16 9 10 14 8 7

M. BöhlenDSA 20

Building a Heap/3

● Heapify(A, 4, 10)

4
1

2 16

7814

9 10

3

1

2

4

8 9 10

5 6 7

3

4 1 3 2 16 9 10 14 8 7

4
1

14 16

782

9 10

3

1

2

4

8 9 10

5 6 7

3

4 1 3 14 16 9 10 2 8 7

M. BöhlenDSA 21

Building a Heap/4

4
1

14 16

782

9 10

3

1

2

4

8 9 10

5 6 7

3

4 1 3 14 16 9 10 2 8 7

4
1

14 16

782

9 3

10

1

2

4

8 9 10

5 6 7

3

4 1 10 14 16 9 3 2 8 7

● Heapify(A, 3, 10)

M. BöhlenDSA 22

Building a Heap/5

4
1

14 16

782

9 10

3

1

2

4

8 9 10

5 6 7

3

4 1 10 14 16 9 3 2 8 7

4
16

14 7

182

9 3

10

1

2

4

8 9 10

5 6 7

3

4 16 10 14 7 9 3 2 8 1

● Heapify(A, 2, 10)

M. BöhlenDSA 23

Building a Heap/6

4
16

14 7

182

9 3

10

1

2

4

8 9 10

5 6 7

3

4 16 10 14 7 9 3 2 8 1

16
14

8 7

142

9 3

10

1

2

4

8 9 10

5 6 7

3

16 14 10 8 7 9 3 2 4 1

● Heapify(A, 1, 10)

M. BöhlenDSA 24

Building a Heap: Analysis
● Correctness: induction on i, all trees

rooted at m > i are heaps.
● Running time: n calls to Heapify =

n O(log n) = O(n log n)
● Non-tight bound but good enough for an

overall O(n log n) bound for Heapsort.
● Intuition for a tight bound:

– most of the time Heapify works on less than
n element heaps

M. BöhlenDSA 25

Building a Heap:
Analysis/2

● Tight bound:
– An n element heap has height log n.
– The heap has n/2h+1 nodes of height h.
– Cost for one call of Heapify is O(h).

●

● Math:

●

)
2

()(
2

)(
log

0

log

0
1 


 

n

h
h

n

h
h

hnOhOnnT

2
0)1(x

xkx
k

k







2

00)/11(
/1)/1(
x
xxk

x
k

k

k

k
k 










)()
)2/11(

2/1()
2

()(2

log

0

nOnOhnOnT
n

h
h 


 



M. BöhlenDSA 26

HeapSort
● The total running time of heap sort is

O(n) + n * O(log n) = O(n log n)

HeapSort(A)
 BuildHeap(A) O(n)
 for i := n to 2 do n times
 exchange A[1] and A[i] O(1)
 n := n-1 O(1)
 Heapify(A, 1, n) O(log n)

HeapSort(A)
 BuildHeap(A) O(n)
 for i := n to 2 do n times
 exchange A[1] and A[i] O(1)
 n := n-1 O(1)
 Heapify(A, 1, n) O(log n)

M. BöhlenDSA 27

Heap
Sort

16

14
8

2 4 1

7 9
10

3

1

2
4

10 14 16

7 8
3

9

2

1
4

10 14 16

7 8
3

9

3

2
4

10 14 16

7 8
1

9

4

2
1

10 14 16

7 8
3

9

7

4
1

10 14 16

2 8
3

9

8

7
4

10 14 16

2 1
3

9

14

8
4

2 1 16

7 9
10

3

10

8
4

2 14 16

7 1
9

3

9

8
4

10 14 16

7 1
3

2

 1 2 3 4 7 8 9 10 14 16

M. BöhlenDSA 28

Heap Sort: Summary
● Heap sort uses a heap data structure to

improve selection sort and make the running
time asymptotically optimal.

● Running time is O(n log n) – like merge sort,
but unlike selection, insertion, or bubble sorts.

● Sorts in place – like insertion, selection or
bubble sorts, but unlike merge sort.

● The heap data structure is used for other things
than sorting.

1

M. BöhlenDSA 29

Quick Sort
● Characteristics

– Like insertion sort, but unlike merge sort,
sorts in-place, i.e., does not require an
additional array.

– Very practical, average sort performance
O(n log n) (with small constant factors),
but worst case O(n2).

M. BöhlenDSA 30

Quick Sort – the Principle
● To understand quick sort, let’s look at a

high-level description of the algorithm.
● A divide-and-conquer algorithm

– Divide: partition array into 2 subarrays
such that elements in the lower part
≤ elements in the higher part.

– Conquer: recursively sort the 2 subarrays
– Combine: trivial since sorting is done in

place

M. BöhlenDSA 31

Partitioning

Partition(A,l,r)
01 x := A[r]
02 i := l-1
03 j := r+1
04 while TRUE
05 repeat j := j-1
06 until A[j]  x
07 repeat i := i+1
08 until A[i]  x
09 if i<j
10 then switch A[i]A[j]
11 else return i

1058231961217
i ji j

1758231961210
ji

1712823196510
ji

1712192386510
ij

1712192386510

  X=10


6

M. BöhlenDSA 32

Quick Sort Algorithm
● Initial call Quicksort(A, 1, n)

Quicksort(A, l, r)
01 if l < r
02 then m := Partition(A, l, r)
03 Quicksort(A, l, m-1)
04 Quicksort(A, m, r)

3 2 9

M. BöhlenDSA 33

Alternate Formulation of
Quicksort (Lomuto)

First difference: we do not touch the middle
element in the recursion

Quicksort(A, l, r)
01 if l < r
02 then m := Partition(A, l, r)
03 Quicksort(A, l, m-1)
04 Quicksort(A, m+1, r)

M. BöhlenDSA 34

Alternate Formulation of
Quicksort /2

Second difference: Partioning proceeds from
left to right

Partition(A, l, r)
01 x := A[r]; ll := l-1;
02 for fu:=l to r-1 do
03 if A[fu] <= x
04 then Swap(A, ll+1, fu);
05 ll++;
06 m := ll + 1;
07 Swap(A, m, r); % put x into the middle
08 return m

M. BöhlenDSA 35

Analysis of Quicksort
● Assume that all input elements are

distinct.
● The running time depends on the

distribution of splits.

M. BöhlenDSA 36

 Best Case
● If we are lucky, Partition splits the array

evenly: T(n) = 2 T(n/2) + Θ(n)
n

n/2 n/2
n/4 n/4

n/8n/8n/8n/8n/8n/8n/8n/8

n/4 n/4

Θ(n log n)

1

log n

n
n
n

n

n11111111 1 1 1 1 1 1 1

M. BöhlenDSA 37

Worst Case
● What is the worst case?
● One side of the partition has one element.
● T(n) = T(n-1) + T(1) + Θ(n)

 = T(n-1) + 0 + Θ(n)
 =
 =
 = Θ(n2)




Θ
n

k
k

1

)(




Θ
n

k
k

1

)

M. BöhlenDSA 38

Worst Case/2

nn

1 n-1

n-2

n-3

2 3

n-2

n-1

n

2

Θ(n2)

n

1

1

1

1 1

M. BöhlenDSA 39

Worst Case/3
● When does the worst case appear?

– input is sorted
– input reverse sorted

● Same recurrence for the worst case of
insertion sort (reverse order, all
elements have to be moved).

● Sorted input yields the best case for
insertion sort.

M. BöhlenDSA 40

Analysis of Quicksort
● Suppose the split is 1/10 : 9/10

1

(9/10)n(1/10)n

(1/100)n (9/100)n (9/100)n (81/10)n

(81/1000)n (729/1000)n

n

n

n

n

n

n

Θ(n log n)

1

10log n

10/9log n

n

M. BöhlenDSA 41

An Average Case Scenario
● Suppose, we

alternate lucky and
unlucky cases to get
an average behavior

n/2 n/2(n-1)/2(n-1)/2

n-11

n

n

L(n) = 2U(n/2) + Θ(n) lucky
U(n) = L(n-1) + Θ(n) unlucky
we consequently get
L(n) = 2(L(n/2 - 1) + Θ(n)) + Θ(n)
 = 2L(n/2 - 1) + Θ(n)
 =Θ(n log n)

Θ(n)

Θ(n)

M. BöhlenDSA 42

An Average Case
Scenario/2

● How can we make sure that we are usually
lucky?
– Partition around the ”middle” (n/2th) element?
– Partition around a random element (works well in

practice)
● Randomized algorithm

– running time is independent of the input
ordering.

– no specific input triggers worst-case behavior.
– the worst-case is only determined by the output of

the random-number generator.

M. BöhlenDSA 43

Randomized Quicksort
● Assume all elements are distinct.
● Partition around a random element.
● Consequently, all splits (1:n-1, 2:n-2, ...,

n-1:1) are equally likely with probability
1/n.

● Randomization is a general tool to
improve algorithms with bad worst-
case but good average-case complexity.

1 4 7 5

M. BöhlenDSA 44

Randomized Quicksort/2

RandomizedPartition(A,l,r)
01 i := Random(l,r)
02 exchange A[r] and A[i]
03 return Partition(A,l,r)

RandomizedQuicksort(A,l,r)
01 if l < r then
02 m := RandomizedPartition(A,l,r)
03 RandomizedQuicksort(A,l,m)
04 RandomizedQuicksort(A,m+1,r)

M. BöhlenDSA 45

Stability
● Quicksort and Heap Sort are not stable
– swaps during partitioning destroy previous order
– research has been done on making Quicksort stable,

but did not lead to practical outcomes
● When stability is needed:
– remember the original position and use it in sorting
– use a different algorithm (e.g., Merge Sort)

M. BöhlenDSA 46

Summary
● Nearly complete binary trees
● Heap data structure
● Heapsort

– based on heaps
– worst case is n log n

● Quicksort:
– partition based sort algorithm
– popular algorithm
– very fast on average
– worst case performance is quadratic

M. BöhlenDSA 47

Summary/2
● Comparison of sor-

ting methods.
● Absolute values are

not important;
relate values to each
other.

● Relate values to the
complexity (n log n,
n2).

● Running time in
seconds, n=2048.

0.761.220.72Quick

2.122.222.32Heap

178.66128.8480.18Bubble

73.4658.3458.18Selection

103.850.740.22Insertion

inverserandomordered

M. BöhlenDSA 48

Next Chapter
● Dynamic data structures

– Pointers
– Lists, trees

● Abstract data types (ADTs)
– Definition of ADTs
– Common ADTs

