
Data Structures and 
Algorithms

Chapter 4

1. About sorting algorithms
2. Heapsort

● Complete binary trees 
● Heap data structure

3. Quicksort
● a popular algorithm
● very fast on average
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Previous Chapter
● Divide and conquer
● Merge sort
● Tiling
● Recurrences

– repeated substitutions
– substitution
– master method

● Example recurrences
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Why Sorting
● “When in doubt, sort” – one of the 

principles of algorithm design. 
● Sorting is used as a subroutine in many 

algorithms:
– Searching in databases: we can do binary 

search on sorted data
– Element uniqueness, duplicate elimination
– A large number of computer graphics and 

computational geometry problems.
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Why Sorting/2
● Sorting algorithms represent different 

algorithm design techniques.
● The lower bound for sorting Ω(n log n) 

is used to prove lower bounds of other 
problems.
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Sorting Algorithms so far
● Insertion sort, selection sort, bubble 

sort
– Worst-case running time Θ(n2)
– In-place

● Merge sort
– Worst-case running time Θ(n log n)
– Requires additional memory Θ(n)
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Selection Sort

● A takes Θ(n) and B takes Θ(1): Θ(n2) in total 
● Idea for improvement: smart data structure 

to 
– do A and B in Θ(1)
– spend O(log n) time per iteration to maintain the 

data structure
– get a total running time of O(n log n)

SelectionSort(A[1..n]):
   for i  1 to n-1
A:    Find the smallest element among A[i..n]   
B:    Exchange it with A[i]

SelectionSort(A[1..n]):
   for i  1 to n-1
A:    Find the smallest element among A[i..n]   
B:    Exchange it with A[i]
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Binary Trees
● Each node may have a 

left and right child.
– The left child of 7 is 1
– The right child of 7 is 8
– 3 has no left child
– 6 has no children

● Each node has at most 
one parent.
– 1 is the parent of 4

● The root has no 
parent.
– 9 is the root

● A leaf has no children.
– 6, 4 and 8 are leafs
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Binary Trees/2
● The depth (or level) of a 

node x is the length of the 
path from the root to x.
– The depth of 1 is 2
– The depth of 9 is 0

● The height of a node x is the 
length of the longest path 
from x to a leaf.
– The height of 7 is 2

● The height of a tree is the 
height of its root.
– The height of the tree is 3
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Binary Trees/3
● The right subtree of a 

node x is the tree rooted 
at the right child of x.
– The right subtree of 9 is the 

tree shown in blue.
● The left subtree of a node 

x is the tree rooted at the 
left child of x.
– The left subtree of 9 is the 

tree shown in red.
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Complete Binary Trees
● A complete binary tree is a binary 

tree where 
– all leaves have the same depth.
– all internal (non-leaf) nodes have two 

children.
● A nearly complete binary tree is a 

binary tree where
– the depth of two leaves differs by at most 1.
– all leaves with the maximal depth are as far 

left as possible.

4
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Heaps
● A binary tree is a binary heap iff 

– it is a nearly complete binary tree
– each node is greater than or equal to all its 

children
● The properties of a binary heap allow

– an efficient storage as an array (because it 
is a nearly complete binary tree)

– a fast sorting (because of the organization 
of the values)

2 5
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Heaps/2
16
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Heap property

A[Parent(i)] ≥ A[i]

Parent(i)
return ⌊i/2⌋

Left(i)
return 2i

Right(i)
return 2i+1  16   15   10     8   7   9    3   2   4    1
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   Level:    0         1                  2                   3
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Heaps/3
● Notice the implicit tree links in the array: 

children of node i are 2i and 2i+1
● The heap data structure can be used to 

implement a fast sorting algorithm.
● The basic elements are

– Heapify: reconstructs a heap after an 
element was modified

– BuildHeap: constructs a heap from an 
array

– HeapSort: the sorting algorithm
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Heapify
● Input: index i in array A, number n of 

elements
● Binary trees rooted at Left(i) and 

Right(i) are heaps.
● A[i] might be smaller than its children, 

thus violating the heap property.
● Heapify makes A a heap by moving 

A[i] down the heap until the heap 
property is satisfied again.
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Heapify Example
16
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10 1.Call Heapify(A,2)
2.Exchange A[2] with A[4] and
   recursively call Heapify(A,4)
3.Exchange A[4] with A[9] and
   recursively call Heapify(A,9)
4.Node 9 has no children,
   so we are done
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Heapify Algorithm
Heapify(A, i, n)
  l := 2*i;   // l := Left(i)
  r := 2*i+1; // r := Right(i)
  if l <= n and A[l] > A[i]
    then max := l
    else max := i
  if r <= n and A[r] > A[max]
    max := r
  if max != i
    exchange A[i] and A[max]
    Heapify(A, max, n)

Heapify(A, i, n)
  l := 2*i;   // l := Left(i)
  r := 2*i+1; // r := Right(i)
  if l <= n and A[l] > A[i]
    then max := l
    else max := i
  if r <= n and A[r] > A[max]
    max := r
  if max != i
    exchange A[i] and A[max]
    Heapify(A, max, n)
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Heapify: Running Time
● The running time of Heapify on a subtree of 

size n rooted at i includes the time to
– determine relationship between elements: Θ(1) 
– run Heapify on a subtree rooted at one of the 

children of i 
● 2n/3 is the worst-case size of this subtree (half filled 

bottom level)
●  T(n)  ≤ T(2n/3) + Θ(1)  implies  T(n) = O(log n)

– Alternatively
● Running time on a node of height h: O(h) = O(log n)

6
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Building a Heap
● Convert an array A[1...n] into a heap.
● Notice that the elements in the subarray 

A[( ⌊n/2⌋ + 1)...n] are 1-element heaps 
to begin with.

BuildHeap(A)
  for i :=  ⌊n/2⌋  to 1 do
    Heapify(A, i, n)

BuildHeap(A)
  for i :=  ⌊n/2⌋  to 1 do
    Heapify(A, i, n)



M. BöhlenDSA 19

Building a Heap/2

● Heapify(A, 7, 10)
● Heapify(A, 6, 10)
● Heapify(A, 5, 10)

4
1

2 16

7814

9 10

3

1

2

4

8 9 10

5 6 7

3

4   1   3   2  16   9  10  14   8   7

4
1

2 16

7814

9 10

3

1

2

4

8 9 10

5 6 7

3

4   1   3   2  16   9  10  14   8   7



M. BöhlenDSA 20

Building a Heap/3

● Heapify(A, 4, 10)
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Building a Heap/4
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● Heapify(A, 3, 10)



M. BöhlenDSA 22

Building a Heap/5
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Building a Heap/6
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● Heapify(A, 1, 10)
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Building a Heap: Analysis
● Correctness: induction on i, all trees 

rooted at m > i are heaps.
● Running time: n calls to Heapify = 

n O(log n) = O(n log n)
● Non-tight bound but good enough for an 

overall O(n log n) bound for Heapsort.
● Intuition for a tight bound:

– most of the time Heapify works on less than 
n element heaps 
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Building a Heap: 
Analysis/2

● Tight bound:
– An n element heap has height log n.
– The heap has n/2h+1 nodes of height h.
– Cost for one call of Heapify is O(h).

●  

● Math: 
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HeapSort
● The total running time of heap sort is    

O(n) + n * O(log n) = O(n log n)

HeapSort(A)
  BuildHeap(A) O(n)
  for i := n to 2 do n times
    exchange A[1] and A[i]       O(1)
    n := n-1     O(1)
    Heapify(A, 1, n)     O(log n)

HeapSort(A)
  BuildHeap(A) O(n)
  for i := n to 2 do n times
    exchange A[1] and A[i]       O(1)
    n := n-1     O(1)
    Heapify(A, 1, n)     O(log n)
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Heap 
Sort
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Heap Sort: Summary
● Heap sort uses a heap data structure to 

improve selection sort and make the running 
time asymptotically optimal.

● Running time is O(n log n) – like merge sort, 
but unlike selection, insertion, or bubble sorts.

● Sorts in place – like insertion, selection or 
bubble sorts, but unlike merge sort.

● The heap data structure is used for other things 
than sorting.

1
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Quick Sort
● Characteristics

– Like insertion sort, but unlike merge sort, 
sorts in-place, i.e., does not require an 
additional array.

– Very practical, average sort performance 
O(n log n) (with small constant factors), 
but worst case O(n2).
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Quick Sort – the Principle
● To understand quick sort, let’s look at a 

high-level description of the algorithm.
● A divide-and-conquer algorithm

– Divide: partition array into 2 subarrays 
such that elements in the lower part 
≤ elements in the higher part.

– Conquer: recursively sort the 2 subarrays
– Combine: trivial since sorting is done in 

place



M. BöhlenDSA 31

Partitioning

Partition(A,l,r)
01 x := A[r]
02 i := l-1
03 j := r+1
04 while TRUE
05   repeat j := j-1
06     until A[j]   x
07   repeat i := i+1
08     until A[i]   x
09   if i<j
10     then switch A[i]A[j]
11     else return i

1058231961217
i ji j

1758231961210
ji

1712823196510
ji

1712192386510
ij

1712192386510

  X=10 


6
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Quick Sort Algorithm
● Initial call Quicksort(A, 1, n)

Quicksort(A, l, r)
01  if l < r
02  then  m := Partition(A, l, r)
03             Quicksort(A, l, m-1)
04             Quicksort(A, m, r)

3 2 9
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Alternate Formulation of 
Quicksort (Lomuto)

First difference: we do not touch the middle 
element in the recursion

Quicksort(A, l, r)
01   if l < r
02   then  m := Partition(A, l, r)
03               Quicksort(A, l, m-1)
04               Quicksort(A, m+1, r)
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Alternate Formulation of 
Quicksort /2

Second difference: Partioning proceeds from 
left to right

Partition(A, l, r)
01   x := A[r]; ll := l-1;
02  for fu:=l to r-1 do
03      if A[fu] <= x 
04      then Swap(A, ll+1, fu);
05                 ll++;
06  m := ll + 1;
07  Swap(A, m, r);     % put x into the middle
08  return m
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Analysis of Quicksort
● Assume that all input elements are 

distinct.
● The running time depends on the 

distribution of splits.
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 Best Case
● If we are lucky, Partition splits the array 

evenly:    T(n) = 2 T(n/2) + Θ(n) 
n

n/2 n/2
n/4 n/4

n/8n/8n/8n/8n/8n/8n/8n/8

n/4 n/4

Θ(n log n)

1

log n

n
n
n

n

n11111111 1 1 1 1 1 1 1
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Worst Case
● What is the worst case?
● One side of the partition has one element.
● T(n) = T(n-1) + T(1) + Θ(n)

          = T(n-1) + 0 + Θ(n)
          =
          =
          = Θ(n2)



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Worst Case/2

nn

1 n-1

n-2

n-3

2 3

n-2

n-1

n
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Θ(n2)

n

1

1

1

1 1
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Worst Case/3
● When does the worst case appear?

– input is sorted 
– input reverse sorted

● Same recurrence for the worst case of 
insertion sort (reverse order, all 
elements have to be moved).

● Sorted input yields the best case for 
insertion sort.
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Analysis of Quicksort
● Suppose the split is 1/10 : 9/10

1

(9/10)n(1/10)n

(1/100)n (9/100)n (9/100)n (81/10)n

(81/1000)n (729/1000)n

n

n

n

n

n

n

Θ(n log n)

1

10log n

10/9log n

n
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An Average Case Scenario
● Suppose, we 

alternate lucky and 
unlucky cases to get 
an average behavior

n/2 n/2(n-1)/2(n-1)/2

n-11

n

n

L(n) = 2U(n/2) + Θ(n)  lucky
U(n) = L(n-1) + Θ(n)     unlucky
we consequently get
L(n) = 2(L(n/2 - 1) + Θ(n)) + Θ(n)
        = 2L(n/2 - 1) + Θ(n)
        =Θ(n log n)

Θ(n)

Θ(n)
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An Average Case 
Scenario/2

● How can we make sure that we are usually 
lucky?
– Partition around the ”middle” (n/2th) element?
– Partition around a random element (works well in 

practice)
● Randomized algorithm

– running time is independent of the input 
ordering.

– no specific input triggers worst-case behavior.
– the worst-case is only determined by the output of 

the random-number generator.
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Randomized Quicksort
● Assume all elements are distinct.
● Partition around a random element.
● Consequently, all splits (1:n-1, 2:n-2, ..., 

n-1:1) are equally likely with probability 
1/n.

● Randomization is a general tool to 
improve algorithms with bad worst-
case but good average-case complexity.

1 4 7 5
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Randomized Quicksort/2

RandomizedPartition(A,l,r)
01   i := Random(l,r)
02   exchange A[r] and A[i]
03   return Partition(A,l,r)

RandomizedQuicksort(A,l,r)
01   if l < r then
02      m := RandomizedPartition(A,l,r)
03      RandomizedQuicksort(A,l,m)
04      RandomizedQuicksort(A,m+1,r)
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Stability
● Quicksort and Heap Sort are not stable
– swaps during partitioning destroy previous order
– research has been done on making Quicksort stable,

but did not lead to practical outcomes
● When stability is needed:
– remember the original position and use it in sorting
– use a different algorithm (e.g., Merge Sort)
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Summary
● Nearly complete binary trees 
● Heap data structure
● Heapsort

– based on heaps
– worst case is n log n

● Quicksort: 
– partition based sort algorithm
– popular algorithm
– very fast on average 
– worst case performance is quadratic
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Summary/2
● Comparison of sor-

ting methods.
● Absolute values are 

not important; 
relate values to each 
other.

● Relate values to the 
complexity (n log n, 
n2).

● Running time in 
seconds, n=2048.

0.761.220.72Quick

2.122.222.32Heap

178.66128.8480.18Bubble

73.4658.3458.18Selection

103.850.740.22Insertion

inverserandomordered
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Next Chapter
● Dynamic data structures

– Pointers
– Lists, trees

● Abstract data types (ADTs)
– Definition of ADTs
– Common ADTs


