
Data Structures and Algorithms Spring-Summer 2013/14

Lab 6 Mouna Kacimi, Werner Nutt,
Camilo Thorne

Lists and Binary Search Trees

The purpose of this lab is to apply the list and binary search tree data structures to
manipulate files (.txt files to be more precise). Dynamic data structures are more
convenient that static data structures (such as n-dimensional arrays) in this case,
since at any point in time, files might be (i) added, (ii) deleted, (iii) modified or
(iv) accessed. Lists and binary search trees allow for such operations to be effi-
cient w.r.t. both the time and space resources they require.

In what follows we will represent files as pairs (name, path) where name is a string
containing the file’s name or identifier and path its absolute system path.

1. In this exercise we will implement a file index structure based on lists:

(a) Modify the List and Node datatypes and structures so that they deal
with files. Notice that Node keys are not anymore integers, but strings
(filenames).

(b) Modify the methods void addSorted(Node n) and void
insertsort() to sort files in lexicographic order.

Hint: Implement a comparator for your new List structure; use the
comparator native to the Java String class.

2. In this exercise we will implement a file index structure based on binary
search trees. Modify the BinTree and Node datatypes and structures so
that they deal with files.

3. Modify again nodes, lists and binary trees into generic datatypes and struc-
tures, viz., implement (via Java generics) the classes: Node<E>, List<E>,
and BinTree<E>, where E denotes an arbitrary class. Which methods will
give problems, and how can we deal with them?


