
Datastructures and Algorithms Spring-Summer 2013/14

Lab Mouna Kacimi, Werner Nutt,
Camilo Thorne

1. ArrayUtility Class1

1. Implementation of the basic operations of the ArrayUtiliety class

Implement in Java the class ArrayUtility which offers basic operations over
mono-dimensional and bi-dimensional arrays. ALL methods MUST be imple-
mented as class methods (i.e., static methods). The signature of the methods
the ArrayUtility class must contain are the following:

• public static int findMax(int[] A, int i, int j): re-
turn the maximum element of the array A between position i and j.

• public static int findMaxPos(int[] A, int i, int j):
return the position of the maximum element of the array A between position
i and j.

• public static int findMin(int[] A, int i, int j): re-
turn the minimum element of the array A between position i and j.

• public static int findMinPos(int[] A, int i, int j):
return the position of the minimum element of the array A between position
i and j.

• public static void swap(int[] A, int i, int j): swap
the elements in position i and j in the array A.

• public static void shiftRight(int[] A, int i, int j):
shift on the right all the elements of the array A starting from position i and
until position j (i.e., move the element in position k to position k+1 for all
i ≤ k < j).

• public static void shiftLeft(int[] A, int i, int j):
shift on the left all the elements of the array A from position j until position
i (i.e., move the element in position k to position k − 1 for all i < k ≤ j).

1Exercises authored by Valeria Fionda, Mouna Kacimi, Werner Nutt, and Simon Razniewski
in the academic year 2012/13



• public static int[] createRandomArray(int size, int
min, int max): create and return an array of size size of random
elements with values between min and max (use the Math.random()
method of java).

• public static int[][] createRandomMatrix(int rows,
int cols, int min, int max): create and return an bi-dimensional
array with rows rows and cols columns of random elements with values
between min and max (use the Math.random() method of java).

• public static int[] copyArray(int[] A): return an array that
is the copy of A.

• public static int[][] copyMatrix(int[][] A): return a bi-
dimensional array that is the copy of A.

• public static int findElement(int[] A, int n): return
the position of the number n in the array A (it returns −1 if n is not present
in A).

• public static int binarySearch(int[] A, int n): return
the position of the number n in the array A (it returns −1 if n is not present
in A). The array A is sorted and the search is implemented using the binary
search algorithm.

2. Running Time Comparison — Maxsort

Add to your class ArrayUtility a static method implementing the algo-
rithm Maxsort, that takes an unsorted array of integer numbers as input and sorts
it in descending order, by doing the following:
First, it searches in the whole array for the biggest element. It then puts this
element to the beginning of the array . Then, it searches the whole array excluding
the first element for the biggest value, and puts it to the second position, and so
on.
Implement the algorithm according to two different strategy:

• by using the method shiftRight(int[] A, int i, int j): if
the maximum element is found in position j and should be put in position i
then: (i) A is shifted on the right starting from position i but taking care of
remembering the element in position j that will be overwrote; (ii) copy the
saved element in position i.



• by using the method swap(int[] A, int i, int j): if the maxi-
mum element is found in position i and should be put in position j then use
swap to exchange the element in position i with the element in position j.

Then:

1. write a main class that creates random arrays of size n = 10, 100, 1000, etc.

2. For each array created it orders it using the two implementations of Maxsort
and measures the running times. To measure the running time use the java
method System.nanoTime() in the following way:
long startTime = System.nanoTime();
... the code being measured ...
long estimatedTime = System.nanoTime() - startTime;


