
Data Structures and Algorithms Spring-Summer 2013/14

Assignment 4 Mouna Kacimi, Werner Nutt,
Camilo Thorne

Intersection of Arrays, Matching Pairs,
and a Mystery Algorithm

Instructions: Each student shall write down and submit his/her solutions sepa-
rately. If you worked together with other students, please list their names.
You can write up your answers by hand (provided your handwriting is legible) or
use a word processing system like Latex or Word.
For a programming task, your solution must contain (i) an explanation of your
solution to the problem, (ii) the Java code, in a form that we can run it, (iii) in-
structions how to run it. Also put the source code into your solution document. For
all programming tasks, it is not allowed to use any external libraries (“import”) if
not stated otherwise.
Please, include name, matriculation number and email address in your submis-
sion.

1. Intersecting Arrays

Develop an (efficient!) algorithm that takes as input two arrays of integers A
and B and outputs a third array C that contains exactly those numbers that occur
in both A and B. Each number should occur only once in C, even if it occurs
more than once in A or B.

1. Write the algorithm in pseudo-code and explain briefly why it solves the
problem.

2. Find out the asymptotic worst-case running time of the algorithm and briefly
explain your answer.

3. Implement the algorithm in Java.



4. Test the algorithm for extreme inputs: identify five extreme cases and ensure
that your algorithm performs correctly on them. Document the cases in your
report.

(10 Points)

2. Matching Pairs

Let s be an integer and A an array of integers. Then A has a matching pair for s
if there are two distinct positions i, j such that A[i] + A[j] = s.
The matching pair problem is to check, given s, whether A has a matching pair
for s.

1. Develop an algorithm in pseudocode that solves the matching pair problem
as fast as possible.

Hint: An algorithm that you know from the lecture may be useful.

2. What is the asymptotic worst-case complexity of your algorithm? Briefly
explain your answer.

3. Prove that your algorithm is correct. That is, show that whenever there
are two values in A that add up to s, your algorithm returns Yes, and that
whenever there are no two such values, your algorithm returns No.

Hint: Choose the right loop invariant.

(10 Points)

3. A Mystery

Consider the following procedure that takes as input an array and two indices.

1: procedure MYSTERY(A, l, r)
2: range := r − l + 1
3: subrange := d2 · range/3e
4: if range = 2 and A[l] > A[r] then
5: swap A[l]↔ A[r]
6: else if range ≥ 3 then
7: MYSTERY(A, l, l + subrange− 1)
8: MYSTERY(A, r − (subrange− 1), r)
9: MYSTERY(A, l, l + subrange− 1)

10: end if
11: end procedure



Note that division in line 3 is division of real numbers and recall that the ceiling
function dxe returns the least integer that is greater or equal to x.

1. What effect does the call MYSTERY(A, 1, A.length()) have on an array A?
Give a proof for your claim.

Hint: Since MYSTERY is a recursive procedure, your proof should use in-
duction. Note that if MYSTERY is called with range from l to r, then the
recursive calls of MYSTERY apply to a smaller range. Therefore, in your
proof you assume that after the recursive calls the subranges of those calls
have the claimed property. From this, conclude that the entire range from l
to r has the property.

2. What is the asymptotic running time of MYSTERY? Provide an argument
for your answer.

(10 Points)

Submission: Until Tue, 8 April 2014, 8:30 pm, to

dsa-submissions AT inf DOT unibz DOT it.


