
Data Structures and Algorithms Spring-Summer 2013/14

Assignment 1 Mouna Kacimi, Werner Nutt,
Camilo Thorne

Recursion and Complexity of Algorithms

Instructions: Your assignment should represent your own effort. However, you
are not expected to work alone. It is fine to discuss the exercises and try to find
solutions together, but each student shall write down and submit his/her solutions
separately. It is good academic standard to acknowledge collaborators, so if you
worked together with other students, please list their names.
You can write up your answers by hand (provided your handwriting is legible) or
use a word processing system like Latex or Word. Experience shows that Word is
in general difficult to use for this kind of task.
For a programming task, your solution must contain (i) an explanation of your
solution to the problem, (ii) the Java code, in a form that we can run it, (iii) in-
structions how to run it. Also put the source code into your solution document. For
all programming tasks, it is not allowed to use any external libraries (“import”) if
not stated otherwise.
Please, include name and email address in your submission.

1. Recursion

A palindrome is a phrase that reads the same forward and backward (examples:
‘racecar’, ‘radar’, ‘noon’, or ‘rats live on no evil star’). By extension we call every
string a palindrome that reads the same from left to right and from right to left.
Develop a recursive algorithm that takes as input a string and decides whether the
string is a palindrome.
Implement your algorithm in Java. Provide the argument for the test run in a
global variable.

(6 Points)



2. Maximal Length of Ascents in Arrays

Consider an array A[1..n] of integers. A subarray of A is a contiguous segment
of A. We denote the subarray from position k to position l as A[k . . . l].
The subarray A[k..l] is an ascent if A[j] ≤ A[j + 1] for all j where k ≤ j < l. In
other words, an ascent is a nondecreasing segment of A.
We want to compute the maximal length of an ascent in A. For instance, for
the array A = [3, 1, 4, 2, 4, 4, 5, 3], the maximal length of an ascent would be 4,
because the subarray A[4..7] = [2, 4, 4, 5] is the longest ascent in that array.
Of course, we are interested in an efficient algorithm that has asymptotically the
best running time possible.

1. Write down pseudocode for an iterative algorithm maxAscent(A) that
takes an array A of integers as input and returns the maximal length of
an ascent in A.

2. Explain why your algorithm is correct.

3. What is the running time of your algorithm with respect to the array size
n? Give an upper bound of the form O(f(n)) and a lower bound of the
form Ω(g(n)). Can you characterize the asymptotic running time by some
Θ(h(n))?

4. Implement the algorithm in Java. Provide the argument for the test run in a
global variable.

(10 Points)

3. Array of Averages

Design an efficient algorithm that achieves the following task: Given an array
A[1..n] of floating point numbers, it returns a two-dimensional array, say M , of
size n × n in which the entry M [i][j] for i ≤ j contains the average of the array
entries A[i] through A[j]. That is: if i ≤ j, then

M [i][j] =
A[i] + · · · + A[j]

j − i + 1
,

whereas for i > j we have that M [i][j] = 0.

1. Describe the algorithm that creates this matrix in pseudocode.



2. What is the running time of your algorithm with respect to the array size
n? Give an upper bound of the form O(f(n)) and a lower bound of the
form Ω(g(n)). Can you characterize the asymptotic running time by some
Θ(h(n))?

3. Implement the algorithm in Java. Provide the argument for the test run in a
global variable.

4. Measure the run time of your Java program for random inputs of size n =
10, 100, 1000, etc. Does the growth of the running time correspond to your
asymptotic estimates?

(14 Points)

Submission: Until Mon, 17 March 2014, 8:30 am, to

dsa-submissions AT inf DOT unibz DOT it.

If you want to submit a hand-written solution, scan it and send it to the email
address above.


