Data Structures and Algorithms Week 3

1. Divide and conquer
2. Merge sort, repeated substitutions
3. Tiling
4. Recurrences

Recurrences

- Running times of algorithms with recursive calls can be described using recurrences.
- A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs.
- For divide and conquer algorithms:
$T(n)=\left\{\begin{array}{cc}\text { solving trivial problem } & \text { if } \mathbf{n}=\mathbf{1} \\ \text { NumPieces } * T(\mathbf{n} / \text { SubProbFactor })+\text { divide }+ \text { combine } & \text { if } \mathbf{n > 1}\end{array}\right\}$
- Example: Merge Sort

$$
T(n)=\left\{\begin{array}{cc}
\Theta(1) & \text { if } n=1 \\
2 T(n / 2)+\Theta(n) & \text { if } n>1
\end{array}\right\}
$$

Solving Recurrences

- Repeated (backward) substitution method
- Expanding the recurrence by substitution and noticing a pattern (this is not a strictly formal proof).
- Substitution method
- guessing the solutions
- verifying the solution by the mathematical induction
- Recursion trees
- Master method
- templates for different classes of recurrences

Repeated Substitution

- Let's find the running time of merge sort (assume $n=2^{b}$).

$$
T(n)=\left\{\begin{array}{cc}
1 & \text { if } n \equiv \\
2 \pi / 2) & \text { if } n \gg
\end{array}\right.
$$

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \text { substitute } \\
& =2(2 T(n / 4)+n / 2)+n \text { expand } \\
& =2^{2} T(n / 4)+2 n \text { substitute } \\
& =2^{2}(2 T(n / 8)+n / 4)+2 n \text { expand } \\
& =2^{3} T(n / 8)+3 n \text { observe pattern }
\end{aligned}
$$

Repeated Substitution/2

From $\quad T(n)=2^{3} T(n / 8)+3 n$
we get $\quad T(n)=2^{i} T\left(n / 2^{i}\right)+i n$

An upper bound for i is $\log n$:

$$
\begin{aligned}
& T(n)=2^{\log n} T(n / n)+n \log n \\
& T(n)=n+n \log n
\end{aligned}
$$

Repeated Substitution Method

- The procedure is straightforward:
- Substitute, Expand, Substitute, Expand, ...
- Observe a pattern and determine the expression after the i-th substitution.
- Find out what the highest value of i (number of iterations, e.g., $\log n$) should be to get to the base case of the recurrence (e.g., T(1)).
- Insert the value of $T(1)$ and the expression of i into your expression.

Analysis of Sort Merge

- Let's find a more exact running time of merge sort (assume $n=2^{b}$).

$$
T(n)=\left\{\begin{array}{ccc}
2 & \text { if } & n k \\
2 T(n & n+n 2 & 3+n i f
\end{array}>1\right.
$$

$$
\begin{aligned}
T(n) & =2 T(n / 2)+2 n+3 \text { substitute } \\
& =2(2 T(n / 4)+n+3)+2 n+3 \text { expand } \\
& =2^{2} T(n / 4)+4 n+2^{*} 3+3 \text { substitute } \\
& =2^{2}(2 T(n / 8)+n / 2+3)+4 n+2^{*} 3+3 \text { expand } \\
& =2^{3} T\left(n / 2^{3}\right)+2^{*} 3 n+\left(2^{2+} 2^{1+} 2^{o}\right)^{*} 3 \text { observe pattern }
\end{aligned}
$$

Analysis of Sort Merge/2

$$
T(n)=2^{i} T\left(n / 2^{i}\right)+2 i n+3 \sum_{j=0}^{i-1} 2^{j}
$$

An upper bound for i is $\log n$

$$
\begin{aligned}
& =2^{\log n} T\left(n / 2^{\log n}\right)+2 n \log n+3^{*}\left(2^{\log n}-1\right) \\
& =5 n+2 n \log n-3 \\
& =\Theta(n \log n)
\end{aligned}
$$

Substitution Method

- The substitution method to solve recurrences entails two steps:
- Guess the solution.
- Use induction to prove the solution.
- Example:
$-T(n)=4 T(n / 2)+n$

Substitution Method/2

1) Guess $T(n)=O\left(n^{3}\right)$, i.e., $T(n)$ is of the form cn^{3}
2) Prove $T(n) \leq c n^{3}$ by induction

$$
\begin{array}{rlr}
T(n) & =4 T(n / 2)+n & \text { re } \\
& \leq 4 c(n / 2)^{3}+n \quad \text { in } \\
& =0.5 c n^{3}+n \quad \text { simplify } \\
& =\mathrm{cn}^{3}-\left(0.5 \mathrm{cn}^{3}-\mathrm{n}\right) \quad \text { re } \\
& \leq \mathrm{cn}^{3} \text { if } \mathrm{c}>=2 \text { and } \mathrm{n}>=1
\end{array}
$$

Thus $T(n)=O\left(n^{3}\right)$

Substitution Method/3

- Tighter bound for $T(n)=4 T(n / 2)+n$: Try to show $T(n)=O\left(n^{2}\right)$ Prove $T(n) \leq \mathrm{cn}^{2}$ by induction $\mathrm{T}(\mathrm{n})=4 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}$

$$
\leq 4 c(n / 2)^{2}+n
$$

$$
=\mathrm{cn}^{2}+\mathrm{n}
$$

$$
\mathrm{NOT} \leq \mathrm{cn}^{2}
$$

=> contradiction

Substitution Method/4

- What is the problem? Rewriting $T(n)=O\left(n^{2}\right)=c n^{2}+($ something positive) as $T(n) \leq c n^{2}$ does not work with the inductive proof.
- Solution: Strengthen the hypothesis for the inductive proof:
$-\mathrm{T}(\mathrm{n}) \leq$ (answer you want) - (something $>\mathrm{o}$)

Substitution Method/5

- Fixed proof: strengthen the inductive hypothesis by subtracting lower-order terms:

$$
\text { Prove } T(n) \leq c n^{2}-d n \text { by induction }
$$

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =4 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n} \\
& \leq 4\left(\mathrm{c}(\mathrm{n} / 2)^{2}-\mathrm{d}(\mathrm{n} / 2)\right)+\mathrm{n} \\
& =\mathrm{cn}^{2}-2 \mathrm{dn}+\mathrm{n} \\
& =\mathrm{cn}^{2}-\mathrm{dn}-(\mathrm{dn}-\mathrm{n}) \\
& \leq \mathrm{cn}^{2}-\mathrm{dn} \text { if } \mathrm{d} \geq 1
\end{aligned}
$$

Recursion Tree

- A recursion tree is a convenient way to visualize what happens when a recurrence is iterated.
- Good for "guessing" asymptotic solutions to recurrences

Recursion Tree/2

$$
\left(\frac{1}{16} n^{2}\left(\frac{1}{4}\right)^{2}\right)^{2}\left(\frac{1}{2} n\right)^{2}-\frac{5}{16} n^{2}
$$

Master Method

- The idea is to solve a class of recurrences that have the form $T(n)=a T(n / b)+f(n)$
- Assumptions: $a \geq 1$ and $b>1$, and $f(n)$ is asymptotically positive.
- Abstractly speaking, $T(n)$ is the runtime for an algorithm and we know that
- a subproblems of size n / b are solved recursively, each in time $T(n / b)$.
- $f(n)$ is the cost of dividing the problem and combining the results. In merge-sort $T(n)=2 T(n / 2)+\Theta(n)$.

Master Method/2

- Iterating the recurrence (expanding the tree) yields

$$
\begin{aligned}
T(n)= & f(n)+a T(n / b) \\
= & f(n)+a f(n / b)+a^{2} T\left(n / b^{2}\right) \\
= & f(n)+a f(n / b)+a^{2} f\left(n / b^{2}\right)+\ldots \\
& +a^{b_{\log n-1} f\left(n / a^{b \log n-1}\right)+a^{b \log n} T(1)} \\
T(n)= & \sum^{\log ^{\log -1}} a^{j} f\left(n / b^{j}\right)+\Theta\left(n^{\left.\log ^{\log a}\right)}\right.
\end{aligned}
$$

- The first $t=0$ term is a division/recombination cost (totaled across all levels of the tree).
- The second term is the cost of doing all subproblems of size 1 (total of all work pushed to leaves).

Master Method/3

V $\Theta(1) \Theta(1) \Theta(1) \Theta(1) \Theta(1) \Theta(1) \Theta(1) \Theta(1) \Theta(1)$

$$
\begin{array}{r}
\Theta(1) \Theta(1) \Theta(1)-\Theta\left(n^{b_{\log a}}\right) \\
\text { Total: } \Theta\left(n^{b_{\log a} a}\right)+\sum_{\mathrm{j}=0}^{\log _{\mathrm{g}} \mathrm{n}-1}
\end{array} \mathrm{a}^{\mathrm{j}} \mathbf{f}\left(\mathrm{n} / \mathrm{b}^{\mathrm{j}}\right) .
$$

Note: split into a parts, ${ }^{b} \log n$ levels, $\mathrm{a}^{b \log n}=n^{b \log a}$ leaves.

Master Method, Intuition

- Three common cases:

1. Running time dominated by cost at leaves.
2. Running time evenly distributed throughout the tree.
3. Running time dominated by cost at the root.

- To solve the recurrence, we need to identify the dominant term.
- In each case compare $f(n)$ with $O\left(n^{\left.b^{\log a}\right)}\right.$.

Master Method, Case 1

- $f(n)=O\left(n^{b \log a-\varepsilon}\right)$ for some constant $\varepsilon>0$
- $f(n)$ grows polynomially slower than $n^{b} \log a$ (by factor n^{ε}).
- The work at the leaf level dominates

$$
\begin{aligned}
& T(n)=\Theta\left(n^{b \log a}\right) \\
& \text { Cost of all the leaves }
\end{aligned}
$$

Master Method, Case 2

$$
\text { - } f(n)=\Theta\left(n^{b \log a}\right)
$$

$$
-f(n) \text { and } n^{b_{\log a} a} \text { are asymptotically the same }
$$

- The work is distributed equally throughout the tree

$$
T(n)=\Theta\left(n^{b \log a} \log n\right)
$$

(level cost) \times (number of levels)

Master Method, Case 3

- $f(n)=\Omega\left(n^{b l o g a+\varepsilon}\right)$ for some constant $\varepsilon>0$
- Inverse of Case 1
- $f(n)$ grows polynomially faster than $n^{b l o g a}$
- Also need a "regularity" condition
$\exists c$ kand $n_{0} \quad \theta$ suchfhat $\langle k / c)\left(n \rightarrow n \quad n_{0}\right.$
- The work at the root dominates

$$
T(n)=\Theta(f(n))
$$

division/recombination cost

Master Theorem Summarized

Given: recurrence of the form

$$
T(n)=a T(n / b)+f(n)
$$

$$
\text { 1. } f(n)=O\left(n^{b^{\log } a-\varepsilon}\right)
$$

$$
\Rightarrow T(n)=\Theta\left(n^{\log a}\right)
$$

$$
\text { 2. } f(n)=\Theta\left(n^{b \log a}\right)
$$

$$
\Rightarrow T(n)=\Theta\left(n^{b \log a} \log n\right)
$$

3. $f(n)=\Omega\left(n^{b \log a+\varepsilon}\right)$ and af(n/b) $\leq \alpha f(n)$ for some $\alpha<1, n>n_{\text {o }}$ $\Rightarrow T(n)=\Theta(f(n))$

Strategy

1. Extract a, b, and $f(n)$ from a given recurrence
2. Determine $n^{b \log a}$
3. Compare $f(n)$ and $n^{b \log a}$ asymptotically
4. Determine appropriate MT case and apply it
```
Merge sort: \(T(n)=2 T(n / 2)+\Theta(n)\)
    \(a=2, b=2, f(n)=\Theta(n)\)
    \(n^{2 \log 2}=n\)
    \(\Theta(n)=\Theta(n)\)
    \(=>\) Case 2: \(\mathrm{T}(\mathrm{n})=\Theta\left(\mathrm{n}^{\mathrm{b} \log \mathrm{a}} \log \mathrm{n}\right)=\Theta(n \log n)\)
```


Examples of Master Method

```
BinarySearch(A, l, r, q):
    m := (l+r)/2
    if A[m]=q then return m
    else if A[m]>q then
        BinarySearch(A, l, m-1, q)
    else BinarySearch(A, m+1, r, q)
```

$$
\begin{aligned}
& T(n)=T(n / 2)+1 \\
& a=1, b=2, f(n)=1 \\
& n^{2 l o g} 1=1 \\
& 1=\Theta(1) \\
& =>\text { Case } 2: T(n)=\Theta(\log n)
\end{aligned}
$$

Examples of Master Method/2

$$
\begin{aligned}
& T(n)=9 T(n / 3)+n \\
& a=9, b=3, f(n)=n \\
& \mathrm{n}^{3 \log 9}=\mathrm{n}^{2}
\end{aligned}
$$

$$
n=\mathrm{O}\left(n^{3 \log 9-\varepsilon}\right) \text { with } \varepsilon=1
$$

$$
=>\text { Case 1: } T(n)=\Theta\left(n^{2}\right)
$$

Examples of Master Method/3

$$
\begin{aligned}
T(n)= & 3 T(n / 4)+n \log n \\
& a=3, b=4, f(n)=n \log n \\
& n^{4 \log 3}=n^{0.792} \\
& n \log n=\Omega\left(n^{4 \log 3+\varepsilon}\right) \text { with } \varepsilon=0.208 \\
& =>\text { Case } 3:
\end{aligned}
$$

$$
\text { regularity condition: } a f(n / b)<=c f(n)
$$

$$
a f(n / b)=3(n / 4) \log (n / 4)<=
$$

$$
(3 / 4) n \log n=c f(n) \text { with } c=3 / 4
$$

$$
T(n)=\Theta(n \log n)
$$

BinarySearchRec1

- Find a number in a sorted array:
- Trivial if the array contains one element.
- Else divide into two equal halves and solve each half.
- Combine the results.

```
INPUT: A[1..n] - sorted array of integers, q - integer
OUTPUT: index j s.t. A[j] = q, NIL if \forallj(1\leqj\leqn): A[j] \not=q
BinarySearchRec1(A, l, r, q):
    if l = r then
        if A[l] = q then return l else return NIL
    m := 珔(l+r)/2悤
    ret := BinarySearchRec1(A, l, m, q)
    if ret = NIL then return BinarySearchRecl(A, m+1, r, q)
    else return ret
```


T(n) of BinarySearchRec1

- Example: Binary Search

$$
T(n)=\left\{\begin{array}{cc}
\Theta(1) & \text { if } n=1 \\
2 T(n / 2)+\Theta(1) & \text { if } n>1
\end{array}\right.
$$

- Solving the recurrence yields

$$
T(n)=\Theta(n)
$$

BinarySearchRec2

- $T(n)=\Theta(n)-$ not better than brute force!
- Better way to conquer:
- Solve only one half!

```
INPUT: A[1..n] - sorted array of integers, q - integer
OUTPUT: j s.t. A[j] = q, NIL if \forallj(1\leqj\leqn): A[j] f q
BinarySearchRec2 (A, l, r, q):
    if l = r then
        if A[l] = q then return l
        else return NIL
    m := 㤢 (l+r)/2悤
    if A[m] \leq q then return BinarySearchRec2(A, l, m, q)
    else return BinarySearchRec2(A, m+1, r, q)
```


T(n) of BinarySearchRec2

- $T(n)=\left|\begin{array}{cc}\Theta(1) & \text { if } n=1 \\ T(n / 2)+\Theta(1) & \text { if } n>1\end{array}\right|$
- Solving the recurrence yields

$$
T(n)=\Theta(\log n)
$$

Example: Finding Min and Max

- Given an unsorted array, find a minimum and a maximum element in the array.

```
INPUT: A[l..r] - an unsorted array of integers, l\leqr.
OUTPUT: (min,max) s.t. \forallj(l\leqj\leqr): A[j]\geqmin and A[j]\leqmax
```

$\operatorname{MinMax}(A, \ln):$
if $l=r$ then return (A[l], A[r]) // Trivial case $m:=$ 珔 $(l+r) / 2$ 悤 // Divide
(minl,maxl) $:=\operatorname{MinMax}(A, l, m) \quad / / C o n q u e r ~$
(minr,maxr) $:=\operatorname{MinMax}(A, m+1, r) / / C o n q u e r$
if minl < minr then min $=$ minl else min $=$ minr // Combine if maxl > maxr then max $=$ maxl else max $=$ maxr // Combine return (min,max)

Summary

- Divide and conquer
- Merge sort
- Tiling
- Recurrences
- repeated substitutions
- substitution
- master method
- Example recurrences: Binary search

Next Week

- Sorting
- HeapSort
- QuickSort

