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DSA, Part 1:

• Introduction, syllabus, organisation

• Algorithms

• Recursion (principle, trace, factorial, Fibonacci)

• Sorting (bubble, insertion, selection)
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Sorting

• Sorting is a classical and important algorithmic problem.
– For which operations is sorting needed?
– Which systems implement sorting?

• We look at sorting arrays 
(in contrast to files, which restrict random access)

• A key constraint are the restrictions on the space: 
in-place sorting algorithms (no extra RAM).

• The run-time comparison is based on 

– the number of comparisons (C) and 
– the number of movements (M).
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Sorting

• Simple sorting methods use roughly n * n  comparisons

– Insertion sort

– Selection sort
– Bubble sort

• Fast sorting methods use roughly n * log n comparisons

– Merge sort

– Heap sort
– Quicksort

     What’s the point of studying those simple methods?
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Example 2: Sorting

Sort

INPUT
sequence of  n  numbers  

a1, a2, a3,….,an
b1, b2, b3,…., bn

OUTPUT
a permutation of the 
input sequence of numbers

2    5    4    10    7 
 

2    4    5    7    10  

Correctness (requirements for the output)
For any given input the algorithm halts with the output:

• b1  b2  ≤ b3  ≤ ….  ≤  bn

• b1, b2, b3, …., bn   is a permutation of a1, a2, a3,….,an

 ≤
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Insertion Sort

44  55  12  42  94  18  06  67 
44  55  12  42  94  18  06  67 
12  44  55  42  94  18  06  67 
12  42  44  55  94  18  06  67 
12  42  44  55  94  18  06  67 
12  18  42  44  55  94  06  67 
06  12  18  42  44  55  94  67 
06  12  18  42  44  55  67  94

Strategy
• Start with one sorted card. 
• Insert an unsorted card 

at the correct position 
in the sorted part.

• Continue until all unsorted 
cards are inserted/sorted.

3 4 6 8 9 7 2 5 1

1 nj
i

A
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Insertion Sort/2

INPUT: A[1..n] – an array of integers
OUTPUT: permutation of A s.t. A[1]≤ A[2]≤ ...≤ A[n]

for j := 2 to n do // A[1..j-1] sorted
  key := A[j]; i := j-1;
  while i > 0 and A[i] > key do
    A[i+1] := A[i];  i--;
  A[i+1] := key

The number of comparisons during the jth iteration is 

– at least 1:   C
min

 =               =  n - 1 

– at most j-1: C
max

 =                  = (n*n - n)/2

∑ j=2

n
1

∑ j=2

n
j−1
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n

1

∑ j=2

n
j−1
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• The number of comparisons during the jth iteration is:

– j/2 average: C
avg

 =                 = (n*n + n – 2)/4

• The number of movements is Ci+1: 

– M
min

 =                      = 2*(n-1), 

– M
avg

 =                          = (n*n + 5n - 6)/4 

– M
max

 =                       = (n*n + n - 2)/2

Insertion Sort/3

∑ j=2

n
2

∑ j=2

n
j /2

∑ j=2

n
j

∑ j=2

n
j /21
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Selection Sort

A
1 nj

1 3 42 5 7 8 9 6

i

Strategy
• Start empty handed.
• Enlarge the sorted part 

by swapping the first element 
of the unsorted part 
with the smallest element 
of the unsorted part.

• Continue until the unsorted part 
consists of one element only.

44  55  12  42  94  18  06  67
06  55  12  42  94  18  44  67
06  12  55  42  94  18  44  67
06  12  18  42  94  55  44  67
06  12  18  42  94  55  44  67
06  12  18  42  44  55  94  67
06  12  18  42  44  55  94  67
06  12  18  42  44  55  67  94
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Selection Sort/2

∑ j=1

n−1
n− j =∑k=1

n−1
k

The number of comparisons is independent of the
original ordering (this is a less natural behavior than 
insertion sort):

C =                                   = (n*n - n)/2

INPUT: A[1..n] – an array of integers
OUTPUT: a permutation of A such that A[1]≤ A[2]≤ … ≤A[n]

for j := 1 to n-1 do // A[1..j-1] sorted and minimum
  key := A[j]; ptr := j
  for i := j+1 to n do
    if A[i] < key then key := A[i]; ptr := i;
  A[ptr] := A[j]; A[j] := key
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Selection Sort/3

The number of movements is: 

M
min

 =                      = 3*(n-1) 

M
max

 =                             = (n*n – n)/2 + 3*(n-1)

∑ j=1

n−1
3

∑ j=1

n−1
n-j+3
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Bubble Sort

A
1 nj

1 3 42 5 7 9 8 6

 Strategy
• Start from the back 

and compare pairs 
of adjacent elements.

• Swap the elements 
if the larger comes 
before the smaller.

• In each step 
the smallest element 
of the unsorted part 
is moved to the beginning 
of the unsorted part and the 
sorted part grows by one.

44 55 12 42 94 18 06 67

06 44 55 12 42 94 18 67

06 12 44 55 18 42 94 67

06 12 18 44 55 42 67 94

06 12 18 42 44 55 67 94

06 12 18 42 44 55 67 94 

06 12 18 42 44 55 67 94

06 12 18 42 44 55 67 94
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Bubble Sort/2
INPUT: A[1..n] – an array of integers
OUTPUT: permutation of A s.t. A[1]≤ A[2]≤ … ≤ A[n]

for j := 2 to n do // A[1..j-2] sorted and minimum
  for i := n to j do
    if A[i-1] > A[i] then
      key := A[i-1]; 

A[i-1] := A[i];
      A[i]:= key

The number of comparisons is independent of the 
original ordering:

C =                                   = (n*n - n)/2∑ j=2

n
n− j1
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Bubble Sort/3

The number of movements is: 

M
min

 = 0 

M
max

 =                                  = 3*n*(n - 1)/2

M
avg

 =                                    = 3*n*(n - 1)/4

∑ j=2

n

3 n− j1 

∑ j=2

n

3 n− j1 / 2
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Properties of a Sorting Algorithm

• Efficient: has low (worst case) runtime

• In place: needs (almost) no additional space 
        (fixed number of scalar variables)

• Adaptive: performs little work if the array is already 
         (mostly) sorted

• Stable: does not change the order of elements with 
      equal key values

• Online: can sort data as it receives them
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Sorting Algorithms: Properties

Which algorithm has which property?

Adaptive Stable Online

Insertion 
Sort

Selection
Sort

Bubble 
Sort
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Summary

• Precise problem specification is crucial.

• Precisely specify Input and Output.

• Pseudocode, Java, C, … is largely equivalent for our 
purposes.

• Recursion: procedure/function that calls itself.

• Sorting: important problem with classic solutions.
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