
Master Informatique 1Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

Data Structures and Algorithms

Part 1.4

Werner Nutt

Master Informatique 2Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

DSA, Part 1:

• Introduction, syllabus, organisation

• Algorithms

• Recursion (principle, trace, factorial, Fibonacci)

• Sorting (bubble, insertion, selection)

Master Informatique 3Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

Sorting

• Sorting is a classical and important algorithmic problem.
– For which operations is sorting needed?
– Which systems implement sorting?

• We look at sorting arrays
(in contrast to files, which restrict random access)

• A key constraint are the restrictions on the space:
in-place sorting algorithms (no extra RAM).

• The run-time comparison is based on

– the number of comparisons (C) and
– the number of movements (M).

Master Informatique 4Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

Sorting

• Sorting is a classical and important algorithmic problem.
– For which operations is sorting needed?
– Which systems implement sorting?

• We look at sorting arrays
(in contrast to files, which restrict random access)

• A key constraint are the restrictions on the space:
in-place sorting algorithms (no extra RAM).

• The run-time comparison is based on

– the number of comparisons (C) and
– the number of movements (M).

Master Informatique 5Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

Sorting

• Simple sorting methods use roughly n * n comparisons

– Insertion sort

– Selection sort
– Bubble sort

• Fast sorting methods use roughly n * log n comparisons

– Merge sort

– Heap sort
– Quicksort

 What’s the point of studying those simple methods?

Master Informatique 6Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

Example 2: Sorting

Sort

INPUT
sequence of n numbers

a1, a2, a3,….,an
b1, b2, b3,…., bn

OUTPUT
a permutation of the
input sequence of numbers

2 5 4 10 7

2 4 5 7 10

Correctness (requirements for the output)
For any given input the algorithm halts with the output:

• b1 b2 ≤ b3 ≤ …. ≤ bn

• b1, b2, b3, …., bn is a permutation of a1, a2, a3,….,an

 ≤

Master Informatique 7Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

Insertion Sort

44 55 12 42 94 18 06 67
44 55 12 42 94 18 06 67
12 44 55 42 94 18 06 67
12 42 44 55 94 18 06 67
12 42 44 55 94 18 06 67
12 18 42 44 55 94 06 67
06 12 18 42 44 55 94 67
06 12 18 42 44 55 67 94

Strategy
• Start with one sorted card.
• Insert an unsorted card

at the correct position
in the sorted part.

• Continue until all unsorted
cards are inserted/sorted.

3 4 6 8 9 7 2 5 1

1 nj
i

A

Master Informatique 8Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

Insertion Sort/2

INPUT: A[1..n] – an array of integers
OUTPUT: permutation of A s.t. A[1]≤ A[2]≤ ...≤ A[n]

for j := 2 to n do // A[1..j-1] sorted
 key := A[j]; i := j-1;
 while i > 0 and A[i] > key do
 A[i+1] := A[i]; i--;
 A[i+1] := key

The number of comparisons during the jth iteration is

– at least 1: C
min

 = = n - 1

– at most j-1: C
max

 = = (n*n - n)/2

∑ j=2

n
1

∑ j=2

n
j−1

Master Informatique 9Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

Insertion Sort/2

INPUT: A[1..n] – an array of integers
OUTPUT: permutation of A s.t. A[1]≤ A[2]≤ ...≤ A[n]

for j := 2 to n do // A[1..j-1] sorted
 key := A[j]; i := j-1;
 while i > 0 and A[i] > key do
 A[i+1] := A[i]; i--;
 A[i+1] := key

The number of comparisons during the jth iteration is

– at least 1: C
min

 = = n - 1

– at most j-1: C
max

 = = (n*n - n)/2

∑j=2

n

1

∑ j=2

n
j−1

Master Informatique 10Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

• The number of comparisons during the jth iteration is:

– j/2 average: C
avg

 = = (n*n + n – 2)/4

• The number of movements is Ci+1:

– M
min

 = = 2*(n-1),

– M
avg

 = = (n*n + 5n - 6)/4

– M
max

 = = (n*n + n - 2)/2

Insertion Sort/3

∑ j=2

n
2

∑ j=2

n
j /2

∑ j=2

n
j

∑ j=2

n
j /21

Master Informatique 11Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

Selection Sort

A
1 nj

1 3 42 5 7 8 9 6

i

Strategy
• Start empty handed.
• Enlarge the sorted part

by swapping the first element
of the unsorted part
with the smallest element
of the unsorted part.

• Continue until the unsorted part
consists of one element only.

44 55 12 42 94 18 06 67
06 55 12 42 94 18 44 67
06 12 55 42 94 18 44 67
06 12 18 42 94 55 44 67
06 12 18 42 94 55 44 67
06 12 18 42 44 55 94 67
06 12 18 42 44 55 94 67
06 12 18 42 44 55 67 94

Master Informatique 12Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

Selection Sort/2

∑ j=1

n−1
n− j =∑k=1

n−1
k

The number of comparisons is independent of the
original ordering (this is a less natural behavior than
insertion sort):

C = = (n*n - n)/2

INPUT: A[1..n] – an array of integers
OUTPUT: a permutation of A such that A[1]≤ A[2]≤ … ≤A[n]

for j := 1 to n-1 do // A[1..j-1] sorted and minimum
 key := A[j]; ptr := j
 for i := j+1 to n do
 if A[i] < key then key := A[i]; ptr := i;
 A[ptr] := A[j]; A[j] := key

Master Informatique 13Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

Selection Sort/3

The number of movements is:

M
min

 = = 3*(n-1)

M
max

 = = (n*n – n)/2 + 3*(n-1)

∑ j=1

n−1
3

∑ j=1

n−1
n-j+3

Master Informatique 14Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

Bubble Sort

A
1 nj

1 3 42 5 7 9 8 6

 Strategy
• Start from the back

and compare pairs
of adjacent elements.

• Swap the elements
if the larger comes
before the smaller.

• In each step
the smallest element
of the unsorted part
is moved to the beginning
of the unsorted part and the
sorted part grows by one.

44 55 12 42 94 18 06 67

06 44 55 12 42 94 18 67

06 12 44 55 18 42 94 67

06 12 18 44 55 42 67 94

06 12 18 42 44 55 67 94

06 12 18 42 44 55 67 94

06 12 18 42 44 55 67 94

06 12 18 42 44 55 67 94

Master Informatique 15Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

Bubble Sort/2
INPUT: A[1..n] – an array of integers
OUTPUT: permutation of A s.t. A[1]≤ A[2]≤ … ≤ A[n]

for j := 2 to n do // A[1..j-2] sorted and minimum
 for i := n to j do
 if A[i-1] > A[i] then
 key := A[i-1];

A[i-1] := A[i];
 A[i]:= key

The number of comparisons is independent of the
original ordering:

C = = (n*n - n)/2∑ j=2

n
n− j1

Master Informatique 16Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

Bubble Sort/3

The number of movements is:

M
min

 = 0

M
max

 = = 3*n*(n - 1)/2

M
avg

 = = 3*n*(n - 1)/4

∑ j=2

n

3 n− j1 

∑ j=2

n

3 n− j1 / 2

Master Informatique 17Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

Properties of a Sorting Algorithm

• Efficient: has low (worst case) runtime

• In place: needs (almost) no additional space
 (fixed number of scalar variables)

• Adaptive: performs little work if the array is already
 (mostly) sorted

• Stable: does not change the order of elements with
 equal key values

• Online: can sort data as it receives them

Master Informatique 18Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

Sorting Algorithms: Properties

Which algorithm has which property?

Adaptive Stable Online

Insertion
Sort

Selection
Sort

Bubble
Sort

Master Informatique 19Data Structures and Algorithms

Part 1 Introduction, Algorithms, Recursion, Sorting

Summary

• Precise problem specification is crucial.

• Precisely specify Input and Output.

• Pseudocode, Java, C, … is largely equivalent for our
purposes.

• Recursion: procedure/function that calls itself.

• Sorting: important problem with classic solutions.

	Data Structures and Algorithms Part 1
	Slide 2
	Sorting
	Slide 4
	Slide 5
	Slide 6
	Insertion Sort
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

