
Slides by M. Böhlen and R. Sebastiani05/15/12 1

Data Structures and
Algorithms

Werner Nutt
nutt@inf.unibz.it

http://www.inf.unibz/it/~nutt

Part 9

Academic Year 2011-2012

Slides by M. Böhlen and R. Sebastiani05/15/12 2

Acknowledgements
& Copyright Notice

These slides are built on top of slides developed by Michael Boehlen.
Moreover, some material (text, figures, examples) displayed in these slides
is courtesy of Kurt Ranalter. Some examples displayed in these slides are

taken from [Cormen, Leiserson, Rivest and Stein, ``Introduction to
Algorithms'', MIT Press], and their copyright is detained by the authors. All
the other material is copyrighted by Roberto Sebastiani. Every commercial
use of this material is strictly forbidden by the copyright laws without the
authorization of the authors. No copy of these slides can be displayed in
public or be publicly distributed without containing this copyright notice.

http://www.ifi.uzh.ch/dbtg/Staff/Boehlen/

Slides by M. Böhlen and R. Sebastiani05/15/12 3

Data Structures and
Algorithms

Part 9

1. Graphs – principles
2. Graph representations
3. Traversing graphs

● Breadth-First Search
● Depth-First Search

4. DAGs and Topological Sorting

Slides by M. Böhlen and R. Sebastiani05/15/12 4

Data Structures and
Algorithms

Part 9

1. Graphs – principles
2. Graph representations
3. Traversing graphs

● Breadth-First Search
● Depth-First Search

4. DAGs and Topological Sorting

Slides by M. Böhlen and R. Sebastiani05/15/12 5

Graphs – Definition
● A graph G = (V,E) is composed of:

– V: set of vertices
– E⊂ V× V: set of edges connecting the vertices

● An edge e = (u,v) is a pair of vertices
● We assume directed graphs.

– If a graph is undirected, we represent an edge
between u and v by having (u,v) ∈ E and (v,u) ∈ E

V = {A, B, C, D}

E = {(A,B), (B,A), (A,C), (C,A),
 (C,D), (D,C), (B,C), (C,B)}

A B

DC

A B

DC

Slides by M. Böhlen and R. Sebastiani05/15/12 6

● Electronic circuits, pipeline networks
● Transportation and communication

networks
● Modeling any sort of relationtionships

(between components, people,
processes, concepts)

Applications

Slides by M. Böhlen and R. Sebastiani05/15/12 7

Graph Terminology

● Vertex v is adjacent to vertex u iff (u,v) ∈ E
● degree of a vertex: # of adjacent vertices

● Path – a sequence of vertices v1 ,v2 ,. . .vk
such that vi+1 is adjacent to vi for i = 1 .. k – 1

3

3 3

2

3

Slides by M. Böhlen and R. Sebastiani05/15/12 8

● Simple path – a path with no repeated
vertices

● Cycle – a simple path, except
that the last vertex is the same
as the first vertex

● Connected graph: any two vertices are
connected by some path

Graph Terminology/2

a b

ed

c

Slides by M. Böhlen and R. Sebastiani05/15/12 9

Graph Terminology/3

● Subgraph – a subset of vertices and
edges forming a graph

● Connected component – maximal
connected subgraph.
– For example, the graph below has 3

connected components

Slides by M. Böhlen and R. Sebastiani05/15/12 10

Graph Terminology/4

● tree – connected graph without cycles
● forest – collection of trees

Slides by M. Böhlen and R. Sebastiani05/15/12 11

Data Structures and
Algorithms

Part 9

1. Graphs – principles
2. Graph representations
3. Traversing graphs

● Breadth-First Search
● Depth-First Search

4. DAGs and Topological Sorting

Slides by M. Böhlen and R. Sebastiani05/15/12 12

Data Structures for Graphs
● The Adjacency list of a vertex v: a sequence

of vertices adjacent to v
● Represent the graph by

the adjacency lists of all
its vertices

Space (deg()) ()V v V E= Θ + = Θ +∑

a b

ed

c

b

b

b

a

a

a

a

c

c

c

c

d

d

d

de

e

e

e

Slides by M. Böhlen and R. Sebastiani05/15/12 13

● Matrix M with entries for all pairs of vertices
● M[i,j] = true – there is an edge (i,j) in the

graph
● M[i,j] = false – there is no edge (i,j) in the

graph
● Space = O(|V|2)

Adjacency Matrix

a b

ed

c

A B C D E
A F T T T F
B T F F F T
C T F F T T
D T F T F T
E F T T T F

Slides by M. Böhlen and R. Sebastiani05/15/12 14

Pseudocode Assumptions
● Each node has some properties (fields of a

record):
– adj: list of adjacenced nodes
– dist: distance from start node in a traversal
– pred: predecessor in a traversal
– color: color of the node (is changed during

traversal; white, gray, black)
– starttime: time when first visited during a

traversal (depth first search)
– endtime: time when last visited during a

traversal (depth first search)

Slides by M. Böhlen and R. Sebastiani05/15/12 15

Data Structures and
Algorithms

Part 9

1. Graphs – principles
2. Graph representations
3. Traversing graphs

● Breadth-First Search
● Depth-First Search

4. DAGs and Topological Sorting

Slides by M. Böhlen and R. Sebastiani05/15/12 16

Graph Searching Algorithms
● Systematic search of every edge and vertex of

the graph
● Graph G = (V,E) is either directed or

undirected
● Applications

– Compilers
– Graphics
– Maze-solving
– Networks: routing, searching, clustering, etc.

Slides by M. Böhlen and R. Sebastiani05/15/12 17

Data Structures and
Algorithms

Part 9

1. Graphs – principles
2. Graph representations
3. Traversing graphs

● Breadth-First Search
● Depth-First Search

4. DAGs and Topological Sorting

Slides by M. Böhlen and R. Sebastiani05/15/12 18

Breadth First Search
● A Breadth-First Search (BFS) traverses a

connected component of an (un)directed
graph, and in doing so defines a spanning
tree.

● BFS in an undirected graph G is like
wandering in a labyrinth with a string and
exploring the neighborhood first.

● The starting vertex s, it is assigned distance 0.
● In the first round the string is unrolled 1 unit.

All edges that are 1 edge away from the anchor
are visited (discovered) and assigned distance
1.

Slides by M. Böhlen and R. Sebastiani05/15/12 19

Breadth-First Search/2
● In the second round, all the new edges that

can be reached by unrolling the string 2 edges
are visited and assigned a distance of 2

● This continues until every vertex has been
assigned a level

● The label of any vertex v corresponds to the
length of the shortest path (in terms of edges)
from s to v

Slides by M. Böhlen and R. Sebastiani05/15/12 20

BFS Algorithm
BFS(G,s)
01 for u ∈ G.V
02 u.color := white
03 u.dist := ∞
04 u.pred := NIL
05 s.color := gray
06 s.dist := 0
07 init-queue(Q)
08 enqueue(Q,s) // FIFO queue
09 while not isEmpty(Q)
10 u := head(Q)
11 for v ∈ u.adj do
12 if v.color = white then
13 v.color := gray
14 v.dist := u.dist + 1
15 v.pred := u
16 enqueue(Q,v)
17 dequeue(Q)
18 u.color := black

Init all vertices

Init BFS with s

Handle all of u's
children before
handling children
of children

Slides by M. Böhlen and R. Sebastiani05/15/12 21

Coloring of Vertices
● A vertex is white if it is undiscovered
● A vertex is gray if it has been discovered but

not all of its edges have been explored
● A vertex is black after all of its adjacent

vertices have been discovered (the adj. list
was examined completely)

● Lets do an example of BFS: a

d

g e

c

s b

f

Slides by M. Böhlen and R. Sebastiani05/15/12 22

BFS Running Time
● Given a graph G = (V,E)

– Vertices are enqueued if their color is white
– Assuming that en- and dequeuing takes O(1) time

the total cost of this operation is O(V)
– Adjacency list of a vertex is scanned when the vertex

is dequeued
– The sum of the lengths of all lists is Θ(E).

Thus, O(E) time is spent on scanning them.
– Initializing the algorithm takes O(V)

● Total running time O(V+E) (linear in the
size of the adjacency list representation of G)

Slides by M. Böhlen and R. Sebastiani05/15/12 23

BFS Properties
● Given a graph G = (V,E), BFS discovers all

vertices reachable from a source vertex
s

● It computes the shortest distance to all
reachable vertices

● It computes a breadth-first tree that
contains all such reachable vertices

● For any vertex v reachable from s, the path in
the breadth first tree from s to v, corresponds
to a shortest path in G

Slides by M. Böhlen and R. Sebastiani05/15/12 24

Data Structures and
Algorithms

Part 9

1. Graphs – principles
2. Graph representations
3. Traversing graphs

● Breadth-First Search
● Depth-First Search

4. DAGs and Topological Sorting

Slides by M. Böhlen and R. Sebastiani05/15/12 25

Depth-First Search
● A depth-first search (DFS) in an

undirected graph G is like wandering in a
labyrinth with a string and following one
path to the end
– We start at vertex s, tying the end of our string to

the point and painting s “visited (discovered)”.
Next we label s as our current vertex called u

– Now, we travel along an arbitrary edge (u,v).
– If edge (u,v) leads us to an already visited vertex v

we return to u.
– If vertex v is unvisited, we unroll our string, move

to v, paint v “visited”, set v as our current vertex,
and repeat the previous steps.

Slides by M. Böhlen and R. Sebastiani05/15/12 26

Depth-First Search/2
● Eventually, we will get to a point where all

edges from u lead to visited vertices
● We then backtrack by rolling up our string

until we get back to a previously visited
vertex v.

● v becomes our current vertex and we repeat
the previous steps

Slides by M. Böhlen and R. Sebastiani05/15/12 27

DFS Algorithm
DFS-All(G)
01 for u ∈ G.V
02 u.color := white
03 u.pred := NIL
04 time := 0
05 for u ∈ G.V
06 if u.color = white then DFS(u)
DFS(u)
01 u.color := gray
02 time := time + 1
03 u.starttime := time
04 for v ∈ u.adj
05 if v.color = white then
06 v.pred := u
07 DFS(v)
08 u.color := black
09 time := time + 1
10 u.endtime := time

Init all vertices

Visit all vertices

Visit all children
recursively
(children of
children are
visited first)

Slides by M. Böhlen and R. Sebastiani05/15/12 28

DFS Algorithm/2
● Initialize – color all vertices white
● Visit each and every white vertex using DFS-

All (even if there are disconnected trees).
● Each call to DFS(u) roots a new tree of the

depth-first forest at vertex u
● When DFS returns, each vertex u has

assigned
– a discovery time d[u]
– a finishing time f[u]

Slides by M. Böhlen and R. Sebastiani05/15/12 29

Example of DFS

● Start with s:

● Explores subgraph s first, t second

tszy

x w v u
4/5 7/8

3/6 2/9 1/10

12/13 14/15

11/16

Slides by M. Böhlen and R. Sebastiani05/15/12 30

DFS Algorithm Running
Time

● Running time
– the loops in DFS-All take time Θ(V) each,

excluding the time to execute DFS
– DFS is called once for every vertex

● its only invoked on white vertices, and
● paints the vertex gray immediately

– for each DFS a loop interates over all v.adj

– the total cost for DFS is Θ(E)
– the running time of DFS-All is Θ(V+E)

∑v∈V
∣v.adj∣=E

Slides by M. Böhlen and R. Sebastiani05/15/12 31

● The BFS algorithms visits all vertices that
are reachable from the start vertex. It
returns one search tree.

● The DFS-All algorithm visits all vertices in
the graph. It may return multiple search
trees.

● The difference comes from the applications
of BFS and DFS. This behavior of the algo-
rithms can easily be changed.

DFS versus BFS

Slides by M. Böhlen and R. Sebastiani05/15/12 32

Generic Graph Search

● BFS if GrayVertices is a Queue (FIFO)
● DFS if GrayVertices is a Stack (LIFO)

GenericGraphSearch(G,s)
01 for each vertex u ∈ G.V { u.color := white; u.pred := NIL }
04 s.color := gray
05 init(GrayVertices)
06 add(GrayVertices,s)
07 while not isEmpty(GrayVertices)
08 u := extractFrom(GrayVertices)
09 for each v ∈ u.adj do
10 if v.color = white then
11 v.color := gray
12 v.pred := u
13 addTo(GrayVertices,v)
14 u.color := black

Slides by M. Böhlen and R. Sebastiani05/15/12 33

DFS Annotations

● A DFS can be used to annotate vertices
and edges with additional information.
– starttime (when was the vertex visited first)
– endtime (when was the vertex visited last)
– edge classification (tree, forward, back or

cross edge)
● The annotations reveal useful

information about the graph that is used
by advanced algorithms.

Slides by M. Böhlen and R. Sebastiani05/15/12 34

DFS Timestamping
● Vertex u is

– white before u.starttime
– gray between u.starttime and u.endtime, and
– black after u.endtime

● Notice the structure througout the algorithm
– gray vertices form a linear chain
– correponds to a stack of vertices that have not

been exhaustively explored (DFS started but not
yet finished)

Slides by M. Böhlen and R. Sebastiani05/15/12 35

DFS Parenthesis Theorem
● Start and end times have parenthesis structure

– represent starttime of u with left parenthesis "(u"
– represent endtime of u with right parenthesis "u)"
– history of start- and endtimes makes a well-formed

expression (parenthesis are properly nested)
● Intuition for proof: any two intervals are either

disjoint or enclosed
– Overlaping intervals would mean finishing ancestor,

before finishing descendant or starting descendant
without starting ancestor

Slides by M. Böhlen and R. Sebastiani05/15/12 36

DFS Parenthesis Theorem/2
t

B

szy

x w v u

B

C C C

CF

s t

z

y w

x

v u

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4/5 7/8

3/6 2/9 1/10

12/13 14/15

11/16

Slides by M. Böhlen and R. Sebastiani05/15/12 37

DFS Edge Classification

● Tree edge (gray to white)
– Edges in depth-first forest

● Back edge (gray to gray)
– from descendant to ancestor in depth-first

tree
– Self-loops

t

B

szy

x w v u

B

C C C

CF

4/5 7/8

3/6 2/9 1/10

12/13 14/15

11/16

Slides by M. Böhlen and R. Sebastiani05/15/12 38

DFS Edge Classification/2

● Forward edge (gray to black)
– Nontree edge from ancestor to descendant

in depth-first tree
● Cross edge (gray to black)

– remainder – between trees or subtrees
t

B

szy

x v

B

C C C

CF

w u
4/5 7/8

3/6 2/9 1/10

12/13 14/15

11/16

Slides by M. Böhlen and R. Sebastiani05/15/12 39

DFS Edge Classification/3

● In a DFS the color of the next vertex
decides the edge type (this makes it
impossible to distinguish forward and
cross edges).

● Tree and back edges are important.
● Most algorithms do not distinguish

between forward and cross edges.

Slides by M. Böhlen and R. Sebastiani05/15/12 40

Suggested exercises

● Implement BFS and DFS, both iterative
and recursive

● Using paper & pencil, simulate the
behaviour of BFS and DFS (and All-DFS)
on some graphs, drawing the evolution
of the queue/stack

Slides by M. Böhlen and R. Sebastiani05/15/12 41

Data Structures and
Algorithms

Part 9

1. Graphs – principles
2. Graph representations
3. Traversing graphs

● Breadth-First Search
● Depth-First Search

4. DAGs and Topological Sorting

Slides by M. Böhlen and R. Sebastiani05/15/12 42

Directed Acyclic Graphs
● A DAG is a directed graph without cycles.

● DAGs are used to indicate precedence among
events (event x must happen before y).

● An example would be a parallel code execution.
● We get total order using Topological Sorting.

Slides by M. Böhlen and R. Sebastiani05/15/12 43

DAG Theorem
● A directed graph G is acyclic if and only if a DFS

of G yields no back edges. Proof:
– suppose there is a back edge (u,v); v is an

ancestor of u in DFS forest. Thus, there is a path
from v to u in G and (u,v) completes the cycle

– suppose there is a cycle c; let v be the first vertex
in c to be discovered and u is the predecessor of v in
c.

● Upon discovering v the whole cycle from v to u is white
● We visit all nodes reachable on this white path before

DFS(v) returns, i.e., vertex u becomes a descendant of v
● Thus, (u,v) is a back edge

● Thus, we can verify a DAG using DFS.

Slides by M. Böhlen and R. Sebastiani05/15/12 44

Topological Sorting Example
● Precedence relations: an edge from x to y means

one must be done with x before one can do y
● Intuition: can schedule task only when all of its

precondition subtasks have been scheduled

undershorts

pants

socks

shoes

watch
shirt

tie

jacket belt

socks undershorts pants shoes watch shirt belt tie jacket
17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

9/10

13/14

17/1811/16

6/7

12/152/5

1/8

3/4

Slides by M. Böhlen and R. Sebastiani05/15/12 45

Topological Sorting/1
● Sorting of a directed acyclic graph (DAG).
● A topological sort of a DAG is a linear

ordering of all its vertices such that for any
edge (u,v) in the DAG, u appears before v in
the ordering.

Slides by M. Böhlen and R. Sebastiani05/15/12 46

Topological Sorting/2
● The following algorithm topologically sorts a

DAG.
● The linked lists comprises a total ordering.

To p o l o g i c a l So r t (G)
 Ca l l DSF(G) t o c o mp u t e v . e n d t i me f o r

 e a c h v e r t e x v
 As e a c h v e r t e x i s f i n i s h e d , i n s e r t i t

 a t t h e b e g i n n i n g o f a l i n k e d l i s t
 Re t u r n t h e l i n k e d l i s t o f v e r t i c e s

Slides by M. Böhlen and R. Sebastiani05/15/12 47

Topological Sorting
Correctness

● Claim: DAG ∧ (u,v)∈E => u.endtime>v.endtime
● When (u,v) explored, u is gray. We can

distinguish three cases:
– v = gray==> (u,v) = back edge (cycle, contradiction)
– v = white ==> v becomes descendant of u

==> v will be finished before u
==> v.endtime < u.endtime

– v = black ==> v is already finished
==> v.endtime < u.endtime

● The definition of topological sort is satisfied.

Slides by M. Böhlen and R. Sebastiani05/15/12 48

Topological Sorting Running
Time

● Running time
– depth-first search: O(V+E) time
– insert each of the |V| vertices to the front

of the linked list: O(1) per insertion
● Thus the total running time is O(V+E).

Slides by M. Böhlen and R. Sebastiani05/15/12 49

Suggested exercises

● Implement topological sorting, with a
check for DAG property

● Using paper & pencil, simulate the
behaviour of topological sorting

Slides by M. Böhlen and R. Sebastiani05/15/12 50

Summary
● Graphs

– G = (V,E), vertex, edge, (un)directed
graph, cycle, connected component, ...

● Graph representation: adjanceny list/matrix
● Basic techniques to traverse/search graphs

– Breadth-First Search (BFS)
– Depth-First Search (DFS)

● Topological Sorting

Slides by M. Böhlen and R. Sebastiani05/15/12 51

Next Week

● Graphs:
– Weighted graphs
– Minimum Spanning Trees

● Prim’s algorithm
● Kruskal's algorithm

– Shortest Paths
● Dijkstra’s algorithm
● Bellman-Ford algorithm

