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Graphs – Definition
● A graph G = (V,E) is composed of:

– V: set of vertices
– E⊂ V× V: set of edges connecting the vertices

● An edge e = (u,v) is a pair of vertices
● We assume directed graphs. 

– If a graph is undirected, we represent an edge 
between u and v by having (u,v) ∈ E and (v,u) ∈ E

V = {A, B, C, D}

E = {(A,B), (B,A), (A,C), (C,A),
        (C,D), (D,C), (B,C), (C,B)}

A B

DC

A B

DC
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● Electronic circuits, pipeline networks
● Transportation and communication 

networks
● Modeling any sort of relationtionships 

(between components, people, 
processes, concepts)

Applications
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Graph Terminology

● Vertex v is adjacent to vertex u iff (u,v) ∈ E 
● degree of a vertex: # of adjacent vertices

● Path – a sequence of vertices v1 ,v2 ,. . .vk 
such that vi+1 is adjacent to vi  for i = 1 .. k – 1 

3

3 3

2

3
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● Simple path – a path with no repeated 
vertices

● Cycle – a simple path, except 
that the last vertex is the same 
as the first vertex

● Connected graph: any two vertices are 
connected by some path

Graph Terminology/2

a b

ed

c
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Graph Terminology/3

● Subgraph – a subset of vertices and 
edges forming a graph

● Connected component – maximal  
connected subgraph. 
– For example, the graph below has 3 

connected components
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Graph Terminology/4

● tree – connected graph without cycles
● forest – collection of trees
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Data Structures for Graphs
● The Adjacency list of a vertex v: a sequence 

of vertices adjacent to v
● Represent the graph by 

the adjacency lists of all 
its vertices

Space ( deg( )) ( )V v V E= Θ + = Θ +∑

a b

ed

c

b

b

b

a

a

a

a

c

c

c

c

d

d

d

de

e

e

e
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● Matrix M with entries for all pairs of vertices
● M[i,j] = true – there is an edge (i,j) in the 

graph
● M[i,j] = false – there is no edge (i,j) in the 

graph
● Space = O(|V|2)

Adjacency Matrix

a b

ed

c

A B C D E
A F T T T F
B T F F F T
C T F F T T
D T F T F T
E F T T T F
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Pseudocode Assumptions
● Each node has some properties (fields of a 

record):
– adj: list of adjacenced nodes
– dist: distance from start node in a traversal
– pred: predecessor in a traversal
– color: color of the node (is changed during 

traversal; white, gray, black)
– starttime: time when first visited during a 

traversal (depth first search)
– endtime: time when last visited during a 

traversal (depth first search)
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Graph Searching Algorithms
● Systematic search of every edge and vertex of 

the graph
● Graph G = (V,E) is either directed or 

undirected
● Applications

– Compilers
– Graphics
– Maze-solving
– Networks: routing, searching, clustering, etc.



Slides by M. Böhlen and R. Sebastiani05/15/12 17

Data Structures and 
Algorithms

Part 9

1.  Graphs – principles 
2. Graph representations
3. Traversing graphs

● Breadth-First Search
● Depth-First Search

4. DAGs and Topological Sorting



Slides by M. Böhlen and R. Sebastiani05/15/12 18

Breadth First Search
● A Breadth-First Search (BFS) traverses a 

connected component of an (un)directed 
graph, and in doing so defines a spanning 
tree.

● BFS in an undirected graph G is like 
wandering in a labyrinth with a string and 
exploring the neighborhood first.

● The starting vertex s, it is assigned distance 0.
● In the first round the string is unrolled 1 unit. 

All edges that are 1 edge away from the anchor 
are visited (discovered) and assigned distance 
1.
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Breadth-First Search/2
● In the second round, all the new edges that 

can be reached by unrolling the string 2 edges 
are visited and assigned a distance of 2

● This continues until every vertex has been 
assigned a level

● The label of any vertex v corresponds to the 
length of the shortest path (in terms of edges) 
from s to v
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BFS Algorithm
BFS(G,s)
01 for u ∈ G.V
02    u.color := white
03    u.dist := ∞
04    u.pred := NIL
05 s.color := gray
06 s.dist := 0
07 init-queue(Q)
08 enqueue(Q,s) // FIFO queue
09 while not isEmpty(Q)
10    u := head(Q)
11    for v ∈ u.adj do
12       if v.color = white then
13          v.color := gray
14          v.dist := u.dist + 1
15          v.pred := u
16          enqueue(Q,v)
17    dequeue(Q)
18    u.color := black

Init all vertices

Init BFS with s

Handle all of u's 
children before 
handling children 
of children
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Coloring of Vertices
● A vertex is white if it is undiscovered
● A vertex is gray if it has been discovered but 

not all of its edges have been explored
● A vertex is black after all of its adjacent 

vertices have been discovered (the adj. list 
was examined completely)

● Lets do an example of BFS: a

d

g e

c

s b

f
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BFS Running Time
● Given a graph G = (V,E)

– Vertices are enqueued if their color is white
– Assuming that en- and dequeuing takes O(1) time 

the total cost of this operation is O(V)
– Adjacency list of a vertex is scanned when the vertex 

is dequeued
– The sum of the lengths of all lists is Θ(E). 

Thus, O(E) time is spent on scanning them.
– Initializing the algorithm takes O(V)

● Total running time O(V+E) (linear in the 
size of the adjacency list representation of G)
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BFS Properties
● Given a graph G = (V,E), BFS discovers all 

vertices reachable from a source vertex 
s

● It computes the shortest distance to all 
reachable vertices

● It computes a breadth-first tree that 
contains all such reachable vertices

● For any vertex v reachable from s, the path in 
the breadth first tree from s to v, corresponds 
to a shortest path in G
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Depth-First Search
● A depth-first search (DFS) in an 

undirected graph G is like wandering in a 
labyrinth with a string and following one 
path to the end
– We start at vertex s, tying the end of our string to 

the point and painting s “visited (discovered)”. 
Next we label s as our current vertex called u

– Now, we travel along an arbitrary edge (u,v).
– If edge (u,v) leads us to an already visited vertex v 

we return to u.
– If vertex v is unvisited, we unroll our string, move 

to v, paint v “visited”, set v as our current vertex, 
and repeat the previous steps.
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Depth-First Search/2
● Eventually, we will get to a point where all 

edges from u lead to visited vertices 
● We then backtrack by rolling up our string 

until we get back to a previously visited 
vertex v. 

● v becomes our current vertex and we repeat 
the previous steps
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DFS Algorithm
DFS-All(G)
01 for u ∈ G.V
02    u.color := white
03    u.pred := NIL
04 time := 0
05 for u ∈ G.V
06    if u.color = white then DFS(u)   
DFS(u)
01 u.color := gray
02 time := time + 1
03 u.starttime := time
04 for v ∈ u.adj
05    if v.color = white then
06       v.pred := u
07       DFS(v)
08 u.color := black
09 time := time + 1
10 u.endtime := time

Init all vertices

Visit all vertices

Visit all children
recursively 
(children of 
children are 
visited first)
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DFS Algorithm/2
● Initialize – color all vertices white
● Visit each and every white vertex using DFS-

All (even if there are disconnected trees).
● Each call to DFS(u) roots a new tree of the 

depth-first forest at vertex u
● When DFS returns, each vertex u has 

assigned
– a discovery time d[u]
– a finishing time f[u]
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Example of DFS

● Start with s:

● Explores subgraph s first, t second

tszy

x w v u
4/5 7/8

3/6 2/9 1/10

12/13 14/15

11/16
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DFS Algorithm Running 
Time

● Running time
– the loops in DFS-All take time Θ(V) each, 

excluding the time to execute DFS
– DFS is called once for every vertex

● its only invoked on white vertices, and
● paints the vertex gray immediately

– for each DFS a loop interates over all v.adj 
          

– the total cost for DFS is Θ(E)
– the running time of DFS-All is Θ(V+E) 

∑v∈V
∣v.adj∣=E 
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● The BFS algorithms visits all vertices that 
are reachable from the start vertex. It 
returns one search tree.

● The DFS-All algorithm visits all vertices in 
the graph. It may return multiple search 
trees.

● The difference comes from the applications 
of BFS and DFS. This behavior of the algo-
rithms can easily be changed.

DFS versus BFS
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Generic Graph Search

● BFS if GrayVertices is a Queue (FIFO)
● DFS if GrayVertices is a Stack (LIFO)

GenericGraphSearch(G,s)
01 for each vertex u ∈ G.V { u.color := white; u.pred := NIL }
04 s.color := gray
05 init(GrayVertices)
06 add(GrayVertices,s)
07 while not isEmpty(GrayVertices)
08   u :=  extractFrom(GrayVertices)
09   for each v ∈ u.adj do
10     if v.color = white then
11       v.color := gray
12       v.pred := u
13       addTo(GrayVertices,v)
14   u.color := black
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DFS Annotations

● A DFS can be used to annotate vertices 
and edges with additional information.
– starttime (when was the vertex visited first)
– endtime (when was the vertex visited last)
– edge classification (tree, forward, back or 

cross edge)
● The annotations reveal useful 

information about the graph that is used 
by advanced algorithms.
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DFS Timestamping
● Vertex u is

– white before u.starttime
– gray between u.starttime and u.endtime, and
– black after u.endtime

● Notice the structure througout the algorithm
– gray vertices form a linear chain
– correponds to a stack of vertices that have not 

been exhaustively explored (DFS started but not 
yet finished)
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DFS Parenthesis Theorem
● Start and end times have parenthesis structure

– represent starttime of u with left parenthesis "(u"
– represent endtime of u with right parenthesis "u)"
– history of start- and endtimes makes a well-formed 

expression (parenthesis are properly nested)
● Intuition for proof: any two intervals are either 

disjoint or enclosed
– Overlaping intervals would mean finishing ancestor, 

before finishing descendant or starting descendant 
without starting ancestor 
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DFS Parenthesis Theorem/2
t

B

szy

x w v u

B

C C C

CF

s t

z

y w

x

v u

(s   (z  (y  (x x)   y)   (w w)  z)  s)   (t   (v  v)  (u  u)  t)

1   2    3   4   5    6   7    8   9  10  11 12 13 14 15 16

4/5 7/8

3/6 2/9 1/10

12/13 14/15

11/16
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DFS Edge Classification

● Tree edge (gray to white) 
– Edges in depth-first forest

● Back edge (gray to gray)
– from descendant to ancestor in depth-first 

tree
– Self-loops

t

B

szy

x w v u

B

C C C

CF

4/5 7/8

3/6 2/9 1/10

12/13 14/15

11/16
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DFS Edge Classification/2

● Forward edge (gray to black) 
– Nontree edge from ancestor to descendant 

in depth-first tree
● Cross edge (gray to black)

– remainder – between trees or subtrees
t

B

szy

x v

B

C C C

CF

w u
4/5 7/8

3/6 2/9 1/10

12/13 14/15

11/16
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DFS Edge Classification/3

● In a DFS the color of the next vertex 
decides the edge type (this makes it 
impossible to distinguish forward and 
cross edges).

● Tree and back edges are important.
● Most algorithms do not distinguish 

between forward and cross edges.



Slides by M. Böhlen and R. Sebastiani05/15/12 40

Suggested exercises

● Implement BFS and DFS, both iterative 
and recursive

● Using paper & pencil, simulate the 
behaviour of BFS and DFS (and All-DFS) 
on some graphs, drawing the evolution 
of the queue/stack
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Directed Acyclic Graphs
● A DAG is a directed graph without cycles.

● DAGs are used to indicate precedence among 
events (event x must happen before y).

● An example would be a parallel code execution.
● We get total order using Topological Sorting.
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DAG Theorem
● A directed graph G is acyclic if and only if a DFS 

of G yields no back edges. Proof:
– suppose there is a back edge (u,v); v is an 

ancestor of u in DFS forest. Thus, there is a path 
from v to u in G and (u,v) completes the cycle

– suppose there is a cycle c; let v be the first vertex 
in c to be discovered and u is the predecessor of v in 
c. 

● Upon discovering v the whole cycle from v to u is white
● We visit all nodes reachable on this white path before 

DFS(v) returns, i.e., vertex u becomes a descendant of v
● Thus, (u,v) is a back edge

● Thus, we can verify a DAG using DFS.
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Topological Sorting Example
● Precedence relations: an edge from x to y means 

one must be done with x before one can do y
● Intuition: can schedule task only when all of its 

precondition subtasks have been scheduled 

undershorts

pants

socks

shoes

watch
shirt

tie

jacket belt

socks undershorts pants shoes watch shirt belt tie jacket
17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

9/10

13/14

17/1811/16

6/7

12/152/5

1/8

3/4
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Topological Sorting/1
● Sorting of a directed acyclic graph (DAG).
● A topological sort of a DAG is a linear 

ordering of all its vertices such that for any 
edge (u,v) in the DAG, u appears before v in 
the ordering.
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Topological Sorting/2
● The following algorithm topologically sorts a 

DAG.
● The linked lists comprises a total ordering.

To p o l o g i c a l So r t ( G)
  Ca l l  DSF( G)  t o  c o mp u t e  v . e n d t i me  f o r    

   e a c h  v e r t e x  v
  As  e a c h  v e r t e x  i s  f i n i s h e d ,  i n s e r t  i t   

   a t  t h e  b e g i n n i n g  o f  a  l i n k e d  l i s t
  Re t u r n  t h e  l i n k e d  l i s t  o f  v e r t i c e s
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Topological Sorting 
Correctness

● Claim: DAG ∧ (u,v)∈E => u.endtime>v.endtime
● When (u,v) explored, u is gray. We can 

distinguish three cases:
– v = gray==>  (u,v) = back edge (cycle, contradiction)
– v = white ==>  v becomes descendant of u

==>  v will be finished before u
==>  v.endtime < u.endtime

– v = black ==>  v is already finished
==> v.endtime < u.endtime

● The definition of topological sort is satisfied.
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Topological Sorting Running 
Time

● Running time
– depth-first search: O(V+E) time
– insert each of the |V| vertices to the front 

of the linked list: O(1) per insertion
● Thus the total running time is O(V+E). 
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Suggested exercises

● Implement topological sorting, with a 
check for DAG property 

● Using paper & pencil, simulate the 
behaviour of topological sorting 
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Summary
● Graphs

– G = (V,E), vertex, edge, (un)directed 
graph, cycle, connected component, ...

● Graph representation: adjanceny list/matrix
● Basic techniques to traverse/search graphs

– Breadth-First Search (BFS)
– Depth-First Search (DFS)

● Topological Sorting
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Next Week

● Graphs:
– Weighted graphs
– Minimum Spanning Trees

● Prim’s algorithm
● Kruskal's algorithm

– Shortest Paths
● Dijkstra’s algorithm
● Bellman-Ford algorithm


