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Algorithm design techniques
● Algorithm design techniques so far:

– Iterative (brute-force) algorithms
● For example, insertion sort

– Algorithms that use efficient data 
structures

● For example, heap sort
– Divide-and-conquer algorithms

● Binary search, merge sort, quick sort
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Divide and Conquer
● Divide and conquer method for algorithm 

design:
– Divide: If the input size is too large to deal 

with in a simple manner, divide the problem 
into two or more disjoint subproblems

– Conquer: Use divide and conquer 
recursively to solve the subproblems

– Combine: Take the solutions to the 
subproblems and “merge” these solutions into 
a solution for the original problem
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Divide and Conquer/2
● For example, 

MergeSort
● The subprob-

lems are inde-
pendent and 
non-overlapping

Merge-Sort(A, l, r)
   if l < r then
      m := (l+r)/2
      Merge-Sort(A, l, m)
      Merge-Sort(A, m+1, r)
      Merge(A, l, m, r)

Merge-Sort(A, l, r)
   if l < r then
      m := (l+r)/2
      Merge-Sort(A, l, m)
      Merge-Sort(A, m+1, r)
      Merge(A, l, m, r)

17  24  31  45  50  63  85  96
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Fibonacci Numbers
● Leonardo Fibonacci (1202): 

– A rabbit starts reproducing in the 2nd year after its 
birth and produces one child each generation.

– How many rabbits will there be after n generations? 

F(1)=1 F(2)=1 F(3)=2 F(4)=3 F(5)=5 F(6)=8
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Fibonacci Numbers/2
● F(n)= F(n-1)+ F(n-2)
● F(0) =0, F(1) =1

– 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 … 

● Straightforward recursive procedure is 
slow!

FibonacciR(n)
01 if n  1 then return n
02 else return FibonacciR(n-1) + FibonacciR(n-2) 

FibonacciR(n)
01 if n  1 then return n
02 else return FibonacciR(n-1) + FibonacciR(n-2) 
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Fibonacci Numbers/3
● We keep calculating the same value over and 

over!
– Subproblems are overlapping – they share sub-

subproblems F(6) = 8
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Fibonacci Numbers/4
● How many summations are there S(n)?

– S(n) = S(n – 1) + S(n – 2) + 1  
– S(n)    2S(n – 2) +1  and  S(1) = S(0) = 0 
– Solving the recurrence we get 

 S(n)    2n/2 – 1   1.4n 
● Running time is exponential! 
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Fibonacci Numbers/5
● We can calculate F(n)  in linear  time by 

remembering solutions of solved 
sub-problems (= dynamic 
programming).

● Compute solution in a bottom-up 
fashion 

● Trade space 
for time! 

Fibonacci(n)
01 F[0] := 0
02 F[1] := 1
03 for i := 2 to n do
04   F[i] := F[i-1] + F[i-2]
05 return F[n]

Fibonacci(n)
01 F[0] := 0
02 F[1] := 1
03 for i := 2 to n do
04   F[i] := F[i-1] + F[i-2]
05 return F[n]
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Fibonacci Numbers/6
● In fact, only two values need to be 

remembered at any time!
FibonacciImproved(n)
01 if n  1 then return n
02 Fim2 := 0
03 Fim1 := 1
04 for i := 2 to n do
05   Fi :=  Fim1 + Fim2
06   Fim2 := Fim1
07   Fim1 := Fi
05 return Fi

FibonacciImproved(n)
01 if n  1 then return n
02 Fim2 := 0
03 Fim1 := 1
04 for i := 2 to n do
05   Fi :=  Fim1 + Fim2
06   Fim2 := Fim1
07   Fim1 := Fi
05 return Fi
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History
● Dynamic programming

– Invented in the 1950s by Richard Bellman 
as a general method for optimizing 
multistage decision processes

– The term “programming” refers to a 
tabular method.

– Often used for optimization problems.
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Optimization Problems
● We have to choose one solution out of many.
● We want the solution with the optimal 

(minimum or maximum) value.
● Structure of the solution:

– It consists of a sequence of choices that were 
made.

– What choices have to be made to arrive at an 
optimal solution?

● An algorithm should compute the optimal 
value plus, if needed, an optimal solution.
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● Two matrices, A – nm matrix and B – mk 
matrix, can be multiplied to get C with 
dimensions nk, using nmk scalar 
multiplications

● Problem: Compute a product of many matrices 
efficiently

● Matrix multiplication is associative: (AB)C = 
A(BC)

Multiplying Matrices
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Multiplying Matrices/2
● The parenthesization matters
● Consider ABCD, where 

– A is 301, B is 140, C is 4010, D is 1025
● Costs:

– (AB)C)D   1200 + 12000 + 7500 = 20700
– (AB)(CD)   1200 + 10000 + 30000 = 41200
– A((BC)D)   400 + 250 + 750 = 1400

● We need to optimally parenthesize
A1 x A2 x … An where Ai is a di-1 x di matrix 
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Multiplying Matrices/3
● Let M(i,j) be the minimum number of 

multiplications necessary to compute 
Ai..j = A1 x … x An 

● Key observations
– The outermost parenthesis partitions the 

chain of matrices (i,j) at some k, (ik<j):         
   (Ai… Ak)(Ak+1… Aj)

– The optimal parenthesization of matrices 
(i,j) has optimal parenthesizations on either 
side of k: for matrices (i,k) and (k+1,j)    
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Multiplying Matrices/4
● We try out all possible k:

● A direct recursive implementation is 
exponential – there is a lot of 
duplicated work.

● But there are only few different sub-
problems (i,j): one solution for each 
choice of i and j (i<j).
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M i i
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   
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Multiplying Matrices/5
● Idea: store the optimal cost M(i,j) for each 

subproblem in a 2d array M[1..n,1..n]
– Trivially M(i,i) = 0, 1   i   n
– To compute M(i,j), where i – j = L, we need only 

values of M for subproblems of length < L.
– Thus we have to solve subproblems in the increasing 

length of subproblems: first subproblems of length 
2, then of length 3 and so on.   

● To reconstruct an optimal parenthesization for 
each pair (i,j) we record in c[i, j]=k the optimal 
split into two subproblems (i, k) and (k+1, j) 
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Multiplying Matrices/6

DynamicMM
01 for i := 1 to n do
02    M[i,i] := 0
03 for L := 1 to n-1 do
04    for i := 1 to n-L do
05       j := i+L
06       M[i,j] := 
07       for k := i to j-1 do
08          q := M[i,k]+ M[k+1,j]+ di-1dkdj

09          if q < M[i,j] then
1            M[i,j] := q
2            c[i,j] := k
12 return M, c

DynamicMM
01 for i := 1 to n do
02    M[i,i] := 0
03 for L := 1 to n-1 do
04    for i := 1 to n-L do
05       j := i+L
06       M[i,j] := 
07       for k := i to j-1 do
08          q := M[i,k]+ M[k+1,j]+ di-1dkdj

09          if q < M[i,j] then
1            M[i,j] := q
2            c[i,j] := k
12 return M, c
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Multiplying Matrices/7
● After the execution: M [1,n] contains the 

value of an optimal solution and c contains 
optimal subdivisions (choices of k) of any 
subproblem into two subsubproblems

● Let us run the algorithm on the four matrices:
A1  is a 2x10 matrix,
A2  is a 10x3 matrix,
A3  is a 3x5 matrix,
A4  is a 5x8 matrix.  
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Multiplying Matrices/8
● Running time

– It is easy to see that it is O(n3)
(three nested loops)

– It turns out it is also Ω(n3)
● Thus, a reduction from exponential 

time to polynomial time.



M. BöhlenDAS08 22

Memoization
● If we prefer recursion we can structure our 

algorithm as a recursive algorithm:

● Initialize all elements to   and call 
MemoMM(i,j)

MemoMM(i,j)
1.  if i = j then return 0
2.  else if M[i,j] <  then return M[i,j] 
3.  else for k := i to j-1 do
4.         q :=  MemoMM(i,k)+ 

             MemoMM(k+1,j) + di-1dkdj

5.         if q < M[i,j] then
6.            M[i,j] := q
7. return M[i,j]  

MemoMM(i,j)
1.  if i = j then return 0
2.  else if M[i,j] <  then return M[i,j] 
3.  else for k := i to j-1 do
4.         q :=  MemoMM(i,k)+ 

             MemoMM(k+1,j) + di-1dkdj

5.         if q < M[i,j] then
6.            M[i,j] := q
7. return M[i,j]  
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Memoization/2
● Memoization:

– Solve the problem in a top-down fashion, but 
record the solutions to subproblems in a 
table.

● Pros and cons:
– L Recursion is usually slower than loops and 

uses stack space (not a relevant disadvantage)
– J Easier to understand
– J If not all subproblems need to be solved, 

you are sure that only the necessary ones are 
solved  
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Dynamic Programming
● In general, to apply dynamic programming, 

we have to address a number of issues:
– Show optimal substructure – an optimal 

solution to the problem contains optimal 
solutions to sub-problems

● Solution to a problem: 
– Making a choice out of a number of possibilities (look 

what possible choices there can be)
– Solving one or more sub-problems that are the result of a 

choice (characterize the space of sub-problems)
● Show that solutions to sub-problems must themselves 

be optimal for the whole solution to be optimal.
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Dynamic Programming/2
– Write a recursive solution for the value of 

an optimal solution
● Mopt = Minover all choices k {(Combination of Mopt of 

all sub-problems resulting from choice k) + 
(the cost associated with making the choice k)}

– Show that the number of different 
instances of sub-problems is bounded by a 
polynomial
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Dynamic Programming/3
– Compute the value of an optimal solution in 

a bottom-up fashion, so that you always have 
the necessary sub-results pre-computed (or 
use memoization) 

– Check if it is possible to reduce the space 
requirements, by “forgetting” solutions to 
sub-problems that will not be used any more

– Construct an optimal solution from 
computed information (which records a 
sequence of choices made that lead to an 
optimal solution) 
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Longest Common 
Subsequence

● Two text strings are given: X and Y
● There is a need to quantify how similar 

they are:
– Comparing DNA sequences in studies of 

evolution of different species
– Spell checkers

● One of the measures of similarity is the 
length of a Longest Common 
Subsequence (LCS)
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LCS: Definition
● Z is a subsequence of X if it is possible to 

generate Z by skipping some (possibly 
none) characters from X

● For example: X =“ACGGTTA”, 
Y=“CGTAT”, LCS(X,Y) = “CGTA” or 
“CGTT”  

● To solve LCS problem we have to find 
“skips” that generate LCS(X,Y) from X and 
“skips” that generate LCS(X,Y) from Y
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LCS: Optimal Substructure
● We make Z to be empty and proceed from the 

ends of Xm=“x1 x2 …xm” and Yn=“y1 y2 …yn”
– If xm=yn, append this symbol to the beginning of 

Z, and find optimally LCS(Xm-1, Yn-1)
– If xmyn,

● Skip either a letter from X 
● or a letter from Y
● Decide which decision to do by comparing LCS(Xm, Yn-1) 

and LCS(Xm-1, Yn)
– Starting from beginning is equivalent.
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LCS: Recurrence
● The algorithm can be extended by allowing 

more “editing” operations in addition to 
copying and skipping (e.g., changing a letter)

● Let c[i,j] = LCS(Xi, Yj) 

● Note that the conditions in the problem 
restrict sub-problems (if xi = yi we consider 
xi-1 and yi-1, etc)

0  if 0 or 0
[ , ] [ 1 , 1 ] 1  if , 0 and 

m a x { [ , 1 ] , [ 1 , ] } if , 0 and 
i j

i j

i j
c i j c i j i j x y

c i j c i j i j x y

⎧  
⎪     ⎨
⎪    ⎩
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LCS: Algorithm

 
LCS-Length(X, Y, m, n)
1  for i := 1 to m do c[i,0] := 0
2  for j := 0 to n do c[0,j] := 0
3  for i := 1 to m do
4    for j := 1 to n do
5      if xi = yj then c[i,j] := c[i-1,j-1]+1 
6                     b[i,j] := ”copy”
7      else if c[i-1,j]  c[i,j-1] then
8        c[i,j] := c[i-1,j]
9        b[i,j] := ”skipX”
10     else c[i,j] := c[i,j-1]
11          b[i,j] := ”skipY”
12 return c, b  

LCS-Length(X, Y, m, n)
1  for i := 1 to m do c[i,0] := 0
2  for j := 0 to n do c[0,j] := 0
3  for i := 1 to m do
4    for j := 1 to n do
5      if xi = yj then c[i,j] := c[i-1,j-1]+1 
6                     b[i,j] := ”copy”
7      else if c[i-1,j]  c[i,j-1] then
8        c[i,j] := c[i-1,j]
9        b[i,j] := ”skipX”
10     else c[i,j] := c[i,j-1]
11          b[i,j] := ”skipY”
12 return c, b  
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LCS: Example
● Lets run:  

X =“GGTTCAT”, Y=“GTATCT”

● What is the running time and space 
requirements of the algorithm?

● How much can we reduce our space 
requirements, if we do not need to 
reconstruct an LCS?
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Next Week
● Graphs:

– Representation in memory
– Breadth-first search
– Depth-first search
– Topological sort
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