05/27/13

Data Structures and
Algorithms

Werner Nutt

Werner.Nutt(@unibz.it
http://www.inf.unibz/it/~nutt

Part 7

Academic Year 2012-2013

Slides by M. Bohlen and R. Sebastiani

Data Structures and
Algorithms
Parts

Dynamic programming
- Fibonacci numbers
— Optimization problems
— Matrix multiplication optimization
- Principles of dynamic programming
- Longest Common Subsequence

I Algorithm design techniques

I Algorithm design techniques so far:

- Iterative (brute-force) algorithms
* For example, insertion sort

- Algorithms that use efficient data
structures

* For example, heap sort

- Divide-and-conquer algorithms
 Binary search, merge sort, quick sort

DASo08 M. Bohlen

I Divide and Conquer

» Divide and conquer method for algorithm
I design:
- Divide: If the input size is too large to deal

with in a simple manner, divide the problem
into two or more disjoint subproblems

- Conquer: Use divide and conquer
recursively to solve the subproblems

- Combine: Take the solutions to the
subproblems and “merge” these solutions into
a solution for the original problem

DASo08 M. Bohlen 4

Divide and Conquer/2

 For example, Merge-Sort (A, 1, r)
if 1 < r then
MergeSort moi= (l4z) /2
Merge-Sort (A, 1, m)
* The subprob- Merge-Sort (A, m+l,)
. Merge (A, 1, m, r)
lems are inde-

pendent and
non-overlapping

DASo08 M. Bohlen 5

I Fibonacci Numbers

 Leonardo Fibonacci (1202):

— A rabbit starts reproducing in the 2nd year after its
birth and produces one child each generation.

- How many rabbits will there be after n generations?

F(1)=1| F(2)=1

F(3)=2

F(4)=3

F(5)=5

F(6)=8

DASO08

A

| 0 |

@/ \xf
\I[\!

AN
xx/

![

M. Bohlen

fk‘

)

IR Tl T
333

T)

I Fibonacci Numbers/2

 F(n)= F(n-1)+ F(n-2)
I « I(0)=0, F(1) =1
-0,11,2,3,5, 89 13, 21, 34 ...

FibonacciR (n)
01 if n | 1 then return n

02 else return FibonacciR(n-1) + FibonacciR(n-2)

» Straightforward recursive procedure is
slow!

DASo08 M. Bohlen 7

Fibonacci Numbers/3

* We keep calculating the same value over and
over!

- Subproblems are overlapping — they share sub-

subproblems F(6) = 8
/\
F(5) F(4)

/\
/,:(4)\ F(3) F(3)/\F(2)
/F(< F(2) F(g\m) F(2)/>(1) F(DAF(O)
F(2) F(1) F(QO) F({>0) F<1>/\F<0>
F(1)/\F(0)

DASo08 M. Bohlen

I Fibonacci Numbers/4

-S(n)=S(h-1)+S(n—-2) +1
- S(n) > 2S(n—-2) +1 and S(1) =S(0) =0
- Solving the recurrence we get

S(n) > 22 -1~ 14"

I How many summations are there S(n)?

e Running time 1s exponential!

DASo08 M. Bohlen

I Fibonacci Numbers/5

« We can calculate F(n) in linear time by

remembering solutions of solved
sub-problems (= dynamic
programming).

* Compute solution in a bottom-up

fashion

» Trade space
for time!

DASO08

Fibonacci (n)

01 F[O] := 0

02 F[1] :=1

03 for 1 := 2 to n do

04 F[i] :=F[1i-1] + F[i-2]

05 return F[n]

M. Bohlen

10

I Fibonacci Numbers/6

* In fact, only two values need to be
remembered at any time!

01
02
03
04
05
06
07
05

DASO08

FibonacciImproved (n)

if n {1 then return n

Fim2 := 0

Fiml := 1

for i := 2 to n do
Fi := Fiml + Fim?2
Fim2 := Fiml
Fiml := F1i

return Fi

M. Bohlen

11

History

* Dynamic programming

- Invented in the 1950s by Richard Bellman
as a general method for optimizing
multistage decision processes

— The term “programming” refers to a
tabular method.

- Often used for optimization problems.

DASo08 M. Bohlen

12

Optimization Problems

* We have to choose one solution out of many.

* We want the solution with the optimal
(minimum or maximum) value.

e Structure of the solution:

- It consists of a sequence of choices that were
made.

— What choices have to be made to arrive at an
optimal solution?

An algorithm should compute the optimal
value plus, if needed, an optimal solution.

DASo08 M. Bohlen

13

I Multiplying Matrices

matrix, can be multiplied to get C with
dimensions nXxk, using nmk scalar
multiplications
112 \(m
b &, by _ _
az 1 az 2 2 C T e e e o . Cl J —ZC'; Z 'ﬁ
b, 1@2172:” ’ = ’
\031%2 \ ceeeeesh

I Two matrices, A — nXm matrix and B — mXk

* Problem: Compute a product of many matrices
efficiently

» Matrix multiplication is associative: (AB)C =
A(BC)

DASo08 M. Bohlen 14

I Multiplying Matrices/2

* The parenthesization matters
» Consider AXBXCxD, where
- A1s 30X1, Bis1X40, C1s 40X10, D 1s 10X25
e Costs:
- (AB)C)D = 1200 + 12000 + 7500 = 20700
- (AB)(CD) = 1200 + 10000 + 30000 = 41200
- A((BC)D) = 400 + 250 + 750 = 1400
« We need to optimally parenthesize
A x A, x..A where A is ad,_ xd matrix

DASo08 M. Bohlen

15

Multiplying Matrices/3

* Let M(i,j) be the minimum number of
multiplications necessary to compute

A=A X...XA
» Key observations

- The outermost parenthesis partitions the
chain of matrices (i,7) at some k, (1<k<j):
(A4;... AYA,,... A)

- The optimal parenthesization of matrices
(i) has optimal parenthesizations on either
side of k: for matrices (1,k) and (k+1,7)

k+1°°

DASo08 M. Bohlen

16

I Multiplying Matrices/4

MG j =0
M(i ¥ mfjn k.8, (ki+j)d+d d
A direct recursive implementation is

exponential — there is a lot of
duplicated work.

« But there are only few different sub-
problems (1,7): one solution for each
choice of 1 and j (i<j).

I * We try out all possible k:

DASo08 M. Bohlen

17

Multiplying Matrices/5

 Idea: store the optimal cost M(i,j) for each
subproblem in a 2d array M[1..n,1..n]
— Trivially M(i,1) = 0,1<1<n
- To compute M(i,j), where 1 — j = L, we need only
values of M for subproblems of length < L.

— Thus we have to solve subproblems in the increasing
length of subproblems: first subproblems of length
2, then of length 3 and so on.

e To reconstruct an optimal parenthesization for
each pair (i,j) we record in c[1, j]=k the optimal
split into two subproblems (7, k) and (k+1, j)

DASo08 M. Bohlen 18

I Multiplying Matrices/6

DynamicMM

0l for 1 := 1 to n do

02 M[i,1] := =

03 for L := 1 to n-1 do

04 for 1 := 1 to n-L do

05 J = 1+L

06 M[i,j] := &

07 for k := 1 to J-1 do
08 q := M[1,k]+ M[k+1l,3]+ d, ,d.d,
09 if g < M[i,]] then
1 M[i,3] = g

2 cli,3] := k

12 return M, c

DASo08 M. Bohlen

I Multiplying Matrices/7

value of an optimal solution and ¢ contains
optimal subdivisions (choices of k) of any
subproblem into two subsubproblems

* Let us run the algorithm on the four matrices:
A, 1s a 2x10 matrix,

I o After the execution: M [1,n] contains the

A, 1s a 10x3 matrix,
A, 1s a 3x5 matrix,

A, 1s a 5Xx8 matrix.

DASo08 M. Bohlen

I Multiplying Matrices/8

- It is easy to see that it 1s O(n3)
(three nested loops)

— It turns out it is also Q(n3)

I * Running time

* Thus, a reduction from exponential
time to polynomial time.

DASo08 M. Bohlen

21

I Memoization

 If we prefer recursion we can structure our
I algorithm as a recursive algorithm:

MemoMM (1, j)
1. if i =] then return 0
2 else if M[i,]j] < o then return M[i, j]
3. else for k := 1 to j-1 do
4 g := MemoMM(1,k)+
MemoMM (k+1,73) + d, ,d,d;
5. if g < M[i,j] then
6. M[i,J] := g
7. return M[1i, J]

e Initialize all elements to oo and ca
MemoMM(,))

DASo08 M. Bohlen

Memoization/2

e Memoization:

- Solve the problem in a top-down fashion, but
record the solutions to subproblems in a
table.

 Pros and cons:

- ® Recursion is usually slower than loops and
uses stack space (not a relevant disadvantage)

- © Easier to understand

- © If not all subproblems need to be solved,
you are sure that only the necessary ones are

solved
DASo08 M. Bohlen

23

Dynamic Programming

 In general, to apply dynamic programming,
we have to address a number of issues:

- Show optimal substructure — an optimal
solution to the problem contains optimal
solutions to sub-problems

 Solution to a problem:

- Making a choice out of a number of possibilities (look
what possible choices there can be)

- Solving one or more sub-problems that are the result of a
choice (characterize the space of sub-problems)

» Show that solutions to sub-problems must themselves
be optimal for the whole solution to be optimal.

DASo08 M. Bohlen

24

Dynamic Programming/2

— Write a recursive solution for the value of

an optimal solution
y Mopt = Minover all choices k {(Combination Of Mopt
all sub-problems resulting from choice k) +
(the cost associated with making the choice k)}
— Show that the number of different
instances of sub-problems is bounded by a

polynomial

of

DASo08 M. Bohlen 25

Dynamic Programming/3

- Compute the value of an optimal solution in
a bottom-up fashion, so that you always have
the necessary sub-results pre-computed (or
use memoization)

— Check if it is possible to reduce the space
requirements, by “forgetting” solutions to
sub-problems that will not be used any more

— Construct an optimal solution from
computed information (which records a
sequence of choices made that lead to an
optimal solution)

DASo08 M. Bohlen 26

Longest Common
Subsequence

» Two text strings are given: X and Y
» There is a need to quantify how similar
they are:

- Comparing DNA sequences in studies of
evolution of different species

- Spell checkers

* One of the measures of similarity is the
length of a Longest Common

Subsequence (LCS)

DASo08 M. Bohlen

27

I L.CS: Definition

generate Z by skipping some (possibly
none) characters from X

e For example: X =“ACGGTTA”,
Y=“CGTAT”, LCS(X,Y) = “CGTA” or
“CGTT”

» To solve LCS problem we have to find

“skips” that generate LCS(X,Y) from X and
“skips” that generate LCS(X,Y) from Y

DASo08 M. Bohlen 28

I Z1s a subsequence of X if it is possible to

I LCS: Optimal Substructure

 We make Z to be empty and proceed from the
I endsof X =“x x,..x "and Y =y y,...y.~

- Ifx_=y_, append this symbol to the beginning of
Z, and find optimally LCS(X __,Y)

m-12
- Iftx _#y,,

 Skip either a letter from X

e oraletter fromY

 Decide which decision to do by comparing LCS(X , Y,)
and LCS(X _,Y)

- Starting from beginning is equivalent.

DASo08 M. Bohlen

29

LCS: Recurrence

* The algorithm can be extended by allowing
more “editing” operations in addition to
copying and skipping (e.g., changing a letter)

« Let c[i,j] = LCS(X, Y)

L]
0 ifi =0 orj =0
i Al d4 1]j1 +i j ¥, Pand , |
maxi{qgl].,d¥,]|}1ti>j Oand y#
* Note that the conditions in the problem

restrict sub-problems (if xi = yi1 we consider
xi-1 and yi-1, etc)

DASo08 M. Bohlen 30

LCS: Algorithm

LCS-Length (X, Y, m, n)

l for i := 1 tomdo c[1,0] :=0

2 for J :=0 ton do c[0,3] :=0

3 for i :=1 to m do

4 for 7 := 1 to n do

5 if x, = y, then c[1i,3j] :=c[i-1,J-1]+1
6 bli,]J] :="copy”
7 else if c[i-1,3] = c[i,]J-1] then
8 c[i,J] :=cl[i-1,7]

9 b[i,]] :="skipX”

10 else c[i,]] :=cfl[i,]-1]

11 bl[1i,7] :="skipY”

12 return c, Db

DASo08 M. Bohlen 31

LCS: Example

 Lets run:
X =“GGTTCAT”, Y="GTATCT”

* What is the running time and space
requirements of the algorithm?

* How much can we reduce our space
requirements, if we do not need to
reconstruct an LCS?

DASo08 M. Bohlen 32

Next Week
e Graphs:

- Representation in memory
- Breadth-first search

- Depth-first search

- Topological sort

DASo08 M. Bohlen

33

	Slide 1
	This Lecture
	Algorithm design techniques
	Divide and Conquer
	Divide and Conquer/2
	Fibonacci Numbers
	Fibonacci Numbers/2
	Fibonacci Numbers/3
	Fibonacci Numbers/4
	Fibonacci Numbers/5
	Fibonacci Numbers/6
	History
	Optimization Problems
	Multiplying Matrices
	Multiplying Matrices/2
	Multiplying Matrices/3
	Multiplying Matrices/4
	Multiplying Matrices/5
	Multiplying Matrices/6
	Multiplying Matrices/7
	Multiplying Matrices/8
	Memoization
	Memoization/2
	Dynamic Programming
	Dynamic Programming/2
	Dynamic Programming/3
	Longest Common Subsequence
	LCS: Definition
	LCS: Optimal Substructure
	LCS: Recurrence
	LCS: Algorithm
	LCS: Example
	Next Week

