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I Algorithm design techniques

I  Algorithm design techniques so far:

- Iterative (brute-force) algorithms
* For example, insertion sort

- Algorithms that use efficient data
structures

* For example, heap sort

- Divide-and-conquer algorithms
 Binary search, merge sort, quick sort
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I Divide and Conquer

» Divide and conquer method for algorithm
I design:
- Divide: If the input size is too large to deal

with in a simple manner, divide the problem
into two or more disjoint subproblems

- Conquer: Use divide and conquer
recursively to solve the subproblems

- Combine: Take the solutions to the
subproblems and “merge” these solutions into
a solution for the original problem
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Divide and Conquer/2

 For example, Merge-Sort (A, 1, r)
if 1 < r then
MergeSort moi= (l4z) /2
Merge-Sort (A, 1, m)
* The subprob- Merge-Sort (A, m+l, )
. Merge (A, 1, m, r)
lems are inde-

pendent and
non-overlapping
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I Fibonacci Numbers

 Leonardo Fibonacci (1202):

— A rabbit starts reproducing in the 2nd year after its
birth and produces one child each generation.

- How many rabbits will there be after n generations?

F(1)=1| F(2)=1

F(3)=2

F(4)=3

F(5)=5

F(6)=8
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I Fibonacci Numbers/2

 F(n)= F(n-1)+ F(n-2)
I « I(0)=0, F(1) =1
-0,11,2,3,5, 89 13, 21, 34 ...

FibonacciR (n)
01 if n | 1 then return n

02 else return FibonacciR(n-1) + FibonacciR(n-2)

» Straightforward recursive procedure is
slow!
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Fibonacci Numbers/3

* We keep calculating the same value over and
over!

- Subproblems are overlapping — they share sub-

subproblems F(6) = 8
/\
F(5) F(4)

/\
/,:(4)\ F(3) F(3)/\F(2)
/F(< F(2) F(g\m) F(2)/>(1) F(DAF(O)
F(2) F(1) F(QO) F({>0) F<1>/\F<0>
F(1)/\F(0)
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I Fibonacci Numbers/4

-S(n)=S(h-1)+S(n—-2) +1
- S(n) > 2S(n—-2) +1 and S(1) =S(0) =0
- Solving the recurrence we get

S(n) > 22 -1~ 14"

I  How many summations are there S(n)?

e Running time 1s exponential!
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I Fibonacci Numbers/5

« We can calculate F(n) in linear time by

remembering solutions of solved
sub-problems (= dynamic
programming).

* Compute solution in a bottom-up

fashion

» Trade space
for time!

DASO08

Fibonacci (n)

01 F[O] := 0

02 F[1] :=1

03 for 1 := 2 to n do

04 F[i] :=F[1i-1] + F[i-2]

05 return F[n]
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I Fibonacci Numbers/6

* In fact, only two values need to be
remembered at any time!

01
02
03
04
05
06
07
05

DASO08

FibonacciImproved (n)

if n {1 then return n

Fim2 := 0

Fiml := 1

for i := 2 to n do
Fi := Fiml + Fim?2
Fim2 := Fiml
Fiml := F1i

return Fi
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History

* Dynamic programming

- Invented in the 1950s by Richard Bellman
as a general method for optimizing
multistage decision processes

— The term “programming” refers to a
tabular method.

- Often used for optimization problems.

DASo08 M. Bohlen
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Optimization Problems

* We have to choose one solution out of many.

* We want the solution with the optimal
(minimum or maximum) value.

e Structure of the solution:

- It consists of a sequence of choices that were
made.

— What choices have to be made to arrive at an
optimal solution?

An algorithm should compute the optimal
value plus, if needed, an optimal solution.

DASo08 M. Bohlen
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I Multiplying Matrices

matrix, can be multiplied to get C with
dimensions nXxk, using nmk scalar
multiplications
112 \( m
b &, by _ _
az 1 az 2 2 C T e e e o . Cl J —ZC'; Z 'ﬁ
b, 1@2172:” ’ = ’
\031%2 \ ceeeeesh

I  Two matrices, A — nXm matrix and B — mXk

* Problem: Compute a product of many matrices
efficiently

» Matrix multiplication is associative: (AB)C =
A(BC)
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I Multiplying Matrices/2

* The parenthesization matters
» Consider AXBXCxD, where
- A1s 30X1, Bis1X40, C1s 40X10, D 1s 10X25
e Costs:
- (AB)C)D = 1200 + 12000 + 7500 = 20700
- (AB)(CD) = 1200 + 10000 + 30000 = 41200
- A((BC)D) = 400 + 250 + 750 = 1400
« We need to optimally parenthesize
A x A, x..A where A is ad,_ xd matrix

DASo08 M. Bohlen
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Multiplying Matrices/3

* Let M(i,j) be the minimum number of
multiplications necessary to compute

A=A X...XA
» Key observations

- The outermost parenthesis partitions the
chain of matrices (i,7) at some k, (1<k<j):
(A4;... AYA,,... A)

- The optimal parenthesization of matrices
(i) has optimal parenthesizations on either
side of k: for matrices (1,k) and (k+1,7)

k+1°°
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I Multiplying Matrices/4

MG j =0
M( i ¥ mfjn k.8, (ki+j )d+d d
A direct recursive implementation is

exponential — there is a lot of
duplicated work.

« But there are only few different sub-
problems (1,7): one solution for each
choice of 1 and j (i<j).

I * We try out all possible k:

DASo08 M. Bohlen
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Multiplying Matrices/5

 Idea: store the optimal cost M(i,j) for each
subproblem in a 2d array M[1..n,1..n]
— Trivially M(i,1) = 0,1<1<n
- To compute M(i,j), where 1 — j = L, we need only
values of M for subproblems of length < L.

— Thus we have to solve subproblems in the increasing
length of subproblems: first subproblems of length
2, then of length 3 and so on.

e To reconstruct an optimal parenthesization for
each pair (i,j) we record in c[1, j]=k the optimal
split into two subproblems (7, k) and (k+1, j)
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I Multiplying Matrices/6

DynamicMM

0l for 1 := 1 to n do

02 M[i,1] := =

03 for L := 1 to n-1 do

04 for 1 := 1 to n-L do

05 J = 1+L

06 M[i,j] := &

07 for k := 1 to J-1 do
08 q := M[1,k]+ M[k+1l,3]+ d, ,d.d,
09 if g < M[i,]] then
1 M[i,3] = g

2 cli,3] := k

12 return M, c
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I Multiplying Matrices/7

value of an optimal solution and ¢ contains
optimal subdivisions (choices of k) of any
subproblem into two subsubproblems

* Let us run the algorithm on the four matrices:
A, 1s a 2x10 matrix,

I o After the execution: M [1,n] contains the

A, 1s a 10x3 matrix,
A, 1s a 3x5 matrix,

A, 1s a 5Xx8 matrix.
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I Multiplying Matrices/8

- It is easy to see that it 1s O(n3)
(three nested loops)

— It turns out it is also Q(n3)

I * Running time

* Thus, a reduction from exponential
time to polynomial time.

DASo08 M. Bohlen
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I Memoization

 If we prefer recursion we can structure our
I algorithm as a recursive algorithm:

MemoMM (1, j)
1. if i = ] then return 0
2 else if M[i,]j] < o then return M[i, j]
3. else for k := 1 to j-1 do
4 g := MemoMM(1,k)+
MemoMM (k+1,73) + d, ,d,d;
5. if g < M[i,j] then
6. M[i,J] := g
7. return M[1i, J]

e Initialize all elements to oo and ca
MemoMM(,))
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Memoization/2

e Memoization:

- Solve the problem in a top-down fashion, but
record the solutions to subproblems in a
table.

 Pros and cons:

- ® Recursion is usually slower than loops and
uses stack space (not a relevant disadvantage)

- © Easier to understand

- © If not all subproblems need to be solved,
you are sure that only the necessary ones are

solved
DASo08 M. Bohlen
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Dynamic Programming

 In general, to apply dynamic programming,
we have to address a number of issues:

- Show optimal substructure — an optimal
solution to the problem contains optimal
solutions to sub-problems

 Solution to a problem:

- Making a choice out of a number of possibilities (look
what possible choices there can be)

- Solving one or more sub-problems that are the result of a
choice (characterize the space of sub-problems)

» Show that solutions to sub-problems must themselves
be optimal for the whole solution to be optimal.

DASo08 M. Bohlen
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Dynamic Programming/2

— Write a recursive solution for the value of

an optimal solution
y Mopt = Minover all choices k {(Combination Of Mopt
all sub-problems resulting from choice k) +
(the cost associated with making the choice k)}
— Show that the number of different
instances of sub-problems is bounded by a

polynomial

of
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Dynamic Programming/3

- Compute the value of an optimal solution in
a bottom-up fashion, so that you always have
the necessary sub-results pre-computed (or
use memoization)

— Check if it is possible to reduce the space
requirements, by “forgetting” solutions to
sub-problems that will not be used any more

— Construct an optimal solution from
computed information (which records a
sequence of choices made that lead to an
optimal solution)
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Longest Common
Subsequence

» Two text strings are given: X and Y
» There is a need to quantify how similar
they are:

- Comparing DNA sequences in studies of
evolution of different species

- Spell checkers

* One of the measures of similarity is the
length of a Longest Common

Subsequence (LCS)

DASo08 M. Bohlen
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I L.CS: Definition

generate Z by skipping some (possibly
none) characters from X

e For example: X =“ACGGTTA”,
Y=“CGTAT”, LCS(X,Y) = “CGTA” or
“CGTT”

» To solve LCS problem we have to find

“skips” that generate LCS(X,Y) from X and
“skips” that generate LCS(X,Y) from Y

DASo08 M. Bohlen 28
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I LCS: Optimal Substructure

 We make Z to be empty and proceed from the
I endsof X =“x x,..x "and Y =y y,...y.~

- Ifx_=y_, append this symbol to the beginning of
Z, and find optimally LCS(X __,Y )

m-12
- Iftx _#y,,

 Skip either a letter from X

e oraletter fromY

 Decide which decision to do by comparing LCS(X , Y, )
and LCS(X _,Y)

- Starting from beginning is equivalent.

DASo08 M. Bohlen
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LCS: Recurrence

* The algorithm can be extended by allowing
more “editing” operations in addition to
copying and skipping (e.g., changing a letter)

« Let c[i,j] = LCS(X, Y)

L]
0 ifi =0 orj =0
i Al d4 1]j1 +i j ¥, Pand , |
maxi{qgl].,d¥,]|}1ti>j Oand y#
* Note that the conditions in the problem

restrict sub-problems (if xi = yi1 we consider
xi-1 and yi-1, etc)
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LCS: Algorithm

LCS-Length (X, Y, m, n)

l for i := 1 tomdo c[1,0] :=0

2 for J :=0 ton do c[0,3] :=0

3 for i :=1 to m do

4 for 7 := 1 to n do

5 if x, = y, then c[1i,3j] :=c[i-1,J-1]+1
6 bli,]J] :="copy”
7 else if c[i-1,3] = c[i,]J-1] then
8 c[i,J] :=cl[i-1,7]

9 b[i,]] :="skipX”

10 else c[i,]] :=cfl[i,]-1]

11 bl[1i,7] :="skipY”

12 return c, Db
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LCS: Example

 Lets run:
X =“GGTTCAT”, Y="GTATCT”

* What is the running time and space
requirements of the algorithm?

* How much can we reduce our space
requirements, if we do not need to
reconstruct an LCS?
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Next Week
e Graphs:

- Representation in memory
- Breadth-first search

- Depth-first search

- Topological sort
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