
Slides by M. Böhlen and R. Sebastiani05/27/13 1

Data Structures and
Algorithms

Werner Nutt
Werner.Nutt@unibz.it

http://www.inf.unibz/it/~nutt

Part 7

Academic Year 2012-2013

Data Structures and
Algorithms

Part 8

Dynamic programming
– Fibonacci numbers
– Optimization problems
– Matrix multiplication optimization
– Principles of dynamic programming
– Longest Common Subsequence

M. BöhlenDAS08 3

Algorithm design techniques
● Algorithm design techniques so far:

– Iterative (brute-force) algorithms
● For example, insertion sort

– Algorithms that use efficient data
structures

● For example, heap sort
– Divide-and-conquer algorithms

● Binary search, merge sort, quick sort

M. BöhlenDAS08 4

Divide and Conquer
● Divide and conquer method for algorithm

design:
– Divide: If the input size is too large to deal

with in a simple manner, divide the problem
into two or more disjoint subproblems

– Conquer: Use divide and conquer
recursively to solve the subproblems

– Combine: Take the solutions to the
subproblems and “merge” these solutions into
a solution for the original problem

M. BöhlenDAS08 5

Divide and Conquer/2
● For example,

MergeSort
● The subprob-

lems are inde-
pendent and
non-overlapping

Merge-Sort(A, l, r)
 if l < r then
 m := (l+r)/2
 Merge-Sort(A, l, m)
 Merge-Sort(A, m+1, r)
 Merge(A, l, m, r)

Merge-Sort(A, l, r)
 if l < r then
 m := (l+r)/2
 Merge-Sort(A, l, m)
 Merge-Sort(A, m+1, r)
 Merge(A, l, m, r)

17 24 31 45 50 63 85 96

M. BöhlenDAS08 6

Fibonacci Numbers
● Leonardo Fibonacci (1202):

– A rabbit starts reproducing in the 2nd year after its
birth and produces one child each generation.

– How many rabbits will there be after n generations?

F(1)=1 F(2)=1 F(3)=2 F(4)=3 F(5)=5 F(6)=8

M. BöhlenDAS08 7

Fibonacci Numbers/2
● F(n)= F(n-1)+ F(n-2)
● F(0) =0, F(1) =1

– 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 …

● Straightforward recursive procedure is
slow!

FibonacciR(n)
01 if n  1 then return n
02 else return FibonacciR(n-1) + FibonacciR(n-2)

FibonacciR(n)
01 if n  1 then return n
02 else return FibonacciR(n-1) + FibonacciR(n-2)

M. BöhlenDAS08 8

Fibonacci Numbers/3
● We keep calculating the same value over and

over!
– Subproblems are overlapping – they share sub-

subproblems F(6) = 8

F(5)

F(4)

F(3)

F(1)

F(2)

F(0)

F(1) F(1)

F(2)

F(0)

F(3)

F(1)

F(2)

F(0)

F(1)

F(4)

F(3)

F(1)

F(2)

F(0)

F(1) F(1)

F(2)

F(0)

M. BöhlenDAS08 9

Fibonacci Numbers/4
● How many summations are there S(n)?

– S(n) = S(n – 1) + S(n – 2) + 1
– S(n)  2S(n – 2) +1 and S(1) = S(0) = 0
– Solving the recurrence we get

 S(n)  2n/2 – 1  1.4n
● Running time is exponential!

M. BöhlenDAS08 10

Fibonacci Numbers/5
● We can calculate F(n) in linear time by

remembering solutions of solved
sub-problems (= dynamic
programming).

● Compute solution in a bottom-up
fashion

● Trade space
for time!

Fibonacci(n)
01 F[0] := 0
02 F[1] := 1
03 for i := 2 to n do
04 F[i] := F[i-1] + F[i-2]
05 return F[n]

Fibonacci(n)
01 F[0] := 0
02 F[1] := 1
03 for i := 2 to n do
04 F[i] := F[i-1] + F[i-2]
05 return F[n]

M. BöhlenDAS08 11

Fibonacci Numbers/6
● In fact, only two values need to be

remembered at any time!
FibonacciImproved(n)
01 if n  1 then return n
02 Fim2 := 0
03 Fim1 := 1
04 for i := 2 to n do
05 Fi := Fim1 + Fim2
06 Fim2 := Fim1
07 Fim1 := Fi
05 return Fi

FibonacciImproved(n)
01 if n  1 then return n
02 Fim2 := 0
03 Fim1 := 1
04 for i := 2 to n do
05 Fi := Fim1 + Fim2
06 Fim2 := Fim1
07 Fim1 := Fi
05 return Fi

M. BöhlenDAS08 12

History
● Dynamic programming

– Invented in the 1950s by Richard Bellman
as a general method for optimizing
multistage decision processes

– The term “programming” refers to a
tabular method.

– Often used for optimization problems.

M. BöhlenDAS08 13

Optimization Problems
● We have to choose one solution out of many.
● We want the solution with the optimal

(minimum or maximum) value.
● Structure of the solution:

– It consists of a sequence of choices that were
made.

– What choices have to be made to arrive at an
optimal solution?

● An algorithm should compute the optimal
value plus, if needed, an optimal solution.

M. BöhlenDAS08 14

● Two matrices, A – nm matrix and B – mk
matrix, can be multiplied to get C with
dimensions nk, using nmk scalar
multiplications

● Problem: Compute a product of many matrices
efficiently

● Matrix multiplication is associative: (AB)C =
A(BC)

Multiplying Matrices

, , ,
1

m

i j i l l j
l

c a b


 
1 1 1 2

131 1 1 2
2 1 2 2 2 2

232 1 2 2
3 1 3 2

.........

.

.........

a a
bb b

a a c
bb b

a a

⎛ ⎞ ⎛ ⎞
⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

M. BöhlenDAS08 15

Multiplying Matrices/2
● The parenthesization matters
● Consider ABCD, where

– A is 301, B is 140, C is 4010, D is 1025
● Costs:

– (AB)C)D  1200 + 12000 + 7500 = 20700
– (AB)(CD)  1200 + 10000 + 30000 = 41200
– A((BC)D)  400 + 250 + 750 = 1400

● We need to optimally parenthesize
A1 x A2 x … An where Ai is a di-1 x di matrix

M. BöhlenDAS08 16

Multiplying Matrices/3
● Let M(i,j) be the minimum number of

multiplications necessary to compute
Ai..j = A1 x … x An

● Key observations
– The outermost parenthesis partitions the

chain of matrices (i,j) at some k, (ik<j):
 (Ai… Ak)(Ak+1… Aj)

– The optimal parenthesization of matrices
(i,j) has optimal parenthesizations on either
side of k: for matrices (i,k) and (k+1,j)

M. BöhlenDAS08 17

Multiplying Matrices/4
● We try out all possible k:

● A direct recursive implementation is
exponential – there is a lot of
duplicated work.

● But there are only few different sub-
problems (i,j): one solution for each
choice of i and j (i<j).

 1

(,) 0

(,) m i n (,) (1 ,)i k j i k j

M i i

M i j M i k M k j d d d  



   

M. BöhlenDAS08 18

Multiplying Matrices/5
● Idea: store the optimal cost M(i,j) for each

subproblem in a 2d array M[1..n,1..n]
– Trivially M(i,i) = 0, 1  i  n
– To compute M(i,j), where i – j = L, we need only

values of M for subproblems of length < L.
– Thus we have to solve subproblems in the increasing

length of subproblems: first subproblems of length
2, then of length 3 and so on.

● To reconstruct an optimal parenthesization for
each pair (i,j) we record in c[i, j]=k the optimal
split into two subproblems (i, k) and (k+1, j)

M. BöhlenDAS08 19

Multiplying Matrices/6

DynamicMM
01 for i := 1 to n do
02 M[i,i] := 0
03 for L := 1 to n-1 do
04 for i := 1 to n-L do
05 j := i+L
06 M[i,j] := 
07 for k := i to j-1 do
08 q := M[i,k]+ M[k+1,j]+ di-1dkdj

09 if q < M[i,j] then
1 M[i,j] := q
2 c[i,j] := k
12 return M, c

DynamicMM
01 for i := 1 to n do
02 M[i,i] := 0
03 for L := 1 to n-1 do
04 for i := 1 to n-L do
05 j := i+L
06 M[i,j] := 
07 for k := i to j-1 do
08 q := M[i,k]+ M[k+1,j]+ di-1dkdj

09 if q < M[i,j] then
1 M[i,j] := q
2 c[i,j] := k
12 return M, c

M. BöhlenDAS08 20

Multiplying Matrices/7
● After the execution: M [1,n] contains the

value of an optimal solution and c contains
optimal subdivisions (choices of k) of any
subproblem into two subsubproblems

● Let us run the algorithm on the four matrices:
A1 is a 2x10 matrix,
A2 is a 10x3 matrix,
A3 is a 3x5 matrix,
A4 is a 5x8 matrix.

M. BöhlenDAS08 21

Multiplying Matrices/8
● Running time

– It is easy to see that it is O(n3)
(three nested loops)

– It turns out it is also Ω(n3)
● Thus, a reduction from exponential

time to polynomial time.

M. BöhlenDAS08 22

Memoization
● If we prefer recursion we can structure our

algorithm as a recursive algorithm:

● Initialize all elements to  and call
MemoMM(i,j)

MemoMM(i,j)
1. if i = j then return 0
2. else if M[i,j] <  then return M[i,j]
3. else for k := i to j-1 do
4. q := MemoMM(i,k)+

 MemoMM(k+1,j) + di-1dkdj

5. if q < M[i,j] then
6. M[i,j] := q
7. return M[i,j]

MemoMM(i,j)
1. if i = j then return 0
2. else if M[i,j] <  then return M[i,j]
3. else for k := i to j-1 do
4. q := MemoMM(i,k)+

 MemoMM(k+1,j) + di-1dkdj

5. if q < M[i,j] then
6. M[i,j] := q
7. return M[i,j]

M. BöhlenDAS08 23

Memoization/2
● Memoization:

– Solve the problem in a top-down fashion, but
record the solutions to subproblems in a
table.

● Pros and cons:
– L Recursion is usually slower than loops and

uses stack space (not a relevant disadvantage)
– J Easier to understand
– J If not all subproblems need to be solved,

you are sure that only the necessary ones are
solved

M. BöhlenDAS08 24

Dynamic Programming
● In general, to apply dynamic programming,

we have to address a number of issues:
– Show optimal substructure – an optimal

solution to the problem contains optimal
solutions to sub-problems

● Solution to a problem:
– Making a choice out of a number of possibilities (look

what possible choices there can be)
– Solving one or more sub-problems that are the result of a

choice (characterize the space of sub-problems)
● Show that solutions to sub-problems must themselves

be optimal for the whole solution to be optimal.

M. BöhlenDAS08 25

Dynamic Programming/2
– Write a recursive solution for the value of

an optimal solution
● Mopt = Minover all choices k {(Combination of Mopt of

all sub-problems resulting from choice k) +
(the cost associated with making the choice k)}

– Show that the number of different
instances of sub-problems is bounded by a
polynomial

M. BöhlenDAS08 26

Dynamic Programming/3
– Compute the value of an optimal solution in

a bottom-up fashion, so that you always have
the necessary sub-results pre-computed (or
use memoization)

– Check if it is possible to reduce the space
requirements, by “forgetting” solutions to
sub-problems that will not be used any more

– Construct an optimal solution from
computed information (which records a
sequence of choices made that lead to an
optimal solution)

M. BöhlenDAS08 27

Longest Common
Subsequence

● Two text strings are given: X and Y
● There is a need to quantify how similar

they are:
– Comparing DNA sequences in studies of

evolution of different species
– Spell checkers

● One of the measures of similarity is the
length of a Longest Common
Subsequence (LCS)

M. BöhlenDAS08 28

LCS: Definition
● Z is a subsequence of X if it is possible to

generate Z by skipping some (possibly
none) characters from X

● For example: X =“ACGGTTA”,
Y=“CGTAT”, LCS(X,Y) = “CGTA” or
“CGTT”

● To solve LCS problem we have to find
“skips” that generate LCS(X,Y) from X and
“skips” that generate LCS(X,Y) from Y

M. BöhlenDAS08 29

LCS: Optimal Substructure
● We make Z to be empty and proceed from the

ends of Xm=“x1 x2 …xm” and Yn=“y1 y2 …yn”
– If xm=yn, append this symbol to the beginning of

Z, and find optimally LCS(Xm-1, Yn-1)
– If xmyn,

● Skip either a letter from X
● or a letter from Y
● Decide which decision to do by comparing LCS(Xm, Yn-1)

and LCS(Xm-1, Yn)
– Starting from beginning is equivalent.

M. BöhlenDAS08 30

LCS: Recurrence
● The algorithm can be extended by allowing

more “editing” operations in addition to
copying and skipping (e.g., changing a letter)

● Let c[i,j] = LCS(Xi, Yj)

● Note that the conditions in the problem
restrict sub-problems (if xi = yi we consider
xi-1 and yi-1, etc)

0 if 0 or 0
[,] [1 , 1] 1 if , 0 and

m a x { [, 1] , [1 ,] } if , 0 and
i j

i j

i j
c i j c i j i j x y

c i j c i j i j x y

⎧  
⎪     ⎨
⎪    ⎩

M. BöhlenDAS08 31

LCS: Algorithm

LCS-Length(X, Y, m, n)
1 for i := 1 to m do c[i,0] := 0
2 for j := 0 to n do c[0,j] := 0
3 for i := 1 to m do
4 for j := 1 to n do
5 if xi = yj then c[i,j] := c[i-1,j-1]+1
6 b[i,j] := ”copy”
7 else if c[i-1,j]  c[i,j-1] then
8 c[i,j] := c[i-1,j]
9 b[i,j] := ”skipX”
10 else c[i,j] := c[i,j-1]
11 b[i,j] := ”skipY”
12 return c, b

LCS-Length(X, Y, m, n)
1 for i := 1 to m do c[i,0] := 0
2 for j := 0 to n do c[0,j] := 0
3 for i := 1 to m do
4 for j := 1 to n do
5 if xi = yj then c[i,j] := c[i-1,j-1]+1
6 b[i,j] := ”copy”
7 else if c[i-1,j]  c[i,j-1] then
8 c[i,j] := c[i-1,j]
9 b[i,j] := ”skipX”
10 else c[i,j] := c[i,j-1]
11 b[i,j] := ”skipY”
12 return c, b

M. BöhlenDAS08 32

LCS: Example
● Lets run:

X =“GGTTCAT”, Y=“GTATCT”

● What is the running time and space
requirements of the algorithm?

● How much can we reduce our space
requirements, if we do not need to
reconstruct an LCS?

M. BöhlenDAS08 33

Next Week
● Graphs:

– Representation in memory
– Breadth-first search
– Depth-first search
– Topological sort

	Slide 1
	This Lecture
	Algorithm design techniques
	Divide and Conquer
	Divide and Conquer/2
	Fibonacci Numbers
	Fibonacci Numbers/2
	Fibonacci Numbers/3
	Fibonacci Numbers/4
	Fibonacci Numbers/5
	Fibonacci Numbers/6
	History
	Optimization Problems
	Multiplying Matrices
	Multiplying Matrices/2
	Multiplying Matrices/3
	Multiplying Matrices/4
	Multiplying Matrices/5
	Multiplying Matrices/6
	Multiplying Matrices/7
	Multiplying Matrices/8
	Memoization
	Memoization/2
	Dynamic Programming
	Dynamic Programming/2
	Dynamic Programming/3
	Longest Common Subsequence
	LCS: Definition
	LCS: Optimal Substructure
	LCS: Recurrence
	LCS: Algorithm
	LCS: Example
	Next Week

