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Dictionaries
● A dictionary D is a dynamic data 

structure with operations:
– Search(D, k) – returns a pointer x to an 

element such that x.key = k (null 
otherwise)

– Insert(D, x) – adds the element pointed 
to by x to D

– Delete(D, x) – removes the element 
pointed to by x from D

● An element has a key and data part.
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Ordered Dictionaries
● In addition to dictionary functionality, 

we may want to support operations:
– Min(D)
– Max(D)

● and
– Predecessor(D, k)
– Successor(D, k)

● These operations require keys that are 
comparable (ordered domain).
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● Unordered list
– search, min, max, predecessor, successor: O(n)
– insertion, deletion: O(1)

● Ordered list
– search, insertion: O(n)

– min, max, predecessor, successor, deletion:  O(1)

A List-Based 
Implementation

34 14 12 22 18

12 14 18 22 34
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Refresher: Binary Search
● Narrow down the search range in stages

– findElement(22)
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Run Time of Binary Search
● The range of candidate items to be searched 

is halved after comparing the key with the 
middle element.

● Binary search runs in O(log n) time.
● What about insertion and deletion?

– search: O(log n)
– insert, delete: O(n)
– min, max, predecessor, successor:  O(1)

● The idea of a binary search can be extended 
to dynamic data structures è binary trees.
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Binary Trees (Java)
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root
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class node {
  int key;
  node left;
  node right;
  node parent;
}

node root;

class node {
  int key;
  node left;
  node right;
  node parent;
}

node root;
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Binary Trees (C)

12



 

 





root

23 8

7151

6911

5

7

struct node {
  int key;
  struct node* left;
  struct node* right;
  struct node* parent;
}

struct node* root;

struct node {
  int key;
  struct node* left;
  struct node* right;
  struct node* parent;
}

struct node* root;
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● A binary search tree (BST) is a binary tree T 
with the following properties:
– each internal node stores an item (k,e) of a dictionary
– keys stored at nodes in the left subtree of v are less 

than or equal to k
– keys stored at nodes in the right subtree of v are 

greater than or equal to k
● Example BSTs for 2, 3, 5, 5, 7, 8

Binary Search Trees

5

3

2 5

7

8

2

3

7

85
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Tree Walks
● Keys in a BST can be printed using "tree 

walks"
● Keys of each node printed between keys in 

the left and right subtree – inorder tree 
traversal

InorderTreeWalk(x)
01   if x  NIL then
02      InorderTreeWalk(x.left)
03      print x.key
04      InorderTreeWalk(x.right)
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Tree Walks/2
● InorderTreeWalk is a divide-and-conquer 

algorithm.
● It prints all elements in monotonically 

increasing order.
● Running time Θ(n).
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Tree Walks/2
● Inorder tree walk can be thought of 

as a projection of the BST nodes onto a 
one dimensional interval.

5

3

2 5 7 11

10

10 1175532

4
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Tree Walks/3
Other forms of tree walk:
● A preorder tree walk processes each 

node before processing its children.
● A postorder tree walk processes 

each node after processing its children.
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Searching a BST

● To find an element with key k in a tree T
– compare k with T.key
– if k < T.key, search for k in T.left
– otherwise, search for k in T.right

5

3

2 5 7 11

10

4
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● Recursive version: divide-and-conquer
Search(T,k)
01 if T = NIL then return NIL
02 if k = T.key then return T
03 if k < T.key 
04   then return Search(T.left,k)
05   else return Search(T.right,k)

● Iterative version
Search(T,k)
01 x := T
02 while x  NIL and k  x.key do 
03   if k < x.key 
04     then x := x.left
05     else x := x.right
06 return x

Pseudocode for BST Search
5
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Search Examples
● Search(T, 11)

5

3

2 5 7 11
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Search Examples/2
● Search(T, 6)

5

3

2 5 7 11

10
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Analysis of Search
● Running time on tree of height h is O(h)
● After the insertion of n keys, the worst-

case running time of searching is O(n)

3

5

7

11
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BST Minimum (Maximum)
● Find the minimum key in a tree rooted at x.

TreeMinimum(x)
01 while x.left  NIL do
02   x  x.left
03 return x

● Maximum: same, x.right instead of x.left
● Running time O(h), i.e., it is proportional 

to the height of the tree.
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● Given x, find the node with the smallest key 
greater than x.key.

● We can distinguish two cases, depending on 
the right subtree of x

● Case 1: The right subtree of x is 
non-empty (succ(x) inserted after x)
– successor is the leftmost 

node in the right subtree.
– this can be done by returning 

TreeMinimum(x.right).

Successor

1

1

3

5

10

7

8

x

succ(x)
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Successor/2
● Case 2: the right subtree of x is empty 

(succ(x), if any, was inserted before x).
– The successor (if any) is the lowest 

ancestor of x whose left subtree contains x.
– Note: it x had a right child, then it would 

be smaller than succ(x)

1

1

3

5

10

7

8

x

succ(x)
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TreeSuccessor(x)
01 if x.right  NIL
02   then return TreeMinimum(x.right)
03 y := x
04 while y.parent  NIL and 
05   y = y.parent.right
06   y := y.parent
07 return y

● For a tree of height h, the running time is O(h).
● Note: no comparison among keys needed!

Successor Pseudocode
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Idea: Introduce yp to avoid derefencing y.parent

TreeSuccessor(x)
01 if x.right  NIL
02   then return TreeMinimum(x.right)
03  y := x
04 yp := y.parent
04 while yp  NIL and y = yp.right do
05    y := yp
06   yp := y.parent
03 return yp

Successor with Trailing Pointer
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BST Insertion
● The basic idea derives from searching:

– construct an element p whose left and 
right children are NULL and insert it into 
T

– find location in T where p belongs  to (as if 
searching for p.key), 

– add p there
● The running time on a tree of height h 

is O(h).
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● Notice:
trailing 
pointer
technique

BST Insertion: Pseudocode
TreeInsert(n, root)
 front:=root; rear:=NIL;
 while front  NIL do
  rear:=front;
  if n.key < front.key 
   then front:=front.left
   else front:=front.right
 if rear = NIL 
  then n.parent:=NIL; return n;
 elsif n.key < rear.key 
  then rear.left:=n;
  else rear.right:=n;
 n.parent:=rear;
 return root;

TreeInsert(n, root)
 front:=root; rear:=NIL;
 while front  NIL do
  rear:=front;
  if n.key < front.key 
   then front:=front.left
   else front:=front.right
 if rear = NIL 
  then n.parent:=NIL; return n;
 elsif n.key < rear.key 
  then rear.left:=n;
  else rear.right:=n;
 n.parent:=rear;
 return root;
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● Have a ”one step delayed” pointer.

BST Insertion Code (java)

node insert(node p, node r) { //insert p in r
  node y = NULL; node x = r;
  while (x != NULL) {
    y := x;
    if (x.key < p.key) x = x.right;
    else x = x.left;
  }
  if (y == NULL) {r = p; p.parent=null;}// r is empty

else if (y.key < p.key) y.right = p;
  else y.left = p;
  p.parent =y;
  return r;
}

node insert(node p, node r) { //insert p in r
  node y = NULL; node x = r;
  while (x != NULL) {
    y := x;
    if (x.key < p.key) x = x.right;
    else x = x.left;
  }
  if (y == NULL) {r = p; p.parent=null;}// r is empty

else if (y.key < p.key) y.right = p;
  else y.left = p;
  p.parent =y;
  return r;
}
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● Have a ”one step delayed” pointer.

BST Insertion Code (C)

struct node* insert(struct node* p, struct node* r) {
  struct node* y = NULL; struct node* x = r;
  while (x != NULL) {
    y := x;
    if (x->key < p->key) x = x->right;
    else x = x->left;
  }
  if (y == NULL) {r = p;p->partent=null}

else if (y->key < p->key) y->right = p;
  else y->left = p;
  p->parent = u;
  return r;
}

struct node* insert(struct node* p, struct node* r) {
  struct node* y = NULL; struct node* x = r;
  while (x != NULL) {
    y := x;
    if (x->key < p->key) x = x->right;
    else x = x->left;
  }
  if (y == NULL) {r = p;p->partent=null}

else if (y->key < p->key) y->right = p;
  else y->left = p;
  p->parent = u;
  return r;
}
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BST Insertion Example
● Insert 8

5

3

2 5 7 11

10

4 8
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BST Insertion: Worst Case
● In what kind of sequence should the 

insertions be made to produce a BST of 
height n?

A

B

C

D
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BST Sorting
● Use TreeInsert and InorderTreeWalk to 

sort a list of n elements, A
TreeSort(A)
01 T := NIL
02 for i := 1 to n
03   TreeInsert(T, BinTree(A[i]))
04 InorderTreeWalk(T)
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● Sort the following numbers
5 10 7 1 3 1 8

● Build a binary search tree

● Call InorderTreeWalk
            1 1 3 5 7 8 10

BST Sorting/2

5

1

3 7

8

10

1

5
5

10
10

5

7
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Deletion
● Delete node x from a tree T
● We can distinguish three cases

– x has no child
– x has one child
– x has two children
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Deletion Case 1
● If x has no children: simply remove x

D

FA

B

D

A F

x
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Deletion Case 2
● If x has exactly one child, make parent 

of x point to that child and delete x.
D

FA

B

D

B F

x
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Deletion Case 3
● If x has two children: 

– find the largest child y 
in the left subtree of x 
(i.e. y is predecessor(x))

– Recursively remove y 
(note that y has at most 
one child), and

– replace x with y.
● “Mirror” version with 

successor(x) (CLRS)

D

FA

B

B

A F

x

y
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Deletion Pseudocode
Delete(T,x)
  if x.left = nil or x.right = nil
     then drop := x
     else drop := Succ(x)
  if drop.left  nil
     then keep := drop.left
     else keep := drop.right
  if keep  nil
     then keep.parent := drop.parent
  if drop.parent = nil
     then T.root := keep
     else if drop = drop.parent.left
          then drop.parent.left := keep

  else drop.parent.right := keep
  if drop  x
     then x.key := drop.key
     % x.info := drop.info

Delete(T,x)
  if x.left = nil or x.right = nil
     then drop := x
     else drop := Succ(x)
  if drop.left  nil
     then keep := drop.left
     else keep := drop.right
  if keep  nil
     then keep.parent := drop.parent
  if drop.parent = nil
     then T.root := keep
     else if drop = drop.parent.left
          then drop.parent.left := keep

  else drop.parent.right := keep
  if drop  x
     then x.key := drop.key
     % x.info := drop.info

Version with 
parent pointer
Version with 
parent pointer



Slides by M. Böhlen and R. Sebastiani05/05/13 44

BST Deletion Code (java)

node delete(node root, node x) {
  
  front = root; rear = NULL;
  while (front != x) {
    rear := front;
    if (x.key < front.key) front := front.left;
    else front := front.right;
  } // rear points to a parent of x (if any)

  …

node delete(node root, node x) {
  
  front = root; rear = NULL;
  while (front != x) {
    rear := front;
    if (x.key < front.key) front := front.left;
    else front := front.right;
  } // rear points to a parent of x (if any)

  …

● Version without “parent” field
● Note again the trailing pointer technique
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BST Deletion Code (java)/2

…
  if (x.right == NULL) {
    if (rear == NULL) root = x.left; 
    else if (rear.left == x) rear.left = x.left;
    else rear.right = x.left;}
  else if (x.left == NULL) {
    if (rear == NULL) root = x.right;
    else if (rear.left == x) rear.left = x.right;
    else rear.right = x.right;
  else {
…

…
  if (x.right == NULL) {
    if (rear == NULL) root = x.left; 
    else if (rear.left == x) rear.left = x.left;
    else rear.right = x.left;}
  else if (x.left == NULL) {
    if (rear == NULL) root = x.right;
    else if (rear.left == x) rear.left = x.right;
    else rear.right = x.right;
  else {
…

● x has less than 2 children
● Fix pointer of parent of x
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BST Deletion Code (java)/3

succ = x.right; srear = succ;
while (succ.left != NULL) 

    { srear:=succ; succ:=succ.left; }

if (rear == NULL) root = succ;
else if (rear.left == x) rear.left = succ;
else rear.right = succ;

succ.left = x.left;
if (srear != succ) {
  srear.left = succ.right;
  succ.right = x.right;
}
return root

succ = x.right; srear = succ;
while (succ.left != NULL) 

    { srear:=succ; succ:=succ.left; }

if (rear == NULL) root = succ;
else if (rear.left == x) rear.left = succ;
else rear.right = succ;

succ.left = x.left;
if (srear != succ) {
  srear.left = succ.right;
  succ.right = x.right;
}
return root

● x has 2 children
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BST Deletion Code (C)

struct node* delete(struct node* root,
                    struct node* x) {
  
  u = root; v = NULL;
  while (u != x) {
    v := u;
    if (x->key < u->key) u := u->left;
    else u := u->right;
  } // v points to a parent of x (if any)

  …

struct node* delete(struct node* root,
                    struct node* x) {
  
  u = root; v = NULL;
  while (u != x) {
    v := u;
    if (x->key < u->key) u := u->left;
    else u := u->right;
  } // v points to a parent of x (if any)

  …

● Version without “parent” field
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BST Deletion Code (C)/2

…
  if (u->right == NULL) {
    if (v == NULL) root = u->left;
    else if (v->left == u) v->left = u->left;
    else v->right = u->left;
  else if (u->left == NULL) {
    if (v == NULL) root = u->right;
    else if (v->left == u) v->left = u->right;
    else v->right = u->right;
  else {
…

…
  if (u->right == NULL) {
    if (v == NULL) root = u->left;
    else if (v->left == u) v->left = u->left;
    else v->right = u->left;
  else if (u->left == NULL) {
    if (v == NULL) root = u->right;
    else if (v->left == u) v->left = u->right;
    else v->right = u->right;
  else {
…

● x has less than 2 children
● Fix pointer of parent of x
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BST Deletion Code (C)/3

p = x->left; q = p;
while (p->right != NULL) { q:=p; p:=p->right; }

if (v == NULL) root = p;
else if (v->left == u) v->left = p;
else v->right = p;

p->right = u->right;
if (q != p) {
  q->right = p->left;
  p->left = u->left;
}
return root

p = x->left; q = p;
while (p->right != NULL) { q:=p; p:=p->right; }

if (v == NULL) root = p;
else if (v->left == u) v->left = p;
else v->right = p;

p->right = u->right;
if (q != p) {
  q->right = p->left;
  p->left = u->left;
}
return root

● x has 2 children
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Balanced Binary Search 
Trees

● Problem: execution time for tree operations is 
Θ(h), which in worst case is Θ(n).

● Solution: balanced search trees guarantee 
small height h = O(log n).

5

3

2 5

7

8

2

3

7

85

5
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Suggested exercises

● Implement a binary search tree with the 
following functionalities: 

– init, max, min, successor, predecessor, search 
(iterative & recursive), insert, delete (both 
swap with succ and pred), print, print in 
reverse order

– TreeSort 
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Suggested exercises/2

Using paper & pencil: 
● draw the trees after each of the following 

operations, starting from an empty tree: 
1.Insert  9,5,3,7,2,4,6,8,13,11,15,10,12,16,14
2.Delete 16, 15, 5, 7, 9 (both with succ and pred 

strategies)
● simulate the following operations after 1:
– Find the max and minimum
– Find the successor of 9, 8, 6
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Red/Black Trees
n A red-black tree is a binary search tree with 

the following properties:
1. Nodes are colored red or black
2. NULL leaves are black
3. The root is black
4. No two consecutive

red nodes on any 
root-leaf path.

5. Same number of black 
nodes on any root-leaf 
path (called black height of 
the tree).
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Java's TreeMap
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RB-Tree Properties
● Some measures

– n – # of internal nodes
– h – height
– bh – black height

● 2bh – 1   n
● h/2   bh
● 2h/2   n +1
● h  2 log(n +1)
● BALANCED!
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● Operations on a binary-search tree 
(search, insert, delete, ...) can be 
accomplished in O(h) time.

● The RB-tree is a binary search tree, 
whose height is bounded by 2 log(n +1), 
thus the operations run in O(log n).
– Provided that we can maintain red-black 

tree properties spending no more than 
O(h) time on each insertion or deletion.

RB-Tree Properties/2
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Rotation

α β

γ α

β γ

B

A

A

B

right rotation of B left rotation of A
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Right Rotation
RightRotate(B)
01 A := B.left

02 B.left := A.right
03 B.left.parent := B

04 if (B = B.parent.left) B.parent.left := A
05 if (B = B.parent.right) B.parent.right := A
06 A.parent := B.parent

07 A.right := B
08 B.parent := A 

α β

γ α

β γ

B A
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The Effect of a Rotation 
● Maintains inorder key ordering

– ∀a∈   b∈   c∈γ
we can state the invariant

– a<= A <= b <= B <= c
● After right rotation

– Depth(α) decreases by 1
– Depth(β) stays the same
– Depth(γ) increases by 1

● Left rotation: symmetric
● Rotation takes O(1) time
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Data Structures and 
Algorithms 

 Chapter 6
● Binary Search Trees

● Tree traversals
● Searching 
● Insertion
● Deletion

● Red-Black Trees
● Properties
● Rotations 
● Insertion
● Deletion
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Insertion in the RB-Trees
RBInsert(T,n)
01 Insert n into T using the binary search tree 

insertion procedure
02 n.left := NIL
03 n.right := NIL
04 n.color := red
05 RBInsertFixup(n)

n

pp

n
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Fixing Up a Node: Intuition
● Case 0: parent is black 

=> ok
● Case 1: both parent and uncle are red 

=> change colour of parent/uncle to black
=> change colour of grandparent to red
=> fix up the grandparent
Exception: grandparent is root => then keep it black

● Case 2: parent is red and uncle is black, and
              node and parent are in a straight line
=> rotate at grandparent 

● Case 3: parent is red and uncle is black, and
        node and parent are not in a straight line

=> rotate at parent  (leads to Case 2)
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Insertion
● Let

– n = the new node
– p = n.parent 
– g = p.parent 

● In the following assume:
– p = g.left

g

p

n
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Insertion: Case 0
● p.color = black

– No properties 
of the tree 
are violated

– we are done.

g

p

n
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Insertion: Case 1
● Case 1

– n’s uncle u is red
● Action

– p.color := black
– u.color := black
– g.color := red
– n :=  g

● Note: the tree rooted at g is balanced 
enough (black depth of all descendants 
remains unchanged).

g

p

n n

p

g

uu

6
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Insertion: Case 2
n Case 2
– n’s uncle u is black 

and n is a left child
n Action

n p.color := black
n g.color := red
n RightRotate(g)

n Note: the tree rooted at g is balanced enough 
(black depth of all descendents remains 
unchanged).

g

p

n

n

p

gu

u
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Insertion: Case 3
n Case 3
– n’s uncle u is black 

and n is a right child
n Action

n LeftRotate(p)
n n := p

n Note
n The result is a case 2.

g

p

n

u

g

p

n

u
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Insertion: Mirror cases
● All three cases are handled analogously 

if p is a right child.
● Exchange left and right in all three 

cases. 
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Insertion: Case 2 and 3 
mirrored

n Case 2m
– n’s uncle u is black and n is a right child
– Action
– p.color := black
– g.color := red
– LeftRotate(g)

n Case 3m
– n’s uncle u is black and n is a left child
– Action

● RightRotate(p)
● n := p
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Insertion Summary
● If two red nodes are adjacent, we do either 

– a restructuring (with one or two rotations) 
and stop (cases 2 and 3), or

– recursively propagate red upwards (case 1)
● A restructuring takes constant time and is 

performed at most once. It reorganizes an off-
balanced section of the tree

● Propagations may continue up the tree and 
are executed  O(log n) times (height of the tree)

● The running time of an insertion is O(log n).
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● Inserting "REDSOX" into an empty tree

● Now, let us insert "CUBS"

An Insertion Example

R

E

D

O S

X
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Insert C (case 0)

R

E

D

O S

X

R

E

D

O S

X

C
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Insert U (case 3, mirror)

R

E

D

O S

X

C

R

E

D

O S

X

C

U
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Insert U/2

R

E

D

O S

X

C

U

R

E

D

O

S X

C U
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Insert B (case 2)

R

E

D

O

S X

C U

R

E

D

O

S X

C U

B
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Insert B/2

R

E

D

O

S X

C U

B

R

E

C

O

S X

B UD
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Insert S (case 1)

R

E

C

O

S X

B UD

R

E

C

O

S X

B UD

S
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Insert S/2 (case 2 mirror) 

R

E

C

O

S X

B UD

S

U

R

E

S

B S

C XO

D
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Data Structures and 
Algorithms 

 Chapter 6
● Binary Search Trees

● Tree traversals
● Searching 
● Insertion
● Deletion

● Red-Black Trees
● Properties
● Rotations 
● Insertion
● Deletion
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Deletion
● We first apply binary search tree deletion.

– We can easily delete a node that has at least one nil 
child

– If the key to be deleted is stored at a node u with two 
children, we replace its content with the content of the 
largest node v of the left subtree and delete v instead.

7

4 8

952

5

4 8

92

u u

v
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Deletion Algorithm
1. Remove u
2. If u.color = red, we are done. Else, assume that 

v (replacement of u) gets additional black color: 
– If v.color = red then v.color := black and we are 

done! 
– Else v’ s color is “double black”.

u

v
v

u

v
v
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Deletion Algorithm/2
● How to eliminate double black edges?

– The intuitive idea is to perform a color 
compensation

● Find a red edge nearby, and change the pair 
(red, double black) into (black, black)

– Two cases: restructuring and 
recoloring

– Restructuring resolves the problem locally, 
while recoloring may propagate it upward.

● Hereafter we assume v is a left child 
(swap right and left otherwise)  
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Deletion Case 1
● Case 1

– v’s sibling s is black and both 
children of s are black

● Action
– s.color := red
– v = p

● Note
– We reduce the black depth of both subtrees 

of p by 1. Parent p becomes more black.

sv

p p

v s
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Deletion: Case 1
● If parent p becomes double black, 

continue upward.

sv

p p

v s
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Deletion: Case 2
● Case 2

– v’s sibling s is black and 
s’s right child is red.

● Action
– s.color = p.color
– p.color = black
– s.right.color = black
– LeftRotate(p)

● Idea: Compensate the extra black ring of v
             by the red of r

● Note: Terminates after restructuring.

sv

p

r

rp

s

v
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Deletion: Case 3
● Case 3

– v’s sibling s is black, s’s left child is red, 
and s’s right child is black.

● Idea: Reduce to case 2
● Action

– s.left.color = black
– s.color = red
– RightRotation(s)
– s = p.right

● Note:
– This is now case 2

sv

p

l

 lv

p

s
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Deletion: Case 4
● Case 4

– v’s sibling s is red
● Idea: give v a black sibling
● Action

– s.color = black
– p.color = red
– LeftRotation(p)
– s = p.right

● Note
– This is now a case 1, 2, or 3

sv

p

p

s

v
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Delete 9  

8

6

4

72 95

8

6

4

72 5
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Delete 9/2
● Case 2 (sibling is black with black 

children) – recoloring 

8

6

4

72 5

8

6

4

72 5
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Delete 8

8

6

4

72 5

7

6

4

2 5
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Delete 7: restructuring

7

6

4

2 5

6

4

2 5

6

4

2

5
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How long does it take?
● Deletion in a RB-tree takes O(log n)

– Maximum three rotations and O(log n) 
recolorings



Slides by M. Böhlen and R. Sebastiani05/05/13 96

Suggested exercises

● Add left-rotate and right-rotate to the 
implementation of binary trees

● Implement a red-black  search tree with 
the following functionalities: 

– (...), insert, delete 
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Suggested exercises/2

Using paper & pencil: 
● draw the RB-trees after each of the 

following operations, starting from an 
empty tree: 

1.Insert  1,2,3,4,5,6,7,8,9,10,11,12
2.Delete  12,11,10,9,8,7,6,5,4,3,2,1

● Try insertions and deletions at random
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● Red-Black trees 
are related to 
2-3-4 trees 
(non-binary)

● AVL-trees have 
simpler algo-
rithms, but may 
perform a lot of 
rotations

Other Balanced Trees

2-3-4               Red-Black

11



Slides by M. Böhlen and R. Sebastiani05/05/13 99

Next Part
● Hashing
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