
Slides by M. Böhlen and R. Sebastiani05/05/13 1

Data Structures and
Algorithms

Werner Nutt
Werner.Nutt@unibz.it

http://www.inf.unibz/it/~nutt

Chapter 6

Academic Year 2012-2013

Slides by M. Böhlen and R. Sebastiani05/05/13 2

Acknowledgements
& Copyright Notice

These slides are built on top of slides developed by Michael Boehlen.
Moreover, some material (text, figures, examples) displayed in these slides
is courtesy of Kurt Ranalter. Some examples displayed in these slides are

taken from [Cormen, Leiserson, Rivest and Stein, ``Introduction to
Algorithms'', MIT Press], and their copyright is detained by the authors. All
the other material is copyrighted by Roberto Sebastiani. Every commercial
use of this material is strictly forbidden by the copyright laws without the
authorization of the authors. No copy of these slides can be displayed in
public or be publicly distributed without containing this copyright notice.

http://www.ifi.uzh.ch/dbtg/Staff/Boehlen/

Slides by M. Böhlen and R. Sebastiani05/05/13 3

Data Structures and
Algorithms

Chapter 6
● Binary Search Trees

● Tree traversals
● Searching
● Insertion
● Deletion

● Red-Black Trees
● Properties
● Rotations
● Insertion
● Deletion

Slides by M. Böhlen and R. Sebastiani05/05/13 4

Data Structures and
Algorithms

 Chapter 6
● Binary Search Trees

● Tree traversals
● Searching
● Insertion
● Deletion

● Red-Black Trees
● Properties
● Rotations
● Insertion
● Deletion

Slides by M. Böhlen and R. Sebastiani05/05/13 5

Dictionaries
● A dictionary D is a dynamic data

structure with operations:
– Search(D, k) – returns a pointer x to an

element such that x.key = k (null
otherwise)

– Insert(D, x) – adds the element pointed
to by x to D

– Delete(D, x) – removes the element
pointed to by x from D

● An element has a key and data part.

Slides by M. Böhlen and R. Sebastiani05/05/13 6

Ordered Dictionaries
● In addition to dictionary functionality,

we may want to support operations:
– Min(D)
– Max(D)

● and
– Predecessor(D, k)
– Successor(D, k)

● These operations require keys that are
comparable (ordered domain).

Slides by M. Böhlen and R. Sebastiani05/05/13 7

● Unordered list
– search, min, max, predecessor, successor: O(n)
– insertion, deletion: O(1)

● Ordered list
– search, insertion: O(n)

– min, max, predecessor, successor, deletion: O(1)

A List-Based
Implementation

34 14 12 22 18

12 14 18 22 34

Slides by M. Böhlen and R. Sebastiani05/05/13 8

Refresher: Binary Search
● Narrow down the search range in stages

– findElement(22)

Slides by M. Böhlen and R. Sebastiani05/05/13 9

Run Time of Binary Search
● The range of candidate items to be searched

is halved after comparing the key with the
middle element.

● Binary search runs in O(log n) time.
● What about insertion and deletion?

– search: O(log n)
– insert, delete: O(n)
– min, max, predecessor, successor: O(1)

● The idea of a binary search can be extended
to dynamic data structures è binary trees.

Slides by M. Böhlen and R. Sebastiani05/05/13 10

Binary Trees (Java)

12



 

 





root

23 8

7151

6911

5

7

class node {
 int key;
 node left;
 node right;
 node parent;
}

node root;

class node {
 int key;
 node left;
 node right;
 node parent;
}

node root;

Slides by M. Böhlen and R. Sebastiani05/05/13 11

Binary Trees (C)

12



 

 





root

23 8

7151

6911

5

7

struct node {
 int key;
 struct node* left;
 struct node* right;
 struct node* parent;
}

struct node* root;

struct node {
 int key;
 struct node* left;
 struct node* right;
 struct node* parent;
}

struct node* root;

Slides by M. Böhlen and R. Sebastiani05/05/13 12

● A binary search tree (BST) is a binary tree T
with the following properties:
– each internal node stores an item (k,e) of a dictionary
– keys stored at nodes in the left subtree of v are less

than or equal to k
– keys stored at nodes in the right subtree of v are

greater than or equal to k
● Example BSTs for 2, 3, 5, 5, 7, 8

Binary Search Trees

5

3

2 5

7

8

2

3

7

85

5

Slides by M. Böhlen and R. Sebastiani05/05/13 13

Data Structures and
Algorithms

Part 6
● Binary Search Trees

● Tree traversals
● Searching
● Insertion
● Deletion

● Red-Black Trees
● Properties
● Rotations
● Insertion
● Deletion

Slides by M. Böhlen and R. Sebastiani05/05/13 14

Tree Walks
● Keys in a BST can be printed using "tree

walks"
● Keys of each node printed between keys in

the left and right subtree – inorder tree
traversal

InorderTreeWalk(x)
01 if x  NIL then
02 InorderTreeWalk(x.left)
03 print x.key
04 InorderTreeWalk(x.right)

Slides by M. Böhlen and R. Sebastiani05/05/13 15

Tree Walks/2
● InorderTreeWalk is a divide-and-conquer

algorithm.
● It prints all elements in monotonically

increasing order.
● Running time Θ(n).

Slides by M. Böhlen and R. Sebastiani05/05/13 16

Tree Walks/2
● Inorder tree walk can be thought of

as a projection of the BST nodes onto a
one dimensional interval.

5

3

2 5 7 11

10

10 1175532

4

Slides by M. Böhlen and R. Sebastiani05/05/13 17

Tree Walks/3
Other forms of tree walk:
● A preorder tree walk processes each

node before processing its children.
● A postorder tree walk processes

each node after processing its children.

Slides by M. Böhlen and R. Sebastiani05/05/13 18

Data Structures and
Algorithms

Part 6
● Binary Search Trees

● Tree traversals
● Searching
● Insertion
● Deletion

● Red-Black Trees
● Properties
● Rotations
● Insertion
● Deletion

Slides by M. Böhlen and R. Sebastiani05/05/13 19

Searching a BST

● To find an element with key k in a tree T
– compare k with T.key
– if k < T.key, search for k in T.left
– otherwise, search for k in T.right

5

3

2 5 7 11

10

4

Slides by M. Böhlen and R. Sebastiani05/05/13 20

● Recursive version: divide-and-conquer
Search(T,k)
01 if T = NIL then return NIL
02 if k = T.key then return T
03 if k < T.key
04 then return Search(T.left,k)
05 else return Search(T.right,k)

● Iterative version
Search(T,k)
01 x := T
02 while x  NIL and k  x.key do
03 if k < x.key
04 then x := x.left
05 else x := x.right
06 return x

Pseudocode for BST Search
5

Slides by M. Böhlen and R. Sebastiani05/05/13 21

Search Examples
● Search(T, 11)

5

3

2 5 7 11

10

4

Slides by M. Böhlen and R. Sebastiani05/05/13 22

Search Examples/2
● Search(T, 6)

5

3

2 5 7 11

10

4

2

Slides by M. Böhlen and R. Sebastiani05/05/13 23

Analysis of Search
● Running time on tree of height h is O(h)
● After the insertion of n keys, the worst-

case running time of searching is O(n)

3

5

7

11

Slides by M. Böhlen and R. Sebastiani05/05/13 24

BST Minimum (Maximum)
● Find the minimum key in a tree rooted at x.

TreeMinimum(x)
01 while x.left  NIL do
02 x  x.left
03 return x

● Maximum: same, x.right instead of x.left
● Running time O(h), i.e., it is proportional

to the height of the tree.

Slides by M. Böhlen and R. Sebastiani05/05/13 25

● Given x, find the node with the smallest key
greater than x.key.

● We can distinguish two cases, depending on
the right subtree of x

● Case 1: The right subtree of x is
non-empty (succ(x) inserted after x)
– successor is the leftmost

node in the right subtree.
– this can be done by returning

TreeMinimum(x.right).

Successor

1

1

3

5

10

7

8

x

succ(x)

Slides by M. Böhlen and R. Sebastiani05/05/13 26

Successor/2
● Case 2: the right subtree of x is empty

(succ(x), if any, was inserted before x).
– The successor (if any) is the lowest

ancestor of x whose left subtree contains x.
– Note: it x had a right child, then it would

be smaller than succ(x)

1

1

3

5

10

7

8

x

succ(x)

Slides by M. Böhlen and R. Sebastiani05/05/13 27

TreeSuccessor(x)
01 if x.right  NIL
02 then return TreeMinimum(x.right)
03 y := x
04 while y.parent  NIL and
05 y = y.parent.right
06 y := y.parent
07 return y

● For a tree of height h, the running time is O(h).
● Note: no comparison among keys needed!

Successor Pseudocode

Slides by M. Böhlen and R. Sebastiani05/05/13 28

Idea: Introduce yp to avoid derefencing y.parent

TreeSuccessor(x)
01 if x.right  NIL
02 then return TreeMinimum(x.right)
03 y := x
04 yp := y.parent
04 while yp  NIL and y = yp.right do
05 y := yp
06 yp := y.parent
03 return yp

Successor with Trailing Pointer

Slides by M. Böhlen and R. Sebastiani05/05/13 29

Data Structures and
Algorithms

 Chapter 6
● Binary Search Trees

● Tree traversals
● Searching
● Insertion
● Deletion

● Red-Black Trees
● Properties
● Rotations
● Insertion
● Deletion

Slides by M. Böhlen and R. Sebastiani05/05/13 30

BST Insertion
● The basic idea derives from searching:

– construct an element p whose left and
right children are NULL and insert it into
T

– find location in T where p belongs to (as if
searching for p.key),

– add p there
● The running time on a tree of height h

is O(h).

Slides by M. Böhlen and R. Sebastiani05/05/13 31

● Notice:
trailing
pointer
technique

BST Insertion: Pseudocode
TreeInsert(n, root)
 front:=root; rear:=NIL;
 while front  NIL do
 rear:=front;
 if n.key < front.key
 then front:=front.left
 else front:=front.right
 if rear = NIL
 then n.parent:=NIL; return n;
 elsif n.key < rear.key
 then rear.left:=n;
 else rear.right:=n;
 n.parent:=rear;
 return root;

TreeInsert(n, root)
 front:=root; rear:=NIL;
 while front  NIL do
 rear:=front;
 if n.key < front.key
 then front:=front.left
 else front:=front.right
 if rear = NIL
 then n.parent:=NIL; return n;
 elsif n.key < rear.key
 then rear.left:=n;
 else rear.right:=n;
 n.parent:=rear;
 return root;

Slides by M. Böhlen and R. Sebastiani05/05/13 32

● Have a ”one step delayed” pointer.

BST Insertion Code (java)

node insert(node p, node r) { //insert p in r
 node y = NULL; node x = r;
 while (x != NULL) {
 y := x;
 if (x.key < p.key) x = x.right;
 else x = x.left;
 }
 if (y == NULL) {r = p; p.parent=null;}// r is empty

else if (y.key < p.key) y.right = p;
 else y.left = p;
 p.parent =y;
 return r;
}

node insert(node p, node r) { //insert p in r
 node y = NULL; node x = r;
 while (x != NULL) {
 y := x;
 if (x.key < p.key) x = x.right;
 else x = x.left;
 }
 if (y == NULL) {r = p; p.parent=null;}// r is empty

else if (y.key < p.key) y.right = p;
 else y.left = p;
 p.parent =y;
 return r;
}

Slides by M. Böhlen and R. Sebastiani05/05/13 33

● Have a ”one step delayed” pointer.

BST Insertion Code (C)

struct node* insert(struct node* p, struct node* r) {
 struct node* y = NULL; struct node* x = r;
 while (x != NULL) {
 y := x;
 if (x->key < p->key) x = x->right;
 else x = x->left;
 }
 if (y == NULL) {r = p;p->partent=null}

else if (y->key < p->key) y->right = p;
 else y->left = p;
 p->parent = u;
 return r;
}

struct node* insert(struct node* p, struct node* r) {
 struct node* y = NULL; struct node* x = r;
 while (x != NULL) {
 y := x;
 if (x->key < p->key) x = x->right;
 else x = x->left;
 }
 if (y == NULL) {r = p;p->partent=null}

else if (y->key < p->key) y->right = p;
 else y->left = p;
 p->parent = u;
 return r;
}

Slides by M. Böhlen and R. Sebastiani05/05/13 34

BST Insertion Example
● Insert 8

5

3

2 5 7 11

10

4 8

Slides by M. Böhlen and R. Sebastiani05/05/13 35

BST Insertion: Worst Case
● In what kind of sequence should the

insertions be made to produce a BST of
height n?

A

B

C

D

Slides by M. Böhlen and R. Sebastiani05/05/13 36

BST Sorting
● Use TreeInsert and InorderTreeWalk to

sort a list of n elements, A
TreeSort(A)
01 T := NIL
02 for i := 1 to n
03 TreeInsert(T, BinTree(A[i]))
04 InorderTreeWalk(T)

Slides by M. Böhlen and R. Sebastiani05/05/13 37

● Sort the following numbers
5 10 7 1 3 1 8

● Build a binary search tree

● Call InorderTreeWalk
 1 1 3 5 7 8 10

BST Sorting/2

5

1

3 7

8

10

1

5
5

10
10

5

7

Slides by M. Böhlen and R. Sebastiani05/05/13 38

Data Structures and
Algorithms

Part 6
● Binary Search Trees

● Tree traversals
● Searching
● Insertion
● Deletion

● Red-Black Trees
● Properties
● Rotations
● Insertion
● Deletion

Slides by M. Böhlen and R. Sebastiani05/05/13 39

Deletion
● Delete node x from a tree T
● We can distinguish three cases

– x has no child
– x has one child
– x has two children

Slides by M. Böhlen and R. Sebastiani05/05/13 40

Deletion Case 1
● If x has no children: simply remove x

D

FA

B

D

A F

x

Slides by M. Böhlen and R. Sebastiani05/05/13 41

Deletion Case 2
● If x has exactly one child, make parent

of x point to that child and delete x.
D

FA

B

D

B F

x

Slides by M. Böhlen and R. Sebastiani05/05/13 42

Deletion Case 3
● If x has two children:

– find the largest child y
in the left subtree of x
(i.e. y is predecessor(x))

– Recursively remove y
(note that y has at most
one child), and

– replace x with y.
● “Mirror” version with

successor(x) (CLRS)

D

FA

B

B

A F

x

y

Slides by M. Böhlen and R. Sebastiani05/05/13 43

Deletion Pseudocode
Delete(T,x)
 if x.left = nil or x.right = nil
 then drop := x
 else drop := Succ(x)
 if drop.left  nil
 then keep := drop.left
 else keep := drop.right
 if keep  nil
 then keep.parent := drop.parent
 if drop.parent = nil
 then T.root := keep
 else if drop = drop.parent.left
 then drop.parent.left := keep

 else drop.parent.right := keep
 if drop  x
 then x.key := drop.key
 % x.info := drop.info

Delete(T,x)
 if x.left = nil or x.right = nil
 then drop := x
 else drop := Succ(x)
 if drop.left  nil
 then keep := drop.left
 else keep := drop.right
 if keep  nil
 then keep.parent := drop.parent
 if drop.parent = nil
 then T.root := keep
 else if drop = drop.parent.left
 then drop.parent.left := keep

 else drop.parent.right := keep
 if drop  x
 then x.key := drop.key
 % x.info := drop.info

Version with
parent pointer
Version with
parent pointer

Slides by M. Böhlen and R. Sebastiani05/05/13 44

BST Deletion Code (java)

node delete(node root, node x) {

 front = root; rear = NULL;
 while (front != x) {
 rear := front;
 if (x.key < front.key) front := front.left;
 else front := front.right;
 } // rear points to a parent of x (if any)

 …

node delete(node root, node x) {

 front = root; rear = NULL;
 while (front != x) {
 rear := front;
 if (x.key < front.key) front := front.left;
 else front := front.right;
 } // rear points to a parent of x (if any)

 …

● Version without “parent” field
● Note again the trailing pointer technique

Slides by M. Böhlen and R. Sebastiani05/05/13 45

BST Deletion Code (java)/2

…
 if (x.right == NULL) {
 if (rear == NULL) root = x.left;
 else if (rear.left == x) rear.left = x.left;
 else rear.right = x.left;}
 else if (x.left == NULL) {
 if (rear == NULL) root = x.right;
 else if (rear.left == x) rear.left = x.right;
 else rear.right = x.right;
 else {
…

…
 if (x.right == NULL) {
 if (rear == NULL) root = x.left;
 else if (rear.left == x) rear.left = x.left;
 else rear.right = x.left;}
 else if (x.left == NULL) {
 if (rear == NULL) root = x.right;
 else if (rear.left == x) rear.left = x.right;
 else rear.right = x.right;
 else {
…

● x has less than 2 children
● Fix pointer of parent of x

Slides by M. Böhlen and R. Sebastiani05/05/13 46

BST Deletion Code (java)/3

succ = x.right; srear = succ;
while (succ.left != NULL)

 { srear:=succ; succ:=succ.left; }

if (rear == NULL) root = succ;
else if (rear.left == x) rear.left = succ;
else rear.right = succ;

succ.left = x.left;
if (srear != succ) {
 srear.left = succ.right;
 succ.right = x.right;
}
return root

succ = x.right; srear = succ;
while (succ.left != NULL)

 { srear:=succ; succ:=succ.left; }

if (rear == NULL) root = succ;
else if (rear.left == x) rear.left = succ;
else rear.right = succ;

succ.left = x.left;
if (srear != succ) {
 srear.left = succ.right;
 succ.right = x.right;
}
return root

● x has 2 children

Slides by M. Böhlen and R. Sebastiani05/05/13 47

BST Deletion Code (C)

struct node* delete(struct node* root,
 struct node* x) {

 u = root; v = NULL;
 while (u != x) {
 v := u;
 if (x->key < u->key) u := u->left;
 else u := u->right;
 } // v points to a parent of x (if any)

 …

struct node* delete(struct node* root,
 struct node* x) {

 u = root; v = NULL;
 while (u != x) {
 v := u;
 if (x->key < u->key) u := u->left;
 else u := u->right;
 } // v points to a parent of x (if any)

 …

● Version without “parent” field

Slides by M. Böhlen and R. Sebastiani05/05/13 48

BST Deletion Code (C)/2

…
 if (u->right == NULL) {
 if (v == NULL) root = u->left;
 else if (v->left == u) v->left = u->left;
 else v->right = u->left;
 else if (u->left == NULL) {
 if (v == NULL) root = u->right;
 else if (v->left == u) v->left = u->right;
 else v->right = u->right;
 else {
…

…
 if (u->right == NULL) {
 if (v == NULL) root = u->left;
 else if (v->left == u) v->left = u->left;
 else v->right = u->left;
 else if (u->left == NULL) {
 if (v == NULL) root = u->right;
 else if (v->left == u) v->left = u->right;
 else v->right = u->right;
 else {
…

● x has less than 2 children
● Fix pointer of parent of x

Slides by M. Böhlen and R. Sebastiani05/05/13 49

BST Deletion Code (C)/3

p = x->left; q = p;
while (p->right != NULL) { q:=p; p:=p->right; }

if (v == NULL) root = p;
else if (v->left == u) v->left = p;
else v->right = p;

p->right = u->right;
if (q != p) {
 q->right = p->left;
 p->left = u->left;
}
return root

p = x->left; q = p;
while (p->right != NULL) { q:=p; p:=p->right; }

if (v == NULL) root = p;
else if (v->left == u) v->left = p;
else v->right = p;

p->right = u->right;
if (q != p) {
 q->right = p->left;
 p->left = u->left;
}
return root

● x has 2 children

Slides by M. Böhlen and R. Sebastiani05/05/13 50

Balanced Binary Search
Trees

● Problem: execution time for tree operations is
Θ(h), which in worst case is Θ(n).

● Solution: balanced search trees guarantee
small height h = O(log n).

5

3

2 5

7

8

2

3

7

85

5

Slides by M. Böhlen and R. Sebastiani05/05/13 51

Suggested exercises

● Implement a binary search tree with the
following functionalities:

– init, max, min, successor, predecessor, search
(iterative & recursive), insert, delete (both
swap with succ and pred), print, print in
reverse order

– TreeSort

Slides by M. Böhlen and R. Sebastiani05/05/13 52

Suggested exercises/2

Using paper & pencil:
● draw the trees after each of the following

operations, starting from an empty tree:
1.Insert 9,5,3,7,2,4,6,8,13,11,15,10,12,16,14
2.Delete 16, 15, 5, 7, 9 (both with succ and pred

strategies)
● simulate the following operations after 1:
– Find the max and minimum
– Find the successor of 9, 8, 6

Slides by M. Böhlen and R. Sebastiani05/05/13 53

Data Structures and
Algorithms

 Chapter 6
● Binary Search Trees

● Tree traversals
● Searching
● Insertion
● Deletion

● Red-Black Trees
● Properties
● Rotations
● Insertion
● Deletion

Slides by M. Böhlen and R. Sebastiani05/05/13 54

Data Structures and
Algorithms

 Chapter 6
● Binary Search Trees

● Tree traversals
● Searching
● Insertion
● Deletion

● Red-Black Trees
● Properties
● Rotations
● Insertion
● Deletion

Slides by M. Böhlen and R. Sebastiani05/05/13 55

Red/Black Trees
n A red-black tree is a binary search tree with

the following properties:
1. Nodes are colored red or black
2. NULL leaves are black
3. The root is black
4. No two consecutive

red nodes on any
root-leaf path.

5. Same number of black
nodes on any root-leaf
path (called black height of
the tree).

Slides by M. Böhlen and R. Sebastiani05/05/13 56

Java's TreeMap

Slides by M. Böhlen and R. Sebastiani05/05/13 57

RB-Tree Properties
● Some measures

– n – # of internal nodes
– h – height
– bh – black height

● 2bh – 1  n
● h/2  bh
● 2h/2  n +1
● h  2 log(n +1)
● BALANCED!

Slides by M. Böhlen and R. Sebastiani05/05/13 58

● Operations on a binary-search tree
(search, insert, delete, ...) can be
accomplished in O(h) time.

● The RB-tree is a binary search tree,
whose height is bounded by 2 log(n +1),
thus the operations run in O(log n).
– Provided that we can maintain red-black

tree properties spending no more than
O(h) time on each insertion or deletion.

RB-Tree Properties/2

Slides by M. Böhlen and R. Sebastiani05/05/13 59

Data Structures and
Algorithms

 Chapter 6
● Binary Search Trees

● Tree traversals
● Searching
● Insertion
● Deletion

● Red-Black Trees
● Properties
● Rotations
● Insertion
● Deletion

Slides by M. Böhlen and R. Sebastiani05/05/13 60

Rotation

α β

γ α

β γ

B

A

A

B

right rotation of B left rotation of A

Slides by M. Böhlen and R. Sebastiani05/05/13 61

Right Rotation
RightRotate(B)
01 A := B.left

02 B.left := A.right
03 B.left.parent := B

04 if (B = B.parent.left) B.parent.left := A
05 if (B = B.parent.right) B.parent.right := A
06 A.parent := B.parent

07 A.right := B
08 B.parent := A

α β

γ α

β γ

B A

Slides by M. Böhlen and R. Sebastiani05/05/13 62

The Effect of a Rotation
● Maintains inorder key ordering

– ∀a∈  b∈  c∈γ
we can state the invariant

– a<= A <= b <= B <= c
● After right rotation

– Depth(α) decreases by 1
– Depth(β) stays the same
– Depth(γ) increases by 1

● Left rotation: symmetric
● Rotation takes O(1) time

Slides by M. Böhlen and R. Sebastiani05/05/13 63

Data Structures and
Algorithms

 Chapter 6
● Binary Search Trees

● Tree traversals
● Searching
● Insertion
● Deletion

● Red-Black Trees
● Properties
● Rotations
● Insertion
● Deletion

Slides by M. Böhlen and R. Sebastiani05/05/13 64

Insertion in the RB-Trees
RBInsert(T,n)
01 Insert n into T using the binary search tree

insertion procedure
02 n.left := NIL
03 n.right := NIL
04 n.color := red
05 RBInsertFixup(n)

n

pp

n

Slides by M. Böhlen and R. Sebastiani05/05/13 65

Fixing Up a Node: Intuition
● Case 0: parent is black

=> ok
● Case 1: both parent and uncle are red

=> change colour of parent/uncle to black
=> change colour of grandparent to red
=> fix up the grandparent
Exception: grandparent is root => then keep it black

● Case 2: parent is red and uncle is black, and
 node and parent are in a straight line
=> rotate at grandparent

● Case 3: parent is red and uncle is black, and
 node and parent are not in a straight line

=> rotate at parent (leads to Case 2)

Slides by M. Böhlen and R. Sebastiani05/05/13 66

Insertion
● Let

– n = the new node
– p = n.parent
– g = p.parent

● In the following assume:
– p = g.left

g

p

n

Slides by M. Böhlen and R. Sebastiani05/05/13 67

Insertion: Case 0
● p.color = black

– No properties
of the tree
are violated

– we are done.

g

p

n

Slides by M. Böhlen and R. Sebastiani05/05/13 68

Insertion: Case 1
● Case 1

– n’s uncle u is red
● Action

– p.color := black
– u.color := black
– g.color := red
– n := g

● Note: the tree rooted at g is balanced
enough (black depth of all descendants
remains unchanged).

g

p

n n

p

g

uu

6

Slides by M. Böhlen and R. Sebastiani05/05/13 69

Insertion: Case 2
n Case 2
– n’s uncle u is black

and n is a left child
n Action

n p.color := black
n g.color := red
n RightRotate(g)

n Note: the tree rooted at g is balanced enough
(black depth of all descendents remains
unchanged).

g

p

n

n

p

gu

u

Slides by M. Böhlen and R. Sebastiani05/05/13 70

Insertion: Case 3
n Case 3
– n’s uncle u is black

and n is a right child
n Action

n LeftRotate(p)
n n := p

n Note
n The result is a case 2.

g

p

n

u

g

p

n

u

Slides by M. Böhlen and R. Sebastiani05/05/13 71

Insertion: Mirror cases
● All three cases are handled analogously

if p is a right child.
● Exchange left and right in all three

cases.

Slides by M. Böhlen and R. Sebastiani05/05/13 72

Insertion: Case 2 and 3
mirrored

n Case 2m
– n’s uncle u is black and n is a right child
– Action
– p.color := black
– g.color := red
– LeftRotate(g)

n Case 3m
– n’s uncle u is black and n is a left child
– Action

● RightRotate(p)
● n := p

Slides by M. Böhlen and R. Sebastiani05/05/13 73

Insertion Summary
● If two red nodes are adjacent, we do either

– a restructuring (with one or two rotations)
and stop (cases 2 and 3), or

– recursively propagate red upwards (case 1)
● A restructuring takes constant time and is

performed at most once. It reorganizes an off-
balanced section of the tree

● Propagations may continue up the tree and
are executed O(log n) times (height of the tree)

● The running time of an insertion is O(log n).

Slides by M. Böhlen and R. Sebastiani05/05/13 74

● Inserting "REDSOX" into an empty tree

● Now, let us insert "CUBS"

An Insertion Example

R

E

D

O S

X

Slides by M. Böhlen and R. Sebastiani05/05/13 75

Insert C (case 0)

R

E

D

O S

X

R

E

D

O S

X

C

Slides by M. Böhlen and R. Sebastiani05/05/13 76

Insert U (case 3, mirror)

R

E

D

O S

X

C

R

E

D

O S

X

C

U

Slides by M. Böhlen and R. Sebastiani05/05/13 77

Insert U/2

R

E

D

O S

X

C

U

R

E

D

O

S X

C U

Slides by M. Böhlen and R. Sebastiani05/05/13 78

Insert B (case 2)

R

E

D

O

S X

C U

R

E

D

O

S X

C U

B

Slides by M. Böhlen and R. Sebastiani05/05/13 79

Insert B/2

R

E

D

O

S X

C U

B

R

E

C

O

S X

B UD

Slides by M. Böhlen and R. Sebastiani05/05/13 80

Insert S (case 1)

R

E

C

O

S X

B UD

R

E

C

O

S X

B UD

S

Slides by M. Böhlen and R. Sebastiani05/05/13 81

Insert S/2 (case 2 mirror)

R

E

C

O

S X

B UD

S

U

R

E

S

B S

C XO

D

Slides by M. Böhlen and R. Sebastiani05/05/13 82

Data Structures and
Algorithms

 Chapter 6
● Binary Search Trees

● Tree traversals
● Searching
● Insertion
● Deletion

● Red-Black Trees
● Properties
● Rotations
● Insertion
● Deletion

Slides by M. Böhlen and R. Sebastiani05/05/13 83

Deletion
● We first apply binary search tree deletion.

– We can easily delete a node that has at least one nil
child

– If the key to be deleted is stored at a node u with two
children, we replace its content with the content of the
largest node v of the left subtree and delete v instead.

7

4 8

952

5

4 8

92

u u

v

Slides by M. Böhlen and R. Sebastiani05/05/13 84

Deletion Algorithm
1. Remove u
2. If u.color = red, we are done. Else, assume that

v (replacement of u) gets additional black color:
– If v.color = red then v.color := black and we are

done!
– Else v’ s color is “double black”.

u

v
v

u

v
v

Slides by M. Böhlen and R. Sebastiani05/05/13 85

Deletion Algorithm/2
● How to eliminate double black edges?

– The intuitive idea is to perform a color
compensation

● Find a red edge nearby, and change the pair
(red, double black) into (black, black)

– Two cases: restructuring and
recoloring

– Restructuring resolves the problem locally,
while recoloring may propagate it upward.

● Hereafter we assume v is a left child
(swap right and left otherwise)

Slides by M. Böhlen and R. Sebastiani05/05/13 86

Deletion Case 1
● Case 1

– v’s sibling s is black and both
children of s are black

● Action
– s.color := red
– v = p

● Note
– We reduce the black depth of both subtrees

of p by 1. Parent p becomes more black.

sv

p p

v s

Slides by M. Böhlen and R. Sebastiani05/05/13 87

Deletion: Case 1
● If parent p becomes double black,

continue upward.

sv

p p

v s

Slides by M. Böhlen and R. Sebastiani05/05/13 88

Deletion: Case 2
● Case 2

– v’s sibling s is black and
s’s right child is red.

● Action
– s.color = p.color
– p.color = black
– s.right.color = black
– LeftRotate(p)

● Idea: Compensate the extra black ring of v
 by the red of r

● Note: Terminates after restructuring.

sv

p

r

rp

s

v

Slides by M. Böhlen and R. Sebastiani05/05/13 89

Deletion: Case 3
● Case 3

– v’s sibling s is black, s’s left child is red,
and s’s right child is black.

● Idea: Reduce to case 2
● Action

– s.left.color = black
– s.color = red
– RightRotation(s)
– s = p.right

● Note:
– This is now case 2

sv

p

l

 lv

p

s

Slides by M. Böhlen and R. Sebastiani05/05/13 90

Deletion: Case 4
● Case 4

– v’s sibling s is red
● Idea: give v a black sibling
● Action

– s.color = black
– p.color = red
– LeftRotation(p)
– s = p.right

● Note
– This is now a case 1, 2, or 3

sv

p

p

s

v

Slides by M. Böhlen and R. Sebastiani05/05/13 91

Delete 9

8

6

4

72 95

8

6

4

72 5

Slides by M. Böhlen and R. Sebastiani05/05/13 92

Delete 9/2
● Case 2 (sibling is black with black

children) – recoloring

8

6

4

72 5

8

6

4

72 5

Slides by M. Böhlen and R. Sebastiani05/05/13 93

Delete 8

8

6

4

72 5

7

6

4

2 5

Slides by M. Böhlen and R. Sebastiani05/05/13 94

Delete 7: restructuring

7

6

4

2 5

6

4

2 5

6

4

2

5

Slides by M. Böhlen and R. Sebastiani05/05/13 95

How long does it take?
● Deletion in a RB-tree takes O(log n)

– Maximum three rotations and O(log n)
recolorings

Slides by M. Böhlen and R. Sebastiani05/05/13 96

Suggested exercises

● Add left-rotate and right-rotate to the
implementation of binary trees

● Implement a red-black search tree with
the following functionalities:

– (...), insert, delete

Slides by M. Böhlen and R. Sebastiani05/05/13 97

Suggested exercises/2

Using paper & pencil:
● draw the RB-trees after each of the

following operations, starting from an
empty tree:

1.Insert 1,2,3,4,5,6,7,8,9,10,11,12
2.Delete 12,11,10,9,8,7,6,5,4,3,2,1

● Try insertions and deletions at random

Slides by M. Böhlen and R. Sebastiani05/05/13 98

● Red-Black trees
are related to
2-3-4 trees
(non-binary)

● AVL-trees have
simpler algo-
rithms, but may
perform a lot of
rotations

Other Balanced Trees

2-3-4 Red-Black

11

Slides by M. Böhlen and R. Sebastiani05/05/13 99

Next Part
● Hashing

	Slide 1
	Slide 2
	Algorithms and Complexity Week 6
	Slide 4
	Dictionaries
	Ordered Dictionaries
	A List-Based Implementation
	Refresher: Binary Search
	Run Time of Binary Search
	Slide 10
	Binary Tree ADT
	Binary Search Trees
	Slide 13
	Tree Walks
	Slide 15
	Tree Walks/2
	Tree Walks/3
	Slide 18
	Searching a BST
	Pseudocode for BST Search
	Search Examples
	Search Examples (2)
	Analysis of Search
	BST Minimum (Maximum)
	Successor
	Successor/2
	Successor Pseudocode
	Slide 28
	Slide 29
	BST Insertion
	Slide 31
	Slide 32
	BST Insertion Code
	BST Insertion Example
	BST Insertion: Worst Case
	BST Sorting
	BST Sorting/2
	Slide 38
	Deletion
	Deletion Case 1
	Deletion Case 2
	Deletion Case 3
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	BST Deletion Code
	BST Deletion Code/2
	BST Deletion Code/3
	Balanced Binary Search Trees
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Red/Black Trees
	Slide 56
	RB-Tree Properties
	RB-Tree Properties/2
	Slide 59
	Rotation
	Right Rotation
	The Effect of a Rotation
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	An Insertion Example
	Example C
	Example U
	Example U/2
	Example B
	Example B/2
	Example S
	Example S/2
	Slide 82
	Slide 83
	Deletion Algorithm
	Deletion Algorithm/2
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Deletion: Case 1
	A Deletion Example
	A Deletion Example/2
	A Deletion Example/3
	A Deletion Example/4
	How long does it take?
	Slide 96
	Slide 97
	Other Balanced Trees
	Next Week

