
Data Structures and Algorithms Spring-Summer 2012/13

Assignment 2 Valeria Fionda, Mouna Kacimi,
Werner Nutt, Simon Razniewski

Asymptotic Complexity, Loop Invariants, and
Performance of Sorting Algorithms

Instructions: Your assignment should represent your own effort. However, you
are not expected to work alone. It is fine to discuss the exercises and try to find
solutions together, but each student shall write down and submit his/her solutions
separately. It is good academic standard to acknowledge collaborators, so if you
worked together with other students, please list their names.
You must be prepared to present your solution at the lab. If you are not able to
explain your solution, this will be considered as if you had not done your work at
all.
You can write up your answers by hand (provided your handwriting is legible) or
use a word processing system like Latex or Word. Experience shows that Word is
in general difficult to use for this kind of task.
For a programming task, your solution must contain (i) an explanation of your
solution to the problem, (ii) the Java code, in a form that we can run it, (iii) in-
structions how to run it. For all programming tasks, it is not allowed to use any
external libraries (“import”), if not stated otherwise.
Please, include name and email address in your submission.

1. Comparison According to Asymptotic Complexity

Order the following functions according to their asymptotic complexity, from the
function having the smaller asymptotic complexity to the function having the
larger one (i.e., such that f1 = O(f2); f2 = O(f3); etc.). For each ordering
“fi = O(fi+1)”, explain why it holds.

• 50 · log2 n

• 5 · n + n2 + 1

• log2
10 n

• 2n + 5

• 3
√
n

• 53 · n

• 3 · log10 n

• (n + 1)!

• 4log2 n

•
√
n.

(15 Points)

2. Asymptotic Equalities

Prove or disprove the following statements:

a) 2nn + 2n+1 = Θ(2nn + 2n)

b) (n + a)b = Ω(nb), for a, b > 0

c) 8n + n·lg5 = O(n)

(5 Points)

3. Loop Invariants

Below is pseudocode for an algorithm that performs linear search.

Input: Array A[1..n] of integers and an integer k.
Output: TRUE if k is found in A, FALSE otherwise.

LINEARSEARCH(A, k):

i := 1
found := FALSE

w h i l e i<=n and found = f a l s e do
i f A[i]= k t h e n

found := TRUE
i := i +1

r e t u r n found

State a loop invariant for the while loop of the LinearSearch algorithm, and explain
why it is correct.

(10 Points)

4. Comparison of Sorting Algorithms

In this exercise you are asked to empirically compare two sorting algorithms, one
with a worst-case running time of O(n2) and another one with a worst-case run-
ning time of O(n log n).
The question we are interested in is whether the size of the data that are sorted has
an influence on the outcome of the comparison. In particular, we would like to
know for which length of input arrays the second algorithm is faster than the first,
depending on the size of the data in the arrays.

1. Write a Java program implementing the insertion sort algorithm.

2. Write a Java program implementing the merge sort algorithm.

3. Create two versions of each algorithm:

(a) one for arrays of standard int values of maximum 32-bits;
(b) another one for arrays of BigInteger values.

Then compare the performance of the two algorithms

(a) for arrays with random standard ints and
(b) for arrays with random BigIntegers in the range from 1024 to 2048

bits, as they may occurs as RSA keys.

Gradually increase the size of the input array until the difference between
the two algorithms is noticeable.

Hint: Consider also to increase the memory size if needed, by calling your
program, say MySort, as

java -XX:+AggressiveHeap MySort

4. Does the size of the integers affect the performance of the algorithms?
Which array size is the crossover point, from where on the asymptotically
better algorithm has the better performance? Provide explanations for your
findings.

(30 Points)

Submission: Until Wed, 27 March 2013, 11:59 pm, to

dsa-submissions AT inf DOT unibz DOT it.

If you want to submit a hand-written solution, scan it and send it to the email
address above.

