Part 1 Complexity and Correctness of Algorithms

Data Structures and Algorithms

Part 3

Werner Nutt

Data Structures and Algorithms

Acknowledgments

* The course follows the book “Introduction to Algorithms",
by Cormen, Leiserson, Rivest and Stein, MIT Press
[CLRST]. Many examples displayed in these slides are
taken from their book.

* These slides are based on those developed by
Michael Bohlen for this course.
(See http://www.inf.unibz.it/dis/teaching/DSA/)
* The slides also include a number of additions made by

Roberto Sebastiani and Kurt Ranalter when they taught
later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

DSA, Part 3: Overview

* Divide and conquer
* Merge sort, repeated substitutions
* Tiling

* Recurrences

Data Structures and Algorithms 3

Divide and Conquer

Principle:
If the problem size is small enough to solve it trivially,
solve it. Else:

* Divide: Decompose the problem
iInto two or more disjoint subproblems.

* Conquer: Use divide and conquer recursively
to solve the subproblems.

* Combine: Take the solutions to the subproblems
and combine the solutions
into a solution for the original problem.

Picking a Decomposition

* Finding a decomposition requires some practice
and is the key part.

* The decomposition has the following properties:
— It reduces the problem to a “smaller problem”™.

— Often the smaller problem is identical
to the original problem.

— A sequence of decompositions
eventually yields the base case.

— The decomposition must contribute
to solving the original problem.

Part 1 Complexity and Correctness of Algorithms

Merge Sort

Sort an array by

— Dividing it into two arrays.
— Sorting each of the arrays.
— Merging the two arrays.

/ 17319650 - 173150 96 \

8524 63 4517 3196 50 17 24 3145 50 63 85 96

N 7

8524 63 45 1 244563 85

Data Structures and Algorithms 6

Merge Sort Algorithm

Divide: If S has at least two elements,
put them into sequences S, and S.,.

S, contains the first [n/2] elements and
S, contains the remaining |n/2| elements.

Conquer: Sort sequences S, and S,
using merge sort.

Combine: Put back the elements into S
by merging the sorted sequences S, and S,

Into one sorted sequence.

Complexity and Correctness of Algorithms

Merge Sort: Algorithm

MergeSort(l, r)
if 1 < r then
m := (l+r)/2
MergeSort (1, m)
MergeSort (m+1, r)
Merge (l,m, r)

Merge (l, m, r)
Take the smallest of the two first elements

of sequences A[l..m] and A[m+1..r]
and put 1t into the resulting sequence.
Repeat this, until both sequences are empty.

Copy the resulting sequence into A[l..r].

Data Structures and Algorithms 8

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/0

Data Structures and Algorithms 9

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/1

Data Structures and Algorithms

MergeSort Example/2

Data Structures and Algorithms

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/3

Data Structures and Algorithms

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/4

Data Structures and Algorithms 13

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/5

Data Structures and Algorithms 14

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/6

Data Structures and Algorithms s

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/7

Data Structures and Algorithms 16

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/8

Data Structures and Algorithms 17

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/9

Data Structures and Algorithms 18

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/10

Data Structures and Algorithms 19

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/11

\

Data Structures and Algorithms 20

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/12

\

Data Structures and Algorithms 21

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/13

ot}

Data Structures and Algorithms 22

L4 \]
X4 \ 3
4 \]
hd *
4 \ 4 \
4 \ 4 \

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/14

Data Structures and Algorithms 23

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/15

Data Structures and Algorithms 24

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/16

Data Structures and Algorithms s

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/17

Data Structures and Algorithms 26

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/18

Data Structures and Algorithms 27

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/19

Data Structures and Algorithms 28

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/19

Data Structures and Algorithms 29

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/20

e~

Data Structures and Algorithms 30

ity and Correctness of Algorithms

MergeSort Example/21

==

Data Structures and Algorithms 31

Part 1 Complexity and Correctness of Algorithms

MergeSort Example/22

==

Data Structures and Algorithms 32

Merge Sort Summarized

* To sort n numbers
— if n=1 done.

— recursively sort 2 lists of
|n/2]| and [n/2] elements,
elements, respectively.

— merge 2 sorted lists of
lengths n/2 in time 3(n).

* Strategy

— break problem into similar
(smaller) subproblems

— recursively solve
subproblems

— combine solutions to
answer

Part 1 Complexity and Correctness of Algorithms

Running Time of MergeSort

The running time of a recursive procedure
can be expressed as a recurrence:

T (n)= solving trivial problem if n=1
NumPieces *T (n/SubProbFactor)+ divide +combine if n>1

2T (n/2)+ @ (n) ifn>1

Data Structures and Algorithms 34

Part 1 Complexity and Correctness of Algorithms

Repeated Substitution Method

The running time of merge sort (assume n=2%).

T(n)={ @(1) z:fn=1}

2T (n/2)+®(n) if n>1

T(n) =2T(n/2) +n substitute
=2(2T(n/4) +n/2) +n expand
= 22T(n/4) + 2n substitute
=22(2T(n/8) + n/4) + 2n expand
= 23T(n/8) + 3n observe pattern

T(n) = 2'T(n/2) +in
= 2lgnT(n/n) + nlog n
=n+nlogn

Data Structures and Algorithms 35

Part 1 Complexity and Correctness of Algorithms

Tiling

A tromino tile: h

A 2"x2" board with a
nole:

A tiling of the board
with trominos:

Data Structures and Algorithms 36

Part 1 Complexity and Correctness of Algorithms

Tiling: Trivial Case (n = 1)

Trivial case (n = 1): tiling a 2x2 board with a hole:

|dea: reduce the size of the original problem,
so that we eventually get to the 2x2 boards,
which we know how to solve.

Data Structures and Algorithms 37

Tiling: Dividing the Problem/2

|dea: insert one tromino at the center to “cover” three
holes in each of the three smaller boards

* Now we have four boards
with holes of the size
2n-1X2n-1.

* Keep doing this division, until
we get the 2x2 boards with
holes — we know how to tile
those.

38

Tiling: Algorithm

INPUT: n - the board size (2"'x2" board),
L — location of the hole.
OUTPUT: tiling of the board

Tile(n, L)
if n = 1 then //Trivial case
Tile with one tromino
return
Divide the board into four equal-sized boards
Place one tromino at the center to cover 3 additional
holes
Let L1, L2,

L3, L4 be the positions of the 4 holes
Tile(n-1, L1)
)
)
)

Tile(n-1, L2
Tile(n-1, L3
Tile(n-1, L4

Data Structures and Algorithms 39

Tiling: Divide-and-Conquer
Tiling is a divide-and-conquer algorithm:
The problem is trivial if the board is 2x2, else:
Divide the board into four smaller boards
(introduce holes at the corners of the
three smaller boards
to make them look like original problems).

Conguer using the same algorithm recursively

Combine by placing a single tromino
in the center to cover the three new holes.

40

ity and Correctness of Algorithms

Karatsube Multiplication

Multiplying two n-digit (or n-bit) numbers costs n?digit
multiplications, using a straightforward procedure.

Observation:
23*14 = (2x10"+3)*(1x10" +4) =
= (2*1)10%+ (3"1 + 2*4)10" + (3%4)

To save one multiplication we use a trick:
(3*1 + 2%4) = (2+3)*(1+4) - (2*1) - (3*4)

Original by S. Saltenis, Aalborg

Data Structures and Algorithms 41

ity and Correctness of Algorithms

Karatsuba Multiplication/2

To multiply a and b, which are n-digit numbers, we use a
divide and conquer algorithm. We split them in half:

a =a;x10m2+ a, and b = b, x10"2+ b,
Then:

a*b=(a;*b;)10"+ (a; *bo + ao *b,)10"% + (ay,*by)
Use a trick to save a multiplication:

(81 *bo + a, *b1) = (31 +ao)*(b1 +b0) - (81 *b1) - (ao *bo)

Data Structures and Algorithms 42

Part 1 Complexity and Correctness of Algorithms

Karatsuba Multiplication/3

The number of single-digit multiplications performed
by the algorithm can be described by a recurrence:

1 ifn=1

I'(n)= .
3T(n/2) ifn>1

Data Structures and Algorithms 43

