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* The course follows the book “Introduction to Algorithms",
by Cormen, Leiserson, Rivest and Stein, MIT Press
[CLRST]. Many examples displayed in these slides are
taken from their book.

* These slides are based on those developed by
Michael Bohlen for this course.
(See http://www.inf.unibz.it/dis/teaching/DSA/)
* The slides also include a number of additions made by

Roberto Sebastiani and Kurt Ranalter when they taught
later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)




DSA, Part 3: Overview

* Divide and conquer
* Merge sort, repeated substitutions
* Tiling

* Recurrences
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Divide and Conquer

Principle:
If the problem size is small enough to solve it trivially,
solve it. Else:

* Divide: Decompose the problem
iInto two or more disjoint subproblems.

* Conquer: Use divide and conquer recursively
to solve the subproblems.

* Combine: Take the solutions to the subproblems
and combine the solutions
into a solution for the original problem.




Picking a Decomposition

* Finding a decomposition requires some practice
and is the key part.

* The decomposition has the following properties:
— It reduces the problem to a “smaller problem”™.

— Often the smaller problem is identical
to the original problem.

— A sequence of decompositions
eventually yields the base case.

— The decomposition must contribute
to solving the original problem.
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Merge Sort

Sort an array by

— Dividing it into two arrays.
— Sorting each of the arrays.
— Merging the two arrays.

/ 17319650 - 173150 96 \

8524 63 4517 3196 50 17 24 3145 50 63 85 96

N 7

8524 63 45 1 244563 85
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Merge Sort Algorithm

Divide: If S has at least two elements,
put them into sequences S, and S.,.

S, contains the first [n/2] elements and
S, contains the remaining |n/2| elements.

Conquer: Sort sequences S, and S,
using merge sort.

Combine: Put back the elements into S
by merging the sorted sequences S, and S,

Into one sorted sequence.
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Merge Sort: Algorithm

MergeSort(l, r)
if 1 < r then
m := (l+r)/2
MergeSort (1, m)
MergeSort (m+1, r)
Merge (l,m, r)

Merge (l, m, r)
Take the smallest of the two first elements

of sequences A[l..m] and A[m+1..r]
and put 1t into the resulting sequence.
Repeat this, until both sequences are empty.

Copy the resulting sequence into A[l..r].
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MergeSort Example/0
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MergeSort Example/1
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MergeSort Example/2
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MergeSort Example/3
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MergeSort Example/4
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MergeSort Example/5
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MergeSort Example/6
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MergeSort Example/7
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MergeSort Example/8
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MergeSort Example/9
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MergeSort Example/10
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MergeSort Example/11

\
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MergeSort Example/12

\
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MergeSort Example/13
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MergeSort Example/14
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MergeSort Example/15
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MergeSort Example/16
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MergeSort Example/17
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MergeSort Example/18
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MergeSort Example/19
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MergeSort Example/19
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MergeSort Example/20
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MergeSort Example/21

==
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MergeSort Example/22

==
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Merge Sort Summarized

* To sort n numbers
— if n=1 done.

— recursively sort 2 lists of
|n/2]| and [n/2] elements,
elements, respectively.

— merge 2 sorted lists of
lengths n/2 in time 3(n).

* Strategy

— break problem into similar
(smaller) subproblems

— recursively solve
subproblems

— combine solutions to
answer
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Running Time of MergeSort

The running time of a recursive procedure
can be expressed as a recurrence:

T (n)= solving trivial problem if n=1
NumPieces *T (n/SubProbFactor )+ divide +combine if n>1

2T (n/2)+ @ (n) ifn>1
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Repeated Substitution Method

The running time of merge sort (assume n=2%).

T(n)={ @(1) z:fn=1}

2T (n/2)+®(n) if n>1

T(n) =2T(n/2) +n substitute
=2(2T(n/4) +n/2) +n expand
= 22T(n/4) + 2n substitute
=22(2T(n/8) + n/4) + 2n expand
= 23T(n/8) + 3n observe pattern

T(n) = 2'T(n/2) +in
= 2lgnT(n/n) + nlog n
=n+nlogn
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Tiling

A tromino tile: h

A 2"x2" board with a
nole:

A tiling of the board
with trominos:
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Tiling: Trivial Case (n = 1)

Trivial case (n = 1): tiling a 2x2 board with a hole:

|dea: reduce the size of the original problem,
so that we eventually get to the 2x2 boards,
which we know how to solve.
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Tiling: Dividing the Problem/2

|dea: insert one tromino at the center to “cover” three
holes in each of the three smaller boards

* Now we have four boards
with holes of the size
2n-1X2n-1.

* Keep doing this division, until
we get the 2x2 boards with
holes — we know how to tile
those.
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Tiling: Algorithm

INPUT: n - the board size (2"'x2" board),
L — location of the hole.
OUTPUT: tiling of the board

Tile(n, L)
if n = 1 then //Trivial case
Tile with one tromino
return
Divide the board into four equal-sized boards
Place one tromino at the center to cover 3 additional
holes
Let L1, L2,

L3, L4 be the positions of the 4 holes
Tile(n-1, L1)
)
)
)

Tile(n-1, L2
Tile(n-1, L3
Tile(n-1, L4
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Tiling: Divide-and-Conquer
Tiling is a divide-and-conquer algorithm:
The problem is trivial if the board is 2x2, else:
Divide the board into four smaller boards
(introduce holes at the corners of the
three smaller boards
to make them look like original problems).

Conguer using the same algorithm recursively

Combine by placing a single tromino
in the center to cover the three new holes.
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Karatsube Multiplication

Multiplying two n-digit (or n-bit) numbers costs n?digit
multiplications, using a straightforward procedure.

Observation:
23*14 = (2x10"+3)*(1x10" +4) =
= (2*1)10%+ (3"1 + 2*4)10" + (3%4)

To save one multiplication we use a trick:
(3*1 + 2%4) = (2+3)*(1+4) - (2*1) - (3*4)

Original by S. Saltenis, Aalborg
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Karatsuba Multiplication/2

To multiply a and b, which are n-digit numbers, we use a
divide and conquer algorithm. We split them in half:

a =a;x10m2+ a, and b = b, x10"2+ b,
Then:

a*b=(a;*b;)10"+ (a; *bo + ao *b,)10"% + (ay,*by )
Use a trick to save a multiplication:

(81 *bo + a, *b1) = (31 +ao)*(b1 +b0) - (81 *b1) - (ao *bo)
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Karatsuba Multiplication/3

The number of single-digit multiplications performed
by the algorithm can be described by a recurrence:

1 ifn=1

I'(n)= .
3T(n/2) ifn>1
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