Part 2 Complexity and Correctness of Algorithms

Data Structures and Algorithms

Part 2

Werner Nutt

Data Structures and Algorithms

Acknowledgments

* The course follows the book “Introduction to Algorithms",
by Cormen, Leiserson, Rivest and Stein, MIT Press
[CLRST]. Many examples displayed in these slides are
taken from their book.

* These slides are based on those developed by
Michael Bohlen for this course.
(See http://www.inf.unibz.it/dis/teaching/DSA/)
* The slides also include a number of additions made by

Roberto Sebastiani and Kurt Ranalter when they taught
later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

DSA, Part 2: Overview

* Complexity of algorithms
* Asymptotic analysis
* Correctness of algorithms

* Special case analysis

Data Structures and Algorithms 3

DSA, Part 2: Overview

* Complexity of algorithms
* Asymptotic analysis
* Correctness of algorithms

* Special case analysis

Data Structures and Algorithms 4

Part 2 Complexity and Correctness of Algorithms

Analysis of Algorithms

* Efficiency:
— Running time

— Space used

* Efficiency is defined as a function of the input size:
— Number of data elements (numbers, points)

— The number of bits of an input number

Data Structures and Algorithms 5

The RAM Model

It is important to choose the level of detail.
The RAM (Random Access Machine) model:

— Instructions (each taking constant time) — we usually
choose one type of instruction as a characteristic
operation that is counted:

* Arithmetic (add, subtract, multiply, etc.)
* Data movement (assign)
* Control flow (branch, subroutine call, return)
* Comparison
— Data types — integers, characters, and floats

Analysis of Insertion Sort

* Running time as a function of the input size
(exact analysis).

cost times
for J := 2 to n do cl n
key := A[]] c2 n-1
// Insert A[j] into A[l..3j-1] O n-1
1 := j-1 c3 n-1
while i>0 and A[i]>key do c4 2
A[i+1l] := A[1i] c5 > e-1)
[c6 >, (e-1)
A[1+1]:= key c7 n-1

tj is the number of times the while loop is executed, i.e.,

(T — 1) is number of elements in the initial segment greater than A[j]
7

Analysis of Insertion Sort/2

* The running time of an algorithm for a given input
Is the sum of the running times of each statement.

* A statement
— with cost ¢
— that is executed n times
contributes c*n to the running time.
* The total running time T(n) of insertion sort is

T(n) = c1*n + c2*(n-1) + c3*(n-1) + c4 * X1,
#C5 X, (11 + 06 X, (=) +cT*(n - 1)

Analysis of Insertion Sort/3

* The running time is not necessarily equal
for every input of size n

* The performance on the details of the input
(not only length n)

» This is modeled by ¢,

* In the case of insertion sort the time t,
depends on the original sorting of the input array

Performance Analysis

* Often it is sufficient to count the number of iterations
of the core (innermost) part

— No distinction between comparisons, assignments, etc
(that means roughly the same cost for all of them)

— Gives precise enough results

* In some cases the cost of selected operations dominates
all other costs.

— Disk I/O versus RAM operations

— Database systems

10

Worst/Average/Best Case

* Analyzing insertion sort’s
— Worst case: elements sorted in inverse order, {=/
total running time is quadratic (time = an“*+bn+c)

— Average case: {=j/2, total running time is quadratic
(time = an®+bn+c)

— Best case: elements already sorted, {=7, innermost
loop is zero, total running time is linear (time = an+b)

* How can we define these concepts formally?
... and how much sense does “Best case” make?

11

Complexity and Correctness of Algorithms

Worst/Average/Best Case/2

For a specific size of input size n, investigate running
times for different input instances:

. 6n worst case =4321
.g on
- average case 77?7
£ 4n
—
S 3n best case =1234
2n
1n

A B C D E F G
input instance

Data Structures and Algorithms 12

Part 2 Complexity and Correctness of Algorithms

Worst/Average/Best Case/3

For inputs of all sizes:

worst-case
6 average-case
5n
best-case
4n
3n
2n

1 2 3 4 5 6 7 8 9 10 11 12

Running time

Input instance size

Data Structures and Algorithms 13

Best/Worst/Average Case/4

Worst case is most often used:
— It is an upper-bound

— In certain application domains (e.g., air traffic control,
surgery) knowing the worst-case time complexity is of
crucial importance.

— For some algorithms worst case occurs fairly often
— The average case is often as bad as the worst case

The average case depends on assumptions
— What are the possible input cases?
— What is the probability of each input?

14

Analysis of Linear Search

INPUT: A[1..n] - a sorted array of -integers,
q - an 1integer.
OUTPUT: j s.t. A[jl=qg. NIL if Vj(l<j=<n): AlLjl#q

7 =1

while j <= n and A[j] != g do j++
if 7 <= n then return j

else return NIL

* Worst case running time: n

* Average case running time: n/2 (if q is present)
... under which assumption?

15

Binary Search

* Idea: Left and right bounds |, r.
Elements to the right of r are bigger than search element, ...

* In each step, the range of the search space is cut in half

INPUT: A[1..n] — sorted (increasing) array of integers, q — integer.
OUTPUT: an index j such that A[j] = q. NIL, if Vj (1<j<n): A]j] # q
1 :=1; r := n
do
m := |(l+r) /2]
if A[m] = g then return m
else if A[m] > g then r := m-1
else 1 := mt+l
while 1 <= r
return NIL

16

Analysis of Binary Search

How many times is the loop executed?

— With each execution
the difference between 1 and r is cut in half
* Initially the difference is n
* The loop stops when the difference becomes 0 (less than 1)
— How many times do you have to cut n in half to get 0?

— log n — better than the brute-force approach of linear
search (n).

17

Part 2 Complexity and Correctness of Algorithms

Linear vs Binary Search

* Costs of linear search: n

* Costs of binary search: log(n)

* Should we care?

* Phone book with n entries:
— n=200'000, log n=Ilog 200°000 = ??
—n=2M, log2M = 7??
— n=20M, log 20M = ??

Data Structures and Algorithms 18

Suggested Exercises

* Implement binary search in 3 versions:
— as In previous slides
— without return statements inside the loop
— Recursive

* As before, returning nil if g<all] or g>alr]
(trace the different executions)

* Implement a function printSubArray printing only the
subarray from | to r, leaving blanks for the others

— use it to trace the behaviour of binary search

19

DSA, Part 2: Overview

* Complexity of algorithms
* Asymptotic analysis
* Correctness of algorithms

* Special case analysis

Data Structures and Algorithms 20

Asymptotic Analysis

* Goal: simplify the analysis of the running time
by getting rid of details, which are
affected by specific implementation and hardware

— “rounding” of numbers: 1,000,001 ~ 1,000,000
— “rounding” of functions: 3n? ~ n?

* Capturing the essence: how the running time of an
algorithm increases with the size of the input in the limit

— Asymptotically more efficient algorithms
are best for all but small inputs

21

Asymptotic Notation

The “big-Oh” O-Notation

— talks about
asymptotic upper bounds

— f(n) = O(g(n)) iff
there exist ¢ >0and n,> 0,

s.t. f(n) <cg(n) forn=
nO

— f(n) and g(n) are functions
over non-negative integers

Used for worst-case analysis

Running Time

Input Size

22

Asymptotic Notation

* Simple Rule: We can always drop lower order terms
and constant factors, without changing big Oh:

—90nlogn is O(nlogn)
—7/n-3 is O(n)
—8n?logn+5n?+n is O(n?log n)

* Note:
—380nlogn is 0O(n?
— 980 nlogn is O(n'%)
but this is less informative than saying
— 980 nlogn is O(nlog n)

23

Asymptotic Notation/3

* The "big-Omega” 2-Notation
— asymptotic lower bound
— f(n) = Q(g(n)) iff
there exist ¢ >0and n,> 0,
s.t. cg(n) < f(n), forn = n,
* Used to describe lower bounds
of algorithmic problems

— E.g., searching in
an unsorted array
with search2 is Q(n),
with search1 itis Q(log n)

f(n)
¢ g(n)

Running Time

Input Size

24

Asymptotic Notation/4

* The “big-Theta” ®-Notation

— asymptoticly tight bound

— f(n) = ©(g(n)) if there exists
c.>0, ¢,>0, and n,>0,
s.t. forn = n,

¢,9(n) < f(n) < c,g(n)

* f(n) =©(g(n)) iff
f(n) = O(g(n)) and f(n) = Q(g(n))

* Note: O(f(n)) is often used
when ©(f(n)) is meant

Running Time

Input Size

25

Two More Asymptotic Notations

f(n) is much
smaller than g(n)

* "Little-Oh" notation f(n)=0(g(n))
non-tight analogue of Big-Oh

— For every ¢ > 0, there exists n,>0, s.t.
f(n) < cg(n)

for n = n,
— If f(n) = o(g(n)), it is said that fn) is much
g(n) dominates f(n) bigger than g(n)

* "Little-omega” notation f(n)=w(g(n))
non-tight analogue of Big-Omega

26

Part 2 Complexity and Correctness of Algorithms

Asymptotic Notation/6

* Analogy with real numbers
—f(n)=0(g(n)) =f=<g
—f(n)=Q(@9(n) =f=g

—f(n)=06(9(n) =rt=g
—f(n)=o0(g(n)) =1t<g
—f(n) =w(g(n)) =1t>g

* Abuse of notation:
f(n) = O(g(n)) actually means

f(n) € O(g(n))

Data Structures and Algorithms 27

Comparison of Running Times

Determining the maximal problem size

IR’(unr;r;innﬁsTime 1 second |1 minute |1 hour
400n 2500 150’000 | 9'000°000
20n log n 4096 166’666 | 7°826°087
2n? 707 5477 42’426
n* 31 88 244

2" 19 25 31

28

DSA, Part 2: Overview

* Complexity of algorithms
* Asymptotic analysis
* Correctness of algorithms

* Special case analysis

Data Structures and Algorithms 29

Correctness of Algorithms

* An algorithm is correct if for every legal input, it
terminates and produces the desired output.

* Automatic proof of correctness is not possible.

* There are practical techniques and rigorous formalisms
that help to reason about the correctness of (parts of)
algorithms.

30

Complexity and Correctness of Algorithms

Partial and Total Correctness

= Partial correctness

IF this point is reached, THEN this is the desired output

\ —
every legal input j> . :> Output

= Total correctness

INDEED this point is reached, THEN this is the desired output

\ —
every legal input :> . :> Output

Data Structures and Algorithms 31

Assertions

* To prove partial correctness we associate a number of
assertions (statements about the state of the execution)
with specific checkpoints in the algorithm.

— E.g., A[1], ..., A[j] form an increasing sequence

* Preconditions — assertions that must be valid before the
execution of an algorithm or a subroutine (INPUT)

* Postconditions — assertions that must be valid after the
execution of an algorithm or a subroutine (OUTPUT)

32

Loop Invariants

* Invariants: assertions that are valid every time they are
reached (many times during the execution of an
algorithm, e.g., in loops)

* We must show three things about loop invariants:

— Initialization: it is true prior to the first iteration.

— Maintenance: if it is true before an iteration, then it is
true after the iteration.

— Termination: when a loop terminates the invariant
gives a useful property to show the correctness of the

algorithm

33

Example: Binary Search/1

* We want to show that qis | , = '/ © = 7
not in A if NIL is returned. m = | (l+r) /2]

o - . if A[m]=g then return m
Iljlvarlant.) . else if i[m]iq tlelen r := m-1
VIE[]..."].]: A[|]<C| (Ia) else 1 := mtl
Vie[r+1..n]: A[i]>q (ib) |while 1 <= =

_ return NIL

* Initialization: /=1, r=n
the invariant holds because
there are no elements to the left of / or to the right of r.

| =1 vyields Vi e [1..0]: Ali]<q

this holds because [1..0] is empty
r=nyields Vie [n+1..n]: A[i]>q

this holds because [n+1..n] is empty

34

Example: Binary Search/2

» Invariant: TR

VIE[]..."].]: A[|]<C| (la) m := |(l+r) /2]

Vie[r+1..n]: A[i]>q (ib) if A[m]=q then return m
else if A[m]>g then r := m-1
else 1 := m+l

while 1 <= r
return NIL

* Maintenance: 1 |, r<n, m=|(I+r)/2]
— A[m] !I=q & g < A[m] implies r = m-1
A sorted implies Vke[r+1..n]: A[k] > q (ib)
— A[m]!=q & A[m] <q implies |=m+1
A sorted implies Vke[1..I-1]: AIK] < g (ia)

35

Example: Binary Search/3

i 1 :=1; r := n
* Invariant: do
Vie[1..l-1]: A[i]<q (ia) m := [(l+r) /2]
: . . . if A[m]=gq then return m
VIE[I‘+1..n]. A[I]>C| (Ib) else if A[m]>g then r := m-1
else 1 := m+l
while 1 <= r
return NIL

* Termination: 1<, r<n,I<r

Two cases:
| :=m+1 implies Inew = |(I+1)/2]+1 > lold
r:=m-1 implies rnew= |(I+r)/2]-1 < rold

* The range gets smaller during each iteration and

the loop will terminate when | <r no longer holds

36

Example: Insertion Sort/1

- - i for 7 := 2 to n do
Loop invariants: Koy i= A[S]
External “for” loop i = 9-1
A[1 j-1] is sorted while 1>0 and A[i]>key do
a A[i+1] := A[i]
A[1..j-1] € A°9[1..j-1] i--

A[i+1] := key

Internal “while” loop
— A[1...1], key, A[i+1...j-1]
— A[1..1] is sorted
— A[i+1..}-1] is sorted
— A[1..1] is sorted
— Alk] > key forall kin {i+1,...,j-1}

37

Example: Insertion Sort/2

External for loop: for § := 2 to n do
(i) A[1...j-1]is sorted key := A[J]
(i) A[1...j-1] € A°9[1..j-1] i := J-1
while 1>0 and A[i]>key do

Internal while loop:

— A[1...]], key, Afi+1...j-1] ?EH] := A[i]
— A[1..i] is sorted A[1+1] :i= key

— AJi+1..j-1] is sorted
— A[1..i] is sorted
— A[k] > key forall kin {i+1,...,j-1}
Initialization:
(i), (i) j=2: A[1..1] € A°>9[1..1] and is trivially sorted
i=j-1: A[1...j-1], key, AJj...]-1] where key=A][]]
A[j...J]-1] is empty (and thus trivially sorted)
A[1...j-1] is sorted (invariant of outer loop)

38

Example: Insertion Sort/3

External for loop: ,

(i) A[1..j-1]is sorted for J := 2 to n do

| _— :

N J o key := A[7J]

(i) A[1...)-1] € A°9[1..j-1] i oi= 9-1

Internal while loop: while i>0 and A[i]>key do
— A[1...0], key, A[i+1...j-1] A[i+1] := A[i]

— A[1..i] is sorted 1--

— A[i+1.j-1] is sorted Ali+l] := key

— AJ1..i] is sorted
— A[Kk] > key forall kin {i+1,...,j-1}

Maintenance: A to A’
* (A[1...j-1] sorted) and (insert A[j]) implies (A[1...j] sorted)

* A[1...i-1], key, AJi,i+1...j-1] satisfies conditions because
of condition A[i] > key and A[1...j-1] being sorted.

39

Example: Insertion Sort/4

External for loop: for j := 2 to n do
(i) A[1...]-1] is sorted Bey P ix[j]
() A1 e A1 -1] ;hJ:.leji>O and A[i]>key do
Internal while loop: A[i+1] := A[i]
— A[1...1], key, A[i+1...j-1] i--
— A[1..i] is sorted A[i+l] := key
— AJi+1..j-1] is sorted
— A[1..i] is sorted
— A[k] > key forall kin {i+1,...,j-1}
Termination:

* main loop, j=n+1: A[1...n] sorted.
* Alil<key: (A[1...]], key, A[i+1...j-1]) = A[1...j-1] is sorted
* i=0: (key, A[1...j-1]) = A[1...j] is sorted.

40

Part 2 Complexity and Correctness of Algorithms

Exercise

* Apply the same approach to prove the correctness of
bubble sort.

Data Structures and Algorithms

41

Special Case Analysis

* Consider extreme cases and make sure
your solution works in all cases.

* The problem: identify special cases.

* This is related to INPUT and OUTPUT specifications.

Data Structures and Algorithms 42

Special Cases

* empty data structure
(array, file, list, ...)

* single element data
structure

* completely filled data
structure

* entering a function
* termination of a function

zero, empty string
negative number
border of domain

start of loop
end of loop
first iteration of loop

43

Sortedness

The following algorithm checks
whether an array is sorted.

INPUT: A[1l..n] - an array of integers.
OUTPUT: TRUE if A 1is sorted; FALSE otherwise

for i := 1 to n
if A[i] = A[i+1] then return FALSE
return TRUE

Analyze the algorithm by considering special cases.

44

Complexity and Correctness of Algorithms

Sortedness/2

INPUT: A[1..n] - an array of integers.
OUTPUT: TRUE if A 1is sorted; FALSE otherwise

for i := 1 to n
if A[i] = A[i+1] then return FALSE
return TRUE

« Start of loop, i=1 = OK
* End of loop, i=n =» ERROR (tries to access A[n+1])

Data Structures and Algorithms

45

Sortedness/3

INPUT: A[1..n] - an array of integers.
OUTPUT: TRUE if A is sorted; FALSE otherwise

for i := 1 to n-1
if A[1i] = A[i+1l] then return FALSE
return TRUE

» Start of loop, i=1 % OK

* End of loop, i=n-1 & OK

* A=[1,1,1] » First iteration, from i=1 to i=2 ® OK
* A=[1,1,1] % ERROR (if A[i]=A[i+1] for some i)

46

Complexity and Correctness of Algorithms

Sortedness/3

INPUT: A[1l..n] - an array of integers.
OUTPUT: TRUE if A is sorted; FALSE otherwise

for i := 1 to n

if A[i] = A[i+1l] then return FALSE
return TRUE

« Start of loop, i=1 = OK

* Endofloop, i=n-1 =2 OK

* First iteration, from i=1 to i=2 = OK

* A=[1,1,1] = ERROR (if A[i]=A][i+1] for some i)

Data Structures and Algorithms

47

N -~ o A

Sortedness/4

INPUT: A[1l..n] - an array of integers.
OUTPUT: TRUE if A is sorted; FALSE otherwise

for i := 1 to n
if A[1] > A[i+1] then return FALSE
return TRUE

* Start of loop, i=1 = OK

* End of loop, i=n-1 = OK

* Firstiteration, from i=1 to i=2 = OK

* A=[1,1,1] = OK

* Empty data structure, n=0 = ? (for loop)
* A=[-1,0,1,-3] = OK

48

Complexity and Correctness of Algorithms

Binary Search, Variant 1

Analyze the following algorithm

by considering special cases.

do
m := |(l+r) /2]
else i1if A[m] > g then r
else 1 := m+tl

while 1 < r
return NIL

if A[m] = g then return m

Data Structures and Algorithms

Binary Search, Variant 1

1l =1, r := n

m := [(1+r) /2]
if A[m] = g then return m
else if A[m] > g then r := m-1
else 1 := m+1

while 1 < r

return NIL

* Start of loop = OK
* End of loop, |=r = Error! Example: search 3 in [3 5 7]

Data Structures and Algorithms 50

Binary Search, Variant 1

1l = 1; r := n

do
m := | (l+r) /2]
if A[m] = g then return m
else if A[m] > g then r := m-1
else 1 := m+1

while 1 <= r

return NIL

* Start of loop = OK

* End of loop, |=r & OK

* First iteration OK

* A=[1,1,1]1% OK

* Empty data structure, n=0 & Error! Tries to access A[0]
* One-element data structure, n=1 % OK

51

Binary Search, Variant 1

1l =1, r := n
If r < 1 then return NIL;
do
m := |(l+r) /2]
if A[m] = g then return m
else if A[m] > g then r := m-1
else 1 := m+l

while 1 <= r

* Start of loop = OK

* End of loop, |=r & OK

* First iteration OK

* A=[1,1,1]1% OK

* Empty data structure, n=0 ® OK

* One-element data structure, n=1 % OK

52

Complexity and Correctness of Algorithms

Binary Search, Variant 2

Analyze the following algorithm
by considering special cases

1l := 1, r := n
while 1 < r do
m := [(l+r) /2]
if Alm] <= g
then 1 := mtl else r := m
if A[1-1] = g
then return g else return NIL

Data Structures and Algorithms

Complexity and Correctness of Algorithms

Binary Search, Variant 3

Analyze the following algorithm
by considering special cases

1l := 1, r := n
while 1 <= r do
m := | (l+r) /2]
if Alm] <= g
then 1 := m+]l else r := m
if A[1-1] = g
then return g else return NIL

Data Structures and Algorithms 54

Insertion Sort, Slight Variant

* Analyze the following algorithm
by considering special cases

* Hint: beware of lazy evaluations

INPUT: A[l..n] - an array of integers
OUTPUT: permutation of A s.t.
A[1]<A[2] =<... <A[n]

for j := 2 to n do
key := A[jl; i := j-1;
while A[1] > key and 1 > 0 do
A[1+1] := A[1]; 1--;

A[1+1] := key

N -~ o A

Merge

Analyze the following algorithm
by considering special cases.

INPUT: A[1l..n1], B[1l..n2] sorted arrays of
integers
OUTPUT: permutation C of A.B s.t.

C[1] =<(C[2] =...=<(C[nl4+n2]

1:=1;7:=1;
for k:=1 to nl + n2 do
1f A[1] <= B[j]
then C[k] := A[1]; 1++;
else C[k] := B[j]; j++;
return C;

56

Complexity and Correctness of Algorithms

Merge/2

INPUT: A[1l..n1], B[1l..n2] sorted arrays of
integers
OUTPUT: permutation C of A.B s.t.

C[1] =<(C[2] =...=(C[nl1l+n2]

1:=1;7:=1;

for k:= 1 to nl + n2 do
1f jJ > n2 or (i <= nl and A[1]<=B[3j])
then C[k] := A[1]; 1++;
else C[k] := B[j]; j++;

return C;

Data Structures and Algorithms 57

Part 2 Complexity and Correctness of Algorithms

Math Refresher

* Arithmetic progression
Z;O i=0+1+..4+n=n(n+1)/2

* Geometric progression (for a numbera # 1)

Z:;Oai:l—I—a2+...+a"=(l—a”H)/(l—a)

Data Structures and Algorithms 59

Induction Principle

We want to show that property P is true
for all integers n > nO.

Basis: prove that P is true for nO.
Inductive step: prove that if Pis true for all k
such that n0 < k < n— 1 then Pis also true for n.

Exercise: Prove that every Fibonacci number
of the form fib(3n) is even

60

Part 2 Complexity and Correctness of Algorithms

Summary

* Algorithmic complexity
* Asymptotic analysis

— Big O and Theta notation

— Growth of functions and asymptotic notation
* Correctness of algorithms

— Pre/Post conditions

— Invariants

* Special case analysis

Data Structures and Algorithms 61

