Data Structures and Algorithms Part 2

Werner Nutt

Acknowledgments

- The course follows the book "Introduction to Algorithms", by Cormen, Leiserson, Rivest and Stein, MIT Press [CLRST]. Many examples displayed in these slides are taken from their book.
- These slides are based on those developed by Michael Böhlen for this course.

(See http://www.inf.unibz.it/dis/teaching/DSA/)

 The slides also include a number of additions made by Roberto Sebastiani and Kurt Ranalter when they taught later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

DSA, Part 2: Overview

- Complexity of algorithms
- Asymptotic analysis
- Correctness of algorithms
- Special case analysis

DSA, Part 2: Overview

- Complexity of algorithms
- Asymptotic analysis
- Correctness of algorithms
- Special case analysis

Analysis of Algorithms

- Efficiency:
 - Running time
 - Space used

- Efficiency is defined as a function of the input size:
 - Number of data elements (numbers, points)
 - The number of bits of an input number

The RAM Model

It is important to choose the level of detail.

The RAM (Random Access Machine) model:

- Instructions (each taking constant time) we usually choose one type of instruction as a characteristic operation that is counted:
 - Arithmetic (add, subtract, multiply, etc.)
 - Data movement (assign)
 - Control flow (branch, subroutine call, return)
 - Comparison
- Data types integers, characters, and floats

Analysis of Insertion Sort

 Running time as a function of the input size (exact analysis).

```
times
                                        cost
for j := 2 to n do
                                        c1
                                               n
  key := A[j]
                                        c2 n-1
  // Insert A[j] into A[1..j-1]
                                       0 	 n-1
                                        c3 n-1
  i := j-1
                                        C4 \sum_{j=2}^{n} t_{j}
  while i>0 and A[i]>key do
                                        \sum_{j=2}^{n} (t_j - 1)
    A[i+1] := A[i]
                                        c6 \sum_{i=2}^{n} (t_i - 1)
    i--
  A[i+1]:= key
                                        c7 	 n-1
```

 t_{j} is the number of times the while loop is executed, i.e.,

 $(T_i - 1)$ is number of elements in the initial segment greater than A[j]

Analysis of Insertion Sort/2

- The running time of an algorithm for a given input is the sum of the running times of each statement.
- A statement
 - with cost c
 - that is executed n times
 contributes c*n to the running time.
- The total running time T(n) of insertion sort is

T(n) = c1*n + c2*(n-1) + c3*(n-1) + c4 *
$$\sum_{j=2}^{n} t_j$$

+ c5 $\sum_{j=2}^{n} (t_j - 1)$ + c6 $\sum_{j=2}^{n} (t_j - 1)$ + c7*(n - 1)

Analysis of Insertion Sort/3

- The running time is not necessarily equal for every input of size n
- The performance on the details of the input (not only length *n*)
- This is modeled by t_{i} .
- In the case of insertion sort the time t_j
 depends on the original sorting of the input array

Performance Analysis

- Often it is sufficient to count the number of iterations of the core (innermost) part
 - No distinction between comparisons, assignments, etc
 (that means roughly the same cost for all of them)
 - Gives precise enough results
- In some cases the cost of selected operations dominates all other costs.
 - Disk I/O versus RAM operations
 - Database systems

Worst/Average/Best Case

- Analyzing insertion sort's
 - Worst case: elements sorted in inverse order, $t_j = j$, total running time is *quadratic* (time = an²+bn+c)
 - Average case: $t_j = j/2$, total running time is *quadratic* (time = an²+bn+c)
 - Best case: elements already sorted, t_j =1, innermost loop is zero, total running time is *linear* (time = an+b)
- How can we define these concepts formally?
 ... and how much sense does "Best case" make?

Worst/Average/Best Case/2

For a specific size of input size *n*, investigate running times for different input instances:

Worst/Average/Best Case/3

For inputs of all sizes:

Best/Worst/Average Case/4

Worst case is most often used:

- It is an upper-bound
- In certain application domains (e.g., air traffic control, surgery) knowing the worst-case time complexity is of crucial importance.
- For some algorithms worst case occurs fairly often
- The average case is often as bad as the worst case

The average case depends on assumptions

- What are the possible input cases?
- What is the probability of each input?

Analysis of Linear Search

- Worst case running time: n
- Average case running time: n/2 (if q is present)

... under which assumption?

Binary Search

- Idea: Left and right bounds I, r.
 Elements to the right of r are bigger than search element, ...
- In each step, the range of the search space is cut in half

```
INPUT: A[1..n] - sorted (increasing) array of integers, q - integer.
OUTPUT: an index j such that A[j] = q. N/L, if \forall j (1 \le j \le n): A[j] \neq q

l := 1; r := n

do

m := [(1+r)/2]

if A[m] = q then return m

else if A[m] > q then r := m-1

else l := m+1

while l <= r

return NIL
```

Analysis of Binary Search

How many times is the loop executed?

- With each execution
 the difference between 1 and r is cut in half
 - Initially the difference is n
 - The loop stops when the difference becomes 0 (less than 1)
- How many times do you have to cut n in half to get 0?
- log n better than the brute-force approach of linear search (n).

Linear vs Binary Search

- Costs of linear search: n
- Costs of binary search: log(n)
- Should we care?
- Phone book with n entries:
 - -n = 200'000, $\log n = \log 200'000 = ??$
 - n = 2M, log 2M = ??
 - -n = 20M, $\log 20M = ??$

Suggested Exercises

- Implement binary search in 3 versions:
 - as in previous slides
 - without return statements inside the loop
 - Recursive
- Implement a function printSubArray printing only the subarray from I to r, leaving blanks for the others
 - use it to trace the behaviour of binary search

DSA, Part 2: Overview

- Complexity of algorithms
- Asymptotic analysis
- Correctness of algorithms
- Special case analysis

Asymptotic Analysis

- Goal: simplify the analysis of the running time by getting rid of details, which are affected by specific implementation and hardware
 - "rounding" of numbers: 1,000,001 ≈ 1,000,000
 - "rounding" of functions: $3n^2 \approx n^2$
- Capturing the essence: how the running time of an algorithm increases with the size of the input in the limit
 - Asymptotically more efficient algorithms are best for all but small inputs

Asymptotic Notation

The "big-Oh" O-Notation

- talks about asymptotic upper bounds
- f(n) = O(g(n)) iff there exist c > 0 and $n_0 > 0$,

s.t.
$$f(n) \le c g(n)$$
 for $n \ge n_0$

f(n) and g(n) are functions
 over non-negative integers

Used for worst-case analysis

Asymptotic Notation

- Simple Rule: We can always drop lower order terms and constant factors, without changing big Oh:
 - $-50 n \log n$ is $O(n \log n)$
 - -7n 3 is O(n)
 - $-8n^2 \log n + 5n^2 + n$ is $O(n^2 \log n)$
- Note:
 - $-50 n \log n$ is $O(n^2)$
 - $-50 n \log n$ is $O(n^{100})$

but this is less informative than saying

 $-50 n \log n$ is $O(n \log n)$

Asymptotic Notation/3

- The "big-Omega" Ω -Notation
 - asymptotic lower bound
 - $-f(n) = \Omega(g(n))$ iff there exist c > 0 and $n_0 > 0$, s.t. $c g(n) \le f(n)$, for $n \ge n_0$
- Used to describe lower bounds of algorithmic problems
 - E.g., searching in an unsorted array with search2 is $\Omega(n)$, with search1 it is $\Omega(\log n)$

Asymptotic Notation/4

- The "big-Theta" Θ-Notation
 - asymptoticly tight bound
 - $f(n) = \Theta(g(n)) \text{ if there exists}$ $c_1 > 0, c_2 > 0, \text{ and } n_0 > 0,$ $s.t. \text{ for } n \ge n_0$ $c_1 g(n) \le f(n) \le c_2 g(n)$
- $f(n) = \Theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$
- Note: O(f(n)) is often used when $\Theta(f(n))$ is meant

Two More Asymptotic Notations

f(n) is much smaller than g(n)

- "Little-Oh" notation f(n) = o(g(n))non-tight analogue of Big-Oh
 - For every c > 0, there exists $n_o > 0$, s.t. f(n) < c g(n)

for
$$n \geq n_0$$

- If f(n) = o(g(n)), it is said that g(n) dominates f(n)
- "Little-omega" notation $f(n) = \omega(g(n))$ non-tight analogue of Big-Omega

f(n) is much bigger than g(n)

Asymptotic Notation/6

Analogy with real numbers

$$-f(n) = O(g(n)) \cong f \leq g$$

$$-f(n) = \Omega(g(n)) \cong f \geq g$$

$$-f(n) = \Theta(g(n)) \cong f = g$$

$$-f(n) = o(g(n)) \cong f < g$$

$$-f(n) = \omega(g(n)) \cong f > g$$

Abuse of notation:

$$f(n) = O(g(n))$$
 actually means $f(n) \in O(g(n))$

Comparison of Running Times

Determining the maximal problem size

Running Time T(n) in μs	1 second	1 minute	1 hour
400 <i>n</i>	2500	150'000	9'000'000
20 <i>n</i> log <i>n</i>	4096	166'666	7'826'087
2 <i>n</i> ²	707	5477	42'426
n^4	31	88	244
2 ⁿ	19	25	31

DSA, Part 2: Overview

- Complexity of algorithms
- Asymptotic analysis
- Correctness of algorithms
- Special case analysis

Correctness of Algorithms

- An algorithm is *correct* if for every legal input, it terminates and produces the desired output.
- Automatic proof of correctness is not possible.
- There are practical techniques and rigorous formalisms that help to reason about the correctness of (parts of) algorithms.

Partial and Total Correctness

Partial correctness

Total correctness

Assertions

- To prove partial correctness we associate a number of assertions (statements about the state of the execution) with specific checkpoints in the algorithm.
 - E.g., A[1], ..., A[j] form an increasing sequence
- Preconditions assertions that must be valid before the execution of an algorithm or a subroutine (INPUT)
- Postconditions assertions that must be valid after the execution of an algorithm or a subroutine (OUTPUT)

Loop Invariants

- Invariants: assertions that are valid every time they are reached (many times during the execution of an algorithm, e.g., in loops)
- We must show three things about loop invariants:
 - Initialization: it is true prior to the first iteration.
 - Maintenance: if it is true before an iteration, then it is true after the iteration.
 - Termination: when a loop terminates the invariant gives a useful property to show the correctness of the algorithm

if A[m] = q then return m

else if A[m] > q then r := m-1

1 := 1; r := n;

m := |(1+r)/2|

else 1 := m+1

while $1 \le r$

do

Example: Binary Search/1

- We want to show that q is not in A if NIL is returned.
- Invariant:

```
\forall i \in [1..l-1]: A[i] < q (ia) \forall i \in [r+1..n]: A[i] > q (ib)
```

• Initialization: I = 1, r = nthe invariant holds because there are no elements to the left of I or to the right of r.

```
I = 1 yields ∀ i ∈ [1..0]: A[i]<q
this holds because [1..0] is empty
```

```
r = n yields ∀ i ∈ [n+1..n]: A[i]>q
this holds because [n+1..n] is empty
```

Example: Binary Search/2

Invariant:

```
\forall i \in [1..l-1]: A[i]<q (ia) \forall i \in [r+1..n]: A[i]>q (ib)
```

```
l := 1; r := n;
do
m := [(1+r)/2]
if A[m]=q then return m
else if A[m]>q then r := m-1
else l := m+1
while l <= r
return NIL</pre>
```

- **Maintenance**: 1 ≤ I, r ≤ n, m = [(I+r)/2]
 - A[m] != q & q < A[m] implies r = m-1A sorted implies $\forall k \in [r+1..n]$: A[k] > q (ib)
 - A[m] != q & A[m] < q implies I = m+1
 A sorted implies ∀k∈[1..l-1]: A[k] < q (ia)

Example: Binary Search/3

Invariant:

```
\forall i \in [1..l-1]: A[i]<q (ia) \forall i \in [r+1..n]: A[i]>q (ib)
```

```
1 := 1; r := n;
do
    m := [(1+r)/2]
    if A[m]=q then return m
    else if A[m]>q then r := m-1
    else 1 := m+1
while 1 <= r
return NIL</pre>
```

• Termination: $1 \le l, r \le n, l \le r$

Two cases:

```
I := m+1 implies Inew = \lfloor (I+r)/2 \rfloor + 1 > Iold
 r := m-1 implies rnew = \lfloor (I+r)/2 \rfloor - 1 < rold
```

 The range gets smaller during each iteration and the loop will terminate when I ≤ r no longer holds

Loop invariants:

External "for" loop

```
A[1..j-1] is sorted
```

$$A[1..j-1] \in A^{orig}[1..j-1]$$

for j := 2 to n do key := A[j] i := j-1 while i>0 and A[i]>key do A[i+1] := A[i] i- A[i+1] := key

Internal "while" loop

- A[1...i], key, A[i+1...j-1]
- A[1..i] is sorted
- A[i+1..j-1] is sorted
- A[1..i] is sorted
- -A[k] > key for all k in $\{i+1,...,j-1\}$

External for loop:

- (i) A[1...j-1] is sorted
- (ii) $A[1...j-1] \in A^{\text{orig}}[1..j-1]$

Internal while loop:

- A[1...i], key, A[i+1...j-1]
- A[1..i] is sorted
- A[i+1..j-1] is sorted
- A[1..i] is sorted
- $A[k] > key for all k in {i+1,...,j-1}$

Initialization:

```
(i), (ii) j = 2: A[1..1] \in A<sup>orig</sup>[1..1] and is trivially sorted i=j-1: A[1...j-1], key, A[j...j-1] where key=A[j] A[j...j-1] is empty (and thus trivially sorted) A[1...j-1] is sorted (invariant of outer loop)
```

```
for j := 2 to n do
  key := A[j]
  i := j-1
  while i>0 and A[i]>key do
    A[i+1] := A[i]
    i--
    A[i+1] := key
```

External for loop:

- (i) A[1...j-1] is sorted
- (ii) $A[1...j-1] \in A^{\text{orig}}[1...j-1]$

Internal while loop:

- A[1...i], key, A[i+1...j-1]
- A[1..i] is sorted
- A[i+1..j-1] is sorted
- A[1..i] is sorted
- A[k] > key for all k in {i+1,...,j-1}

```
for j := 2 to n do
  key := A[j]
  i := j-1
  while i>0 and A[i]>key do
  A[i+1] := A[i]
  i--
  A[i+1] := key
```

Maintenance: A to A'

- (A[1...j-1] sorted) and (insert A[j]) implies (A[1...j] sorted)
- A[1...i-1], key, A[i,i+1...j-1] satisfies conditions because of condition A[i] > key and A[1...j-1] being sorted.

External for loop:

- (i) A[1...j-1] is sorted
- (ii) $A[1...j-1] \in A^{\text{orig}}[1..j-1]$

Internal while loop:

- A[1...i], key, A[i+1...j-1]
- A[1..i] is sorted
- A[i+1..j-1] is sorted
- A[1..i] is sorted
- A[k] > key for all k in {i+1,...,j-1}

Termination:

- main loop, j=n+1: A[1...n] sorted.
- A[i]≤key: (A[1...i], key, A[i+1...j-1]) = A[1...j-1] is sorted
- i=0: (key, A[1...j-1]) = A[1...j] is sorted.

```
for j := 2 to n do
  key := A[j]
  i := j-1
  while i>0 and A[i]>key do
   A[i+1] := A[i]
  i--
  A[i+1] := key
```

Exercise

 Apply the same approach to prove the correctness of bubble sort.

Special Case Analysis

- Consider extreme cases and make sure your solution works in all cases.
- The problem: identify special cases.
- This is related to INPUT and OUTPUT specifications.

Special Cases

- empty data structure (array, file, list, ...)
- single element data structure
- completely filled data structure

- entering a function
- termination of a function

- zero, empty string
- negative number
- border of domain

- start of loop
- end of loop
- first iteration of loop

The following algorithm checks whether an array is sorted.

```
INPUT: A[1..n] - an array of integers.
OUTPUT: TRUE if A is sorted; FALSE otherwise

for i := 1 to n
  if A[i] ≥ A[i+1] then return FALSE
return TRUE
```

Analyze the algorithm by considering special cases.

```
INPUT: A[1..n] - an array of integers.
OUTPUT: TRUE if A is sorted; FALSE otherwise
for i := 1 to n
  if A[i] ≥ A[i+1] then return FALSE
return TRUE
```

- Start of loop, i=1 → OK
- End of loop, i=n → ERROR (tries to access A[n+1])

```
INPUT: A[1..n] - an array of integers.
OUTPUT: TRUE if A is sorted; FALSE otherwise
for i := 1 to n-1
  if A[i] ≥ A[i+1] then return FALSE
return TRUE
```

- Start of loop, i=1 → OK
- End of loop, i=n-1 → OK
- A=[1,1,1] → First iteration, from i=1 to i=2 → OK
- A=[1,1,1] → ERROR (if A[i]=A[i+1] for some i)

```
INPUT: A[1..n] - an array of integers.
OUTPUT: TRUE if A is sorted; FALSE otherwise

for i := 1 to n
  if A[i] ≥ A[i+1] then return FALSE
return TRUE
```

- Start of loop, i=1 → OK
- End of loop, i=n-1 → OK
- First iteration, from i=1 to i=2 → OK
- A=[1,1,1] → ERROR (if A[i]=A[i+1] for some i)

```
INPUT: A[1..n] - an array of integers.
OUTPUT: TRUE if A is sorted; FALSE otherwise

for i := 1 to n
  if A[i] > A[i+1] then return FALSE
return TRUE
```

- Start of loop, i=1 → OK
- End of loop, i=n-1 → OK
- First iteration, from i=1 to i=2 → OK
- A=[1,1,1] → OK
- Empty data structure, n=0 → ? (for loop)
- A=[-1,0,1,-3] → OK

Analyze the following algorithm by considering special cases.

```
l := 1; r := n
do
m := [(1+r)/2]
if A[m] = q then return m
else if A[m] > q then r := m-1
else l := m+1
while l < r
return NIL</pre>
```

```
l := 1; r := n
do
m := [(1+r)/2]
if A[m] = q then return m
else if A[m] > q then r := m-1
else l := m+1
while l < r
return NIL</pre>
```

- Start of loop → OK
- End of loop, I=r → Error! Example: search 3 in [3 5 7]

```
l := 1; r := n
do
m := [(1+r)/2]
if A[m] = q then return m
else if A[m] > q then r := m-1
else l := m+1
while l <= r
return NIL</pre>
```

- Start of loop → OK
- End of loop, I=r → OK
- First iteration → OK
- A=[1,1,1] **→** OK
- Empty data structure, n=0 → Error! Tries to access A[0]
- One-element data structure, n=1 → OK

```
l := 1; r := n
If r < 1 then return NIL;
do
    m := [(1+r)/2]
    if A[m] = q then return m
    else if A[m] > q then r := m-1
    else l := m+1
while l <= r
return NIL</pre>
```

- Start of loop → OK
- End of loop, l=r → OK
- First iteration → OK
- A=[1,1,1] **→** OK
- Empty data structure, n=0 → OK
- One-element data structure, n=1 → OK

Analyze the following algorithm by considering special cases

```
l := 1; r := n
while l < r do
    m := [(1+r)/2]
    if A[m] <= q
        then l := m+1 else r := m
if A[1-1] = q
    then return q else return NIL</pre>
```

Analyze the following algorithm by considering special cases

```
l := 1; r := n
while l <= r do
    m := [(l+r)/2]
    if A[m] <= q
        then l := m+1 else r := m
if A[l-1] = q
    then return q else return NIL</pre>
```

Insertion Sort, Slight Variant

- Analyze the following algorithm by considering special cases
- Hint: beware of lazy evaluations

```
INPUT: A[1..n] - an array of integers
OUTPUT: permutation of A s.t.
        A[1] \leq A[2] \leq ... \leq A[n]

for j := 2 to n do
    key := A[j]; i := j-1;
    while A[i] > key and i > 0 do
        A[i+1] := A[i]; i--;
    A[i+1] := key
```

Merge

Analyze the following algorithm by considering special cases.

```
INPUT: A[1..n1], B[1..n2] sorted arrays of
integers
OUTPUT: permutation C of A.B s.t.
  C[1] \leq C[2] \leq \ldots \leq C[n1+n2]
i:=1;j:=1;
for k:=1 to n1 + n2 do
      if A[i] <= B[j]
      then C[k] := A[i]; i++;
      else C[k] := B[j]; j++;
return C;
```

Merge/2

```
INPUT: A[1..n1], B[1..n2] sorted arrays of
integers
OUTPUT: permutation C of A.B s.t.
  C[1] \leq C[2] \leq \ldots \leq C[n1+n2]
i:=1;j:=1;
for k := 1 to n1 + n2 do
      if j > n2 or (i <= n1 and A[i]<=B[j])
      then C[k] := A[i]; i++;
      else C[k] := B[j]; j++;
return C;
```

Math Refresher

Arithmetic progression

$$\sum_{i=0}^{n} i = 0 + 1 + ... + n = n(n+1)/2$$

Geometric progression (for a number a ≠ 1)

$$\sum_{i=0}^{n} a^{i} = 1 + a^{2} + \dots + a^{n} = (1 - a^{n+1})/(1 - a)$$

Induction Principle

We want to show that property P is true for all integers $n \ge n0$.

Basis: prove that *P* is true for *n*0.

Inductive step: prove that if *P* is true for all *k*

such that $n0 \le k \le n-1$ then P is also true for n.

Exercise: Prove that every Fibonacci number of the form fib(3n) is even

Summary

- Algorithmic complexity
- Asymptotic analysis
 - Big O and Theta notation
 - Growth of functions and asymptotic notation
- Correctness of algorithms
 - Pre/Post conditions
 - Invariants
- Special case analysis