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Part 2 Complexity and Correctness of Algorithms

Analysis of Algorithms

* Efficiency:
— Running time

— Space used

* Efficiency is defined as a function of the input size:
— Number of data elements (numbers, points)

— The number of bits of an input number
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The RAM Model

It is important to choose the level of detail.
The RAM (Random Access Machine) model:

— Instructions (each taking constant time) — we usually
choose one type of instruction as a characteristic
operation that is counted:

* Arithmetic (add, subtract, multiply, etc.)
* Data movement (assign)
* Control flow (branch, subroutine call, return)
* Comparison
— Data types — integers, characters, and floats




Analysis of Insertion Sort

* Running time as a function of the input size
(exact analysis).

cost times
for J := 2 to n do cl n
key := A[]] c2 n-1
// Insert A[j] into A[l..3j-1] O n-1
1 := j-1 c3 n-1
while i>0 and A[i]>key do c4 2
A[i+1l] := A[1i] c5 > e-1)
[ c6 >, (e-1)
A[1+1]:= key c7 n-1

tj is the number of times the while loop is executed, i.e.,

(T — 1) is number of elements in the initial segment greater than A[ j ]
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Analysis of Insertion Sort/2

* The running time of an algorithm for a given input
Is the sum of the running times of each statement.

* A statement
— with cost ¢
— that is executed n times
contributes c*n to the running time.
* The total running time T(n) of insertion sort is

T(n) = c1*n + c2*(n-1) + c3*(n-1) + c4 * X1,
#C5 X, (11 + 06 X, (=) +cT*(n - 1)




Analysis of Insertion Sort/3

* The running time is not necessarily equal
for every input of size n

* The performance on the details of the input
(not only length n)

» This is modeled by ¢,

* In the case of insertion sort the time t,
depends on the original sorting of the input array




Performance Analysis

* Often it is sufficient to count the number of iterations
of the core (innermost) part

— No distinction between comparisons, assignments, etc
(that means roughly the same cost for all of them)

— Gives precise enough results

* In some cases the cost of selected operations dominates
all other costs.

— Disk I/O versus RAM operations

— Database systems
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Worst/Average/Best Case

* Analyzing insertion sort’s
— Worst case: elements sorted in inverse order, {=/
total running time is quadratic (time = an“*+bn+c)

— Average case: {=j/2, total running time is quadratic
(time = an®+bn+c)

— Best case: elements already sorted, {=7, innermost
loop is zero, total running time is linear (time = an+b)

* How can we define these concepts formally?
... and how much sense does “Best case” make?
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Complexity and Correctness of Algorithms

Worst/Average/Best Case/2

For a specific size of input size n, investigate running
times for different input instances:

. 6n worst case =4321
.g on
- average case 77?7
£ 4n
—
S 3n best case =1234
2n
1n

A B C D E F G
input instance
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Part 2 Complexity and Correctness of Algorithms

Worst/Average/Best Case/3

For inputs of all sizes:

worst-case
6 average-case
5n
best-case
4n
3n
2n

1 2 3 4 5 6 7 8 9 10 11 12

Running time

Input instance size
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Best/Worst/Average Case/4

Worst case is most often used:
— It is an upper-bound

— In certain application domains (e.g., air traffic control,
surgery) knowing the worst-case time complexity is of
crucial importance.

— For some algorithms worst case occurs fairly often
— The average case is often as bad as the worst case

The average case depends on assumptions
— What are the possible input cases?
— What is the probability of each input?
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Analysis of Linear Search

INPUT: A[1..n] - a sorted array of -integers,
q - an 1integer.
OUTPUT: j s.t. A[jl=qg. NIL if Vj(l<j=<n): AlLjl#q

7 =1

while j <= n and A[j] != g do j++
if 7 <= n then return j

else return NIL

* Worst case running time: n

* Average case running time: n/2 (if q is present)
... under which assumption?
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Binary Search

* Idea: Left and right bounds |, r.
Elements to the right of r are bigger than search element, ...

* In each step, the range of the search space is cut in half

INPUT: A[1..n] — sorted (increasing) array of integers, q — integer.
OUTPUT: an index j such that A[j] = q. NIL, if Vj (1<j<n): A]j] # q
1 :=1; r := n
do
m := |(l+r) /2]
if A[m] = g then return m
else if A[m] > g then r := m-1
else 1 := mt+l
while 1 <= r
return NIL
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Analysis of Binary Search

How many times is the loop executed?

— With each execution
the difference between 1 and r is cut in half
* Initially the difference is n
* The loop stops when the difference becomes 0 (less than 1)
— How many times do you have to cut n in half to get 0?

— log n — better than the brute-force approach of linear
search (n).
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Part 2 Complexity and Correctness of Algorithms

Linear vs Binary Search

* Costs of linear search: n

* Costs of binary search: log(n)

* Should we care?

* Phone book with n entries:
— n=200'000, log n=Ilog 200°000 = ??
—n=2M, log2M = 7??
— n=20M, log 20M = ??
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Suggested Exercises

* Implement binary search in 3 versions:
— as In previous slides
— without return statements inside the loop
— Recursive

* As before, returning nil if g<all] or g>alr]
(trace the different executions)

* Implement a function printSubArray printing only the
subarray from | to r, leaving blanks for the others

— use it to trace the behaviour of binary search
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Asymptotic Analysis

* Goal: simplify the analysis of the running time
by getting rid of details, which are
affected by specific implementation and hardware

— “rounding” of numbers: 1,000,001 ~ 1,000,000
— “rounding” of functions: 3n? ~ n?

* Capturing the essence: how the running time of an
algorithm increases with the size of the input in the limit

— Asymptotically more efficient algorithms
are best for all but small inputs
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Asymptotic Notation

The “big-Oh” O-Notation

— talks about
asymptotic upper bounds

— f(n) = O(g(n)) iff
there exist ¢ >0and n,> 0,

s.t. f(n) <cg(n) forn=
nO

— f(n) and g(n) are functions
over non-negative integers

Used for worst-case analysis

Running Time

Input Size
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Asymptotic Notation

* Simple Rule: We can always drop lower order terms
and constant factors, without changing big Oh:

—90nlogn is O(nlogn)
—7/n-3 is O(n)
—8n?logn+5n?+n is O(n?log n)

* Note:
—380nlogn is 0O(n?
— 980 nlogn is O(n'%)
but this is less informative than saying
— 980 nlogn is O(nlog n)
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Asymptotic Notation/3

* The "big-Omega” 2-Notation
— asymptotic lower bound
— f(n) = Q(g(n)) iff
there exist ¢ >0and n,> 0,
s.t. cg(n) < f(n), forn = n,
* Used to describe lower bounds
of algorithmic problems

— E.g., searching in
an unsorted array
with search2 is Q(n),
with search1 itis Q(log n)

f(n)
¢ g(n)

Running Time

Input Size
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Asymptotic Notation/4

* The “big-Theta” ®-Notation

— asymptoticly tight bound

— f(n) = ©(g(n)) if there exists
c.>0, ¢,>0, and n,>0,
s.t. forn = n,

¢,9(n) < f(n) < c,g(n)

* f(n) =©(g(n)) iff
f(n) = O(g(n)) and f(n) = Q(g(n))

* Note: O(f(n)) is often used
when ©(f(n)) is meant

Running Time

Input Size
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Two More Asymptotic Notations

f(n) is much
smaller than g(n)

* "Little-Oh" notation f(n)=0(g(n))
non-tight analogue of Big-Oh

— For every ¢ > 0, there exists n,>0, s.t.
f(n) < cg(n)

for n = n,
— If f(n) = o(g(n)), it is said that fn) is much
g(n) dominates f(n) bigger than g(n)

* "Little-omega” notation f(n)=w(g(n))
non-tight analogue of Big-Omega
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Part 2 Complexity and Correctness of Algorithms

Asymptotic Notation/6

* Analogy with real numbers
—f(n)=0(g(n)) =f=<g
—f(n)=Q(@9(n) =f=g

—f(n)=06(9(n) =rt=g
—f(n)=o0(g(n)) =1t<g
—f(n) =w(g(n)) =1t>g

* Abuse of notation:
f(n) = O(g(n)) actually means

f(n) € O(g(n))
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Comparison of Running Times

Determining the maximal problem size

_IR_’(unr;r;innﬁsTime 1 second |1 minute |1 hour
400n 2500 150’000 | 9'000°000
20n log n 4096 166’666 | 7°826°087
2n? 707 5477 42’426
n* 31 88 244

2" 19 25 31
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Correctness of Algorithms

* An algorithm is correct if for every legal input, it
terminates and produces the desired output.

* Automatic proof of correctness is not possible.

* There are practical techniques and rigorous formalisms
that help to reason about the correctness of (parts of)
algorithms.
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Complexity and Correctness of Algorithms

Partial and Total Correctness

= Partial correctness

IF this point is reached, THEN this is the desired output

\ —
every legal input j> . :> Output

= Total correctness

INDEED this point is reached, THEN this is the desired output

\ —
every legal input :> . :> Output
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Assertions

* To prove partial correctness we associate a number of
assertions (statements about the state of the execution)
with specific checkpoints in the algorithm.

— E.g., A[1], ..., A[j] form an increasing sequence

* Preconditions — assertions that must be valid before the
execution of an algorithm or a subroutine (INPUT)

* Postconditions — assertions that must be valid after the
execution of an algorithm or a subroutine (OUTPUT)
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Loop Invariants

* Invariants: assertions that are valid every time they are
reached (many times during the execution of an
algorithm, e.g., in loops)

* We must show three things about loop invariants:

— Initialization: it is true prior to the first iteration.

— Maintenance: if it is true before an iteration, then it is
true after the iteration.

— Termination: when a loop terminates the invariant
gives a useful property to show the correctness of the

algorithm
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Example: Binary Search/1

* We want to show that qis | , = '/ © = 7
not in A if NIL is returned. m = | (l+r) /2]

o - . if A[m]=g then return m
Iljlvarlant. ) . else if i[m]iq tlelen r := m-1
VIE[]..."].]: A[|]<C| (Ia) else 1 := mtl
Vie[r+1..n]: A[i]>q (ib) |while 1 <= =

_ return NIL

* Initialization: /=1, r=n
the invariant holds because
there are no elements to the left of / or to the right of r.

| =1 vyields Vi e [1..0]: Ali]<q

this holds because [1..0] is empty
r=nyields Vie [n+1..n]: A[i]>q

this holds because [n+1..n] is empty
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Example: Binary Search/2

» Invariant: TR

VIE[]..."].]: A[|]<C| (la) m := |(l+r) /2]

Vie[r+1..n]: A[i]>q (ib) if A[m]=q then return m
else if A[m]>g then r := m-1
else 1 := m+l

while 1 <= r
return NIL

* Maintenance: 1 |, r<n, m=|(I+r)/2]
— A[m] !I=q & g < A[m] implies r = m-1
A sorted implies Vke[r+1..n]: A[k] > q (ib)
— A[m]!=q & A[m] <q implies |=m+1
A sorted implies Vke[1..I-1]: AIK] < g (ia)
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Example: Binary Search/3

i 1 :=1; r := n
* Invariant: do
Vie[1..l-1]: A[i]<q (ia) m := [(l+r) /2]
: . . . if A[m]=gq then return m
VIE[I‘+1..n]. A[I]>C| (Ib) else if A[m]>g then r := m-1
else 1 := m+l
while 1 <= r
return NIL

* Termination: 1<, r<n,I<r

Two cases:
| :=m+1 implies Inew = |(I+1)/2]+1 > lold
r:=m-1 implies rnew= |(I+r)/2]-1 < rold

* The range gets smaller during each iteration and

the loop will terminate when | <r no longer holds
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Example: Insertion Sort/1

- - i for 7 := 2 to n do
Loop invariants: Koy i= A[S]
External “for” loop i = 9-1
A[1 j-1] is sorted while 1>0 and A[i]>key do
a A[i+1] := A[i]
A[1..j-1] € A°9[1..j-1] i--

A[i+1] := key

Internal “while” loop
— A[1...1], key, A[i+1...j-1]
— A[1..1] is sorted
— A[i+1..}-1] is sorted
— A[1..1] is sorted
— Alk] > key forall kin {i+1,...,j-1}
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Example: Insertion Sort/2

External for loop: for § := 2 to n do
(i) A[1...j-1]is sorted key := A[J]
(i) A[1...j-1] € A°9[1..j-1] i := J-1
while 1>0 and A[i]>key do

Internal while loop:

— A[1...]], key, Afi+1...j-1] ?EH] := A[i]
— A[1..i] is sorted A[1+1] :i= key

— AJi+1..j-1] is sorted
— A[1..i] is sorted
— A[k] > key forall kin {i+1,...,j-1}
Initialization:
(i), (i) j=2: A[1..1] € A°>9[1..1] and is trivially sorted
i=j-1: A[1...j-1], key, AJj...]-1] where key=A][]]
A[j...J]-1] is empty (and thus trivially sorted)
A[1...j-1] is sorted (invariant of outer loop)
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Example: Insertion Sort/3

External for loop: ,

(i) A[1..j-1]is sorted for J := 2 to n do

| _— :

N J o key := A[7J]

(i) A[1...)-1] € A°9[1..j-1] i oi= 9-1

Internal while loop: while i>0 and A[i]>key do
— A[1...0], key, A[i+1...j-1] A[i+1] := A[i]

— A[1..i] is sorted 1--

— A[i+1.j-1] is sorted Ali+l] := key

— AJ1..i] is sorted
— A[Kk] > key forall kin {i+1,...,j-1}

Maintenance: A to A’
* (A[1...j-1] sorted) and (insert A[j]) implies (A[1...j] sorted)

* A[1...i-1], key, AJi,i+1...j-1] satisfies conditions because
of condition A[i] > key and A[1...j-1] being sorted.
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Example: Insertion Sort/4

External for loop: for j := 2 to n do
(i) A[1...]-1] is sorted Bey P ix[j]
() A1 e A1 -1] ;hJ:.leji>O and A[i]>key do
Internal while loop: A[i+1] := A[i]
— A[1...1], key, A[i+1...j-1] i--
— A[1..i] is sorted A[i+l] := key
— AJi+1..j-1] is sorted
— A[1..i] is sorted
— A[k] > key forall kin {i+1,...,j-1}
Termination:

* main loop, j=n+1: A[1...n] sorted.
* Alil<key: (A[1...]], key, A[i+1...j-1]) = A[1...j-1] is sorted
* i=0: (key, A[1...j-1]) = A[1...j] is sorted.

40



Part 2 Complexity and Correctness of Algorithms

Exercise

* Apply the same approach to prove the correctness of
bubble sort.

Data Structures and Algorithms
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Special Case Analysis

* Consider extreme cases and make sure
your solution works in all cases.

* The problem: identify special cases.

* This is related to INPUT and OUTPUT specifications.
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Special Cases

* empty data structure
(array, file, list, ...)

* single element data
structure

* completely filled data
structure

* entering a function
* termination of a function

zero, empty string
negative number
border of domain

start of loop
end of loop
first iteration of loop
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Sortedness

The following algorithm checks
whether an array is sorted.

INPUT: A[1l..n] - an array of integers.
OUTPUT: TRUE if A 1is sorted; FALSE otherwise

for i := 1 to n
if A[i] = A[i+1] then return FALSE
return TRUE

Analyze the algorithm by considering special cases.

44



Complexity and Correctness of Algorithms

Sortedness/2

INPUT: A[1..n] - an array of integers.
OUTPUT: TRUE if A 1is sorted; FALSE otherwise

for i := 1 to n
if A[i] = A[i+1] then return FALSE
return TRUE

« Start of loop, i=1 = OK
* End of loop, i=n =» ERROR (tries to access A[n+1])

Data Structures and Algorithms
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Sortedness/3

INPUT: A[1..n] - an array of integers.
OUTPUT: TRUE if A is sorted; FALSE otherwise

for i := 1 to n-1
if A[1i] = A[i+1l] then return FALSE
return TRUE

» Start of loop, i=1 % OK

* End of loop, i=n-1 & OK

* A=[1,1,1] » First iteration, from i=1 to i=2 ® OK
* A=[1,1,1] % ERROR (if A[i]=A[i+1] for some i)
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Complexity and Correctness of Algorithms

Sortedness/3

INPUT: A[1l..n] - an array of integers.
OUTPUT: TRUE if A is sorted; FALSE otherwise

for i := 1 to n

if A[i] = A[i+1l] then return FALSE
return TRUE

« Start of loop, i=1 = OK

* Endofloop, i=n-1 =2 OK

* First iteration, from i=1 to i=2 = OK

* A=[1,1,1] = ERROR (if A[i]=A][i+1] for some i)

Data Structures and Algorithms
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N -~ o A

Sortedness/4

INPUT: A[1l..n] - an array of integers.
OUTPUT: TRUE if A is sorted; FALSE otherwise

for i := 1 to n
if A[1] > A[i+1] then return FALSE
return TRUE

* Start of loop, i=1 = OK

* End of loop, i=n-1 = OK

* Firstiteration, from i=1 to i=2 = OK

* A=[1,1,1] = OK

* Empty data structure, n=0 = ? (for loop)
* A=[-1,0,1,-3] = OK
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Complexity and Correctness of Algorithms

Binary Search, Variant 1

Analyze the following algorithm

by considering special cases.

do
m := |(l+r) /2]
else i1if A[m] > g then r
else 1 := m+tl

while 1 < r
return NIL

if A[m] = g then return m
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Binary Search, Variant 1

1l =1, r := n

m := [(1+r) /2]
if A[m] = g then return m
else if A[m] > g then r := m-1
else 1 := m+1

while 1 < r

return NIL

* Start of loop = OK
* End of loop, |=r = Error! Example: search 3 in [3 5 7]
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Binary Search, Variant 1

1l = 1; r := n

do
m := | (l+r) /2]
if A[m] = g then return m
else if A[m] > g then r := m-1
else 1 := m+1

while 1 <= r

return NIL

* Start of loop = OK

* End of loop, |=r & OK

* First iteration  OK

* A=[1,1,1]1% OK

* Empty data structure, n=0 & Error! Tries to access A[0]
* One-element data structure, n=1 % OK
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Binary Search, Variant 1

1l =1, r := n
If r < 1 then return NIL;
do
m := |(l+r) /2]
if A[m] = g then return m
else if A[m] > g then r := m-1
else 1 := m+l

while 1 <= r

* Start of loop = OK

* End of loop, |=r & OK

* First iteration  OK

* A=[1,1,1]1% OK

* Empty data structure, n=0 ® OK

* One-element data structure, n=1 % OK
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Complexity and Correctness of Algorithms

Binary Search, Variant 2

Analyze the following algorithm
by considering special cases

1l := 1, r := n
while 1 < r do
m := [(l+r) /2]
if Alm] <= g
then 1 := mtl else r := m
if A[1-1] = g
then return g else return NIL
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Complexity and Correctness of Algorithms

Binary Search, Variant 3

Analyze the following algorithm
by considering special cases

1l := 1, r := n
while 1 <= r do
m := | (l+r) /2]
if Alm] <= g
then 1 := m+]l else r := m
if A[1-1] = g
then return g else return NIL
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Insertion Sort, Slight Variant

* Analyze the following algorithm
by considering special cases

* Hint: beware of lazy evaluations

INPUT: A[l..n] - an array of integers
OUTPUT: permutation of A s.t.
A[1]<A[2] =<... <A[n]

for j := 2 to n do
key := A[jl; i := j-1;
while A[1] > key and 1 > 0 do
A[1+1] := A[1]; 1--;

A[1+1] := key




N -~ o A

Merge

Analyze the following algorithm
by considering special cases.

INPUT: A[1l..n1], B[1l..n2] sorted arrays of
integers
OUTPUT: permutation C of A.B s.t.

C[1] =<(C[2] =...=<(C[nl4+n2]

1:=1;7:=1;
for k:=1 to nl + n2 do
1f A[1] <= B[j]
then C[k] := A[1]; 1++;
else C[k] := B[j]; j++;
return C;
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Complexity and Correctness of Algorithms

Merge/2

INPUT: A[1l..n1], B[1l..n2] sorted arrays of
integers
OUTPUT: permutation C of A.B s.t.

C[1] =<(C[2] =...=(C[nl1l+n2]

1:=1;7:=1;

for k:= 1 to nl + n2 do
1f jJ > n2 or (i <= nl and A[1]<=B[3j])
then C[k] := A[1]; 1++;
else C[k] := B[j]; j++;

return C;
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Part 2 Complexity and Correctness of Algorithms

Math Refresher

* Arithmetic progression
Z;O i=0+1+..4+n=n(n+1)/2

* Geometric progression (for a numbera # 1)

Z:;Oai:l—I—a2+...+a"=(l—a”H)/(l—a)
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Induction Principle

We want to show that property P is true
for all integers n > nO.

Basis: prove that P is true for nO.
Inductive step: prove that if Pis true for all k
such that n0 < k < n— 1 then Pis also true for n.

Exercise: Prove that every Fibonacci number
of the form fib(3n) is even
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Part 2 Complexity and Correctness of Algorithms

Summary

* Algorithmic complexity
* Asymptotic analysis

— Big O and Theta notation

— Growth of functions and asymptotic notation
* Correctness of algorithms

— Pre/Post conditions

— Invariants

* Special case analysis
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