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Dictionary
● Dictionary – a dynamic data structure with 

methods:
– Search(S, k) – an access operation that returns 

a pointer x to an element where x.key = k
– Insert(S, x) – a manipulation operation that 

adds the element pointed to by x to S
– Delete(S, x) – a manipulation operation that 

removes the element pointed to by x from S
● An element has a key part and a satellite data 

part.
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Dictionaries

● Dictionaries store elements so that they 
can be located quickly using keys.

● A dictionary may hold bank accounts.
– Each account is an object that is identified 

by an account number.
– Each account stores a lot of additional 

information.
– An application wishing to operate on an 

account would have to provide the account 
number as a search key.
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Dictionaries/2

● If order (methods such as min, max, 
successor, predecessor) is not required 
it is enough to check for equality.

● Operations that require ordering are 
still possible but cannot use the 
dictionary access structure.
– Usually all elements must be compared, 

which is slow.
– Can be OK if it is rare enough
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Dictionaries/3
● Different data structures to realize 

dictionaries
– arrays
– linked lists
– Hash tables
– Binary trees
– Red/Black trees
– B-trees

● In Java:
– java.util.Map – interface defining Dictionary ADT
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The Problem

● XY Telecom, a large phone company, 
wants to provide a caller ID capability:
– given a phone number, return the caller’s 

name
– phone numbers range from 0 to r = 108 -1
– want to do this as efficiently as possible
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The Problem/2
● Two suboptimal ways to design this dictionary

– direct addressing: an array indexed by key: 
● Requires O(1) time, 
● Requires O(r) space - huge amount of wasted space

– a linked list: requires O(n) time, O(n) space

9999-
9999

9635-
8905

9635-
8904

0000-
0001

0000-
0000

(null)(null)Jens(null)(null)

Jens

9635-8904

Ole

9635-9999
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Another Solution: Hashing
● We can do better, with a Hash table of size m.
● Like an array, but with a function to map the 

large range into one which we can manage.
● e.g., take the original key, modulo the (relatively small) 

size of the table, and use that as an index
● Insert (9635-8904, Jens) into a hash table with, 

say, five slots (m = 5)
● 96358904   mod   5   =   4

● O(1) expected time, O(n+m) space
43210

Jens(null)(null)(null)(null)
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Hash Functions
● Need to choose a good hash function (HF)

– quick to compute
– distributes keys uniformly throughout the table

● How to deal with hashing non-integer keys:
– find some way of turning the keys into integers

● in our example, remove the hyphen in 9635-8904 
to get 96358904

● for a string, add up the ASCII values of the characters of 
your string (e.g., java.lang.String.hashCode()) 

– then use a standard hash function on the integers
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HF: Division Method
● Use the remainder: h(k) = k mod m

– k is the key, m the size of the table
● Need to choose m
● m = be (bad)

– if m is a power of 2, h(k) gives the e least 
significant bits of k

– all keys with the same ending go to the same place
● m prime (good)

– helps ensure uniform distribution
– primes not too close to exact powers of 2 are best
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HF: Division Method/2
● Example 1

– hash table for n = 2000 character strings, ok to 
investigate an average of three attempts/search

– m = 701
● a prime near 2000/3
● but not near any power of 2

● Further examples
– m = 13

● h(3) = 3
● h(12) = 12
● h(13) = 0
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HF: Multiplication Method
● Use h(k) = m (k A mod 1) 

– k is the key
– m the size of the table
– A is a constant 0 < A < 1
– (k A mod 1): the fractional part of k A

● The steps involved
– map 0...kmax  into 0...kmaxA

– take the fractional part (mod 1)
– map it into 0...m-1
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HF: Multiplication Method/2

● Choice of m and A
– Value of m is not critical: 

typically, for some p use m = 2p

– Optimal choice of A depends 
on the characteristics of the data 

● Knuth says use                      = 0.618033988
5 1
2

A −=
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HF: Multiplication Method/3
● Assume 7-bit binary keys, 0 ≤ k < 128
● m = 64 = 26,    p = 6
● A = 89/128 = .1011001,    k = 107 = 1101011
● Computation of h(k):
          .1011001 A
           1101011 k
   1001010.0110011 kA
          .0110011 kA mod 1
    011001.1       m(kA mod 1)
● Thus, h(k) = 25 
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Collisions

● Assume a key is mapped to an already 
occupied table location
– what to do?

● Use a collision handling technique
● 3 techniques to deal with collisions:
– chaining
– open addressing/linear probing
– open addressing/double hashing
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Chaining
● Chaining maintains a table of links, 

indexed by the keys, 
to lists of items with the same key

0

1

2

3

4
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Open Addressing

● All elements are stored in the hash table 
(can fill up), i.e., n ≤ m

● Each table entry contains 
either an element or null

● When searching for an element, 
systematically probe table slots

● Modify hash function to take probe number i 
as second parameter
  

h: U x { 0, 1, ..., m−1 } → { 0, 1, ..., m−1 }
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Open Addressing/2
● Hash function, h, determines the sequence 

of slots examined for a given key
● Probe sequence for a given key k given by

 

( h(k,0), h(k,1), ..., h(k,m-1) )
 

a permutation of ( 0, 1, ..., m-1 )
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Linear Probing
LinearProbingInsert(k)

01   if (table is full) error
02   probe = h(k)
03   while (table[probe] occupied)
04      probe = (probe+1) mod m
05   table[probe] = k

● If the current location is used, try the next table location:
h(key,i) = (h1(key)+i) mod m

● Lookups walk along the table 
until the key or an empty slot is found

● Uses less memory than chaining
– one does not have to store all those links

● Slower than chaining
– one might have to probe the table for a long time
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Linear Probing/2
● Problem “primary clustering”: 

long lines of occupied slots
– A slot preceded by i full slots has a high 

probability of getting filled: (i+1)/m  
● Alternatives: (quadratic probing,) 

double hashing
● Example:

– h(k) = k mod 13
– insert keys:  18  41  22  44  59  32  31  73
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Double Hashing
● Use two hash functions: 

h(key,i) = (h1(key) + i*h2(key)) mod m, i=0,1,...
DoubleHashingInsert(k)
01   if (table is full) error
02   probe = h1(k)
03   offset = h2(k)
03   while (table[probe] occupied)
04      probe = (probe + offset) mod m
05   table[probe] = k

● Distributes keys much more uniformly 
than linear probing.
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Double Hashing/2

● h2(k) must be relative prime to m 
to search the entire hash table
– Suppose h2(k) = k*a and m = w*a, a > 1

● Two ways to ensure this:
– m is power of 2, h2(k) is odd
– m: prime, h2(k): positive integer < m

● Example
– h1(k) = k mod 13,  h2(k) = 8 - (k mod 8)
– insert keys: 18  41  22  44  59  32  31  73
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Open addressing: delete
● Complex to delete from

– A slot may be reached from different points
● We cannot simply store “NIL”: we'd loose the 

information necessary to retrieve other keys 

– Possible solution: mark the deleted slot as 
“deleted”, insert also on “deleted”
● Drawback: retrieval time no more depending on 

load factor: potentially lots of “jumps” on “deleted” 
slots

● When deletion admitted/frequent, 
                                    chaining preferred 
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Analysis of Hashing: 
● An element with key k is stored in slot h(k) 

(instead of slot k without hashing)
● The hash function h maps the universe U of 

keys into the slots of hash table T[0...m-1]
 

  h: U  →  { 0, 1, ..., m-1 }
 

● Assumption: Each key is equally likely to be 
hashed into any slot (bucket): 

simple uniform hashing
● Given hash table T with m slots holding n 

elements, the load factor is defined as α=n/m
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Analysis of Hashing/2

● Assume time to compute h(k) is Θ(1)
● To find an element

– using h, look up its position in table T
– search for the element in the linked list of the 

hashed slot

– uniform hashing yields an average list length 
α = n/m

– expected number of elements to be examined α 
– search time O(1+α)
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Analysis of Hashing/3

● Assuming the number of hash table slots 
is proportional to 
the number of elements in the table

n = O(m)
α = n/m = O(m)/m = O(1)

– searching takes constant time on average
– insertion takes O(1) worst-case time
– deletion takes O(1) worst-case time (pass 

the element not key, lists are doubly-linked)
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Unsuccessful Successful

 Chaining

 Probing

Expected Number of Probes
● Load factor α < 1 for probing
● Analysis of probing uses uniform hashing 

assumption – any permutation is equally likely

● Chaining: 1 (α=0%), 1.5 (α=50%), 2 (α=100%),  n (α=n)
● Probing, unsucc: 1.25 (α=20%), 2 (α=50%), 5 (α=80%), 10 (α=90%)
● Probing, succ: 0.28 (α=20%), 1.39 (α=50%), 2.01 (α=80%), 2.56 (α=90%)

O 1
1−

 O 1


ln
1

1−


O1 O1
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Expected Number of 
Probes/2
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Summary
● Hashing is very efficient 

(not obvious, probability theory).
● Its functionality is limited (printing elements 

sorted according to key is not supported).
● The size of the hash table 

may not be easy to determine.
● A hash table is not really 

a dynamic data structure.
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Suggested exercises

● Implement a Hash Table with the 
different techniques

● With paper & pencil, draw the evolution 
of a hash table when inserting, deleting 
and searching for new element, with the 
different techniques

● See also exercises of CLRS
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Next Part

● Graphs:
– Representation in memory
– Breadth-first search
– Depth-first search
– Topological sort


