
Slides by M. Böhlen and R. Sebastiani04/26/12 1

Data Structures and
Algorithms

Werner Nutt
nutt@inf.unibz.it

http://www.inf.unibz/it/~nutt

Part 7

Academic Year 2011-2012

Slides by M. Böhlen and R. Sebastiani04/26/12 2

Acknowledgements
& Copyright Notice

These slides are built on top of slides developed by Michael Boehlen.
Moreover, some material (text, figures, examples) displayed in these slides
is courtesy of Kurt Ranalter. Some examples displayed in these slides are

taken from [Cormen, Leiserson, Rivest and Stein, ``Introduction to
Algorithms'', MIT Press], and their copyright is detained by the authors. All
the other material is copyrighted by Roberto Sebastiani. Every commercial
use of this material is strictly forbidden by the copyright laws without the
authorization of the authors. No copy of these slides can be displayed in
public or be publicly distributed without containing this copyright notice.

http://www.ifi.uzh.ch/dbtg/Staff/Boehlen/

Slides by M. Böhlen and R. Sebastiani04/26/12 3

Data Structures and
Algorithms

Week 7

1. Dictionaries
2. Hashing
3. Hash Functions
4. Collisions
5. Performance Analysis

Slides by M. Böhlen and R. Sebastiani04/26/12 4

Data Structures and
Algorithms

Week 7

1. Dictionaries
2. Hashing
3. Hash Functions
4. Collisions
5. Performance Analysis

Slides by M. Böhlen and R. Sebastiani04/26/12 5

Dictionary
● Dictionary – a dynamic data structure with

methods:
– Search(S, k) – an access operation that returns

a pointer x to an element where x.key = k
– Insert(S, x) – a manipulation operation that

adds the element pointed to by x to S
– Delete(S, x) – a manipulation operation that

removes the element pointed to by x from S
● An element has a key part and a satellite data

part.

Slides by M. Böhlen and R. Sebastiani04/26/12 6

Dictionaries

● Dictionaries store elements so that they
can be located quickly using keys.

● A dictionary may hold bank accounts.
– Each account is an object that is identified

by an account number.
– Each account stores a lot of additional

information.
– An application wishing to operate on an

account would have to provide the account
number as a search key.

Slides by M. Böhlen and R. Sebastiani04/26/12 7

Dictionaries/2

● If order (methods such as min, max,
successor, predecessor) is not required
it is enough to check for equality.

● Operations that require ordering are
still possible but cannot use the
dictionary access structure.
– Usually all elements must be compared,

which is slow.
– Can be OK if it is rare enough

Slides by M. Böhlen and R. Sebastiani04/26/12 8

Dictionaries/3
● Different data structures to realize

dictionaries
– arrays
– linked lists
– Hash tables
– Binary trees
– Red/Black trees
– B-trees

● In Java:
– java.util.Map – interface defining Dictionary ADT

Slides by M. Böhlen and R. Sebastiani04/26/12 9

Data Structures and
Algorithms

Week 7

1. Dictionaries
2. Hashing
3. Hash Functions
4. Collisions
5. Performance Analysis

Slides by M. Böhlen and R. Sebastiani04/26/12 10

The Problem

● XY Telecom, a large phone company,
wants to provide a caller ID capability:
– given a phone number, return the caller’s

name
– phone numbers range from 0 to r = 108 -1
– want to do this as efficiently as possible

Slides by M. Böhlen and R. Sebastiani04/26/12 11

The Problem/2
● Two suboptimal ways to design this dictionary

– direct addressing: an array indexed by key:
● Requires O(1) time,
● Requires O(r) space - huge amount of wasted space

– a linked list: requires O(n) time, O(n) space

9999-
9999

9635-
8905

9635-
8904

0000-
0001

0000-
0000

(null)(null)Jens(null)(null)

Jens

9635-8904

Ole

9635-9999

Slides by M. Böhlen and R. Sebastiani04/26/12 12

Another Solution: Hashing
● We can do better, with a Hash table of size m.
● Like an array, but with a function to map the

large range into one which we can manage.
● e.g., take the original key, modulo the (relatively small)

size of the table, and use that as an index
● Insert (9635-8904, Jens) into a hash table with,

say, five slots (m = 5)
● 96358904 mod 5 = 4

● O(1) expected time, O(n+m) space
43210

Jens(null)(null)(null)(null)

Slides by M. Böhlen and R. Sebastiani04/26/12 13

Data Structures and
Algorithms

Week 7

1. Dictionaries
2. Hashing
3. Hash Functions
4. Collisions
5. Performance Analysis

Slides by M. Böhlen and R. Sebastiani04/26/12 14

Hash Functions
● Need to choose a good hash function (HF)

– quick to compute
– distributes keys uniformly throughout the table

● How to deal with hashing non-integer keys:
– find some way of turning the keys into integers

● in our example, remove the hyphen in 9635-8904
to get 96358904

● for a string, add up the ASCII values of the characters of
your string (e.g., java.lang.String.hashCode())

– then use a standard hash function on the integers

Slides by M. Böhlen and R. Sebastiani04/26/12 15

HF: Division Method
● Use the remainder: h(k) = k mod m

– k is the key, m the size of the table
● Need to choose m
● m = be (bad)

– if m is a power of 2, h(k) gives the e least
significant bits of k

– all keys with the same ending go to the same place
● m prime (good)

– helps ensure uniform distribution
– primes not too close to exact powers of 2 are best

Slides by M. Böhlen and R. Sebastiani04/26/12 16

HF: Division Method/2
● Example 1

– hash table for n = 2000 character strings, ok to
investigate an average of three attempts/search

– m = 701
● a prime near 2000/3
● but not near any power of 2

● Further examples
– m = 13

● h(3) = 3
● h(12) = 12
● h(13) = 0

Slides by M. Böhlen and R. Sebastiani04/26/12 17

HF: Multiplication Method
● Use h(k) = m (k A mod 1) 

– k is the key
– m the size of the table
– A is a constant 0 < A < 1
– (k A mod 1): the fractional part of k A

● The steps involved
– map 0...kmax into 0...kmaxA

– take the fractional part (mod 1)
– map it into 0...m-1

Slides by M. Böhlen and R. Sebastiani04/26/12 18

HF: Multiplication Method/2

● Choice of m and A
– Value of m is not critical:

typically, for some p use m = 2p

– Optimal choice of A depends
on the characteristics of the data

● Knuth says use = 0.618033988
5 1
2

A −=

Slides by M. Böhlen and R. Sebastiani04/26/12 19

HF: Multiplication Method/3
● Assume 7-bit binary keys, 0 ≤ k < 128
● m = 64 = 26, p = 6
● A = 89/128 = .1011001, k = 107 = 1101011
● Computation of h(k):
 .1011001 A
 1101011 k
 1001010.0110011 kA
 .0110011 kA mod 1
 011001.1 m(kA mod 1)
● Thus, h(k) = 25

Slides by M. Böhlen and R. Sebastiani04/26/12 20

Data Structures and
Algorithms

Week 7

1. Dictionaries
2. Hashing
3. Hash Functions
4. Collisions
5. Performance Analysis

Slides by M. Böhlen and R. Sebastiani04/26/12 21

Collisions

● Assume a key is mapped to an already
occupied table location
– what to do?

● Use a collision handling technique
● 3 techniques to deal with collisions:
– chaining
– open addressing/linear probing
– open addressing/double hashing

Slides by M. Böhlen and R. Sebastiani04/26/12 22

Chaining
● Chaining maintains a table of links,

indexed by the keys,
to lists of items with the same key

0

1

2

3

4

Slides by M. Böhlen and R. Sebastiani04/26/12 23

Open Addressing

● All elements are stored in the hash table
(can fill up), i.e., n ≤ m

● Each table entry contains
either an element or null

● When searching for an element,
systematically probe table slots

● Modify hash function to take probe number i
as second parameter

h: U x { 0, 1, ..., m−1 } → { 0, 1, ..., m−1 }

Slides by M. Böhlen and R. Sebastiani04/26/12 24

Open Addressing/2
● Hash function, h, determines the sequence

of slots examined for a given key
● Probe sequence for a given key k given by

(h(k,0), h(k,1), ..., h(k,m-1))

a permutation of (0, 1, ..., m-1)

Slides by M. Böhlen and R. Sebastiani04/26/12 25

Linear Probing
LinearProbingInsert(k)

01 if (table is full) error
02 probe = h(k)
03 while (table[probe] occupied)
04 probe = (probe+1) mod m
05 table[probe] = k

● If the current location is used, try the next table location:
h(key,i) = (h1(key)+i) mod m

● Lookups walk along the table
until the key or an empty slot is found

● Uses less memory than chaining
– one does not have to store all those links

● Slower than chaining
– one might have to probe the table for a long time

Slides by M. Böhlen and R. Sebastiani04/26/12 26

Linear Probing/2
● Problem “primary clustering”:

long lines of occupied slots
– A slot preceded by i full slots has a high

probability of getting filled: (i+1)/m
● Alternatives: (quadratic probing,)

double hashing
● Example:

– h(k) = k mod 13
– insert keys: 18 41 22 44 59 32 31 73

Slides by M. Böhlen and R. Sebastiani04/26/12 27

Double Hashing
● Use two hash functions:

h(key,i) = (h1(key) + i*h2(key)) mod m, i=0,1,...
DoubleHashingInsert(k)
01 if (table is full) error
02 probe = h1(k)
03 offset = h2(k)
03 while (table[probe] occupied)
04 probe = (probe + offset) mod m
05 table[probe] = k

● Distributes keys much more uniformly
than linear probing.

Slides by M. Böhlen and R. Sebastiani04/26/12 28

Double Hashing/2

● h2(k) must be relative prime to m
to search the entire hash table
– Suppose h2(k) = k*a and m = w*a, a > 1

● Two ways to ensure this:
– m is power of 2, h2(k) is odd
– m: prime, h2(k): positive integer < m

● Example
– h1(k) = k mod 13, h2(k) = 8 - (k mod 8)
– insert keys: 18 41 22 44 59 32 31 73

Slides by M. Böhlen and R. Sebastiani04/26/12 29

Open addressing: delete
● Complex to delete from

– A slot may be reached from different points
● We cannot simply store “NIL”: we'd loose the

information necessary to retrieve other keys

– Possible solution: mark the deleted slot as
“deleted”, insert also on “deleted”
● Drawback: retrieval time no more depending on

load factor: potentially lots of “jumps” on “deleted”
slots

● When deletion admitted/frequent,
 chaining preferred

Slides by M. Böhlen and R. Sebastiani04/26/12 30

Data Structures and
Algorithms

Week 7

1. Dictionaries
2. Hashing
3. Hash Functions
4. Collisions
5. Performance Analysis

Slides by M. Böhlen and R. Sebastiani04/26/12 31

Analysis of Hashing:
● An element with key k is stored in slot h(k)

(instead of slot k without hashing)
● The hash function h maps the universe U of

keys into the slots of hash table T[0...m-1]

 h: U → { 0, 1, ..., m-1 }

● Assumption: Each key is equally likely to be
hashed into any slot (bucket):

simple uniform hashing
● Given hash table T with m slots holding n

elements, the load factor is defined as α=n/m

Slides by M. Böhlen and R. Sebastiani04/26/12 32

Analysis of Hashing/2

● Assume time to compute h(k) is Θ(1)
● To find an element

– using h, look up its position in table T
– search for the element in the linked list of the

hashed slot

– uniform hashing yields an average list length
α = n/m

– expected number of elements to be examined α
– search time O(1+α)

Slides by M. Böhlen and R. Sebastiani04/26/12 33

Analysis of Hashing/3

● Assuming the number of hash table slots
is proportional to
the number of elements in the table

n = O(m)
α = n/m = O(m)/m = O(1)

– searching takes constant time on average
– insertion takes O(1) worst-case time
– deletion takes O(1) worst-case time (pass

the element not key, lists are doubly-linked)

Slides by M. Böhlen and R. Sebastiani04/26/12 34

Unsuccessful Successful

 Chaining

 Probing

Expected Number of Probes
● Load factor α < 1 for probing
● Analysis of probing uses uniform hashing

assumption – any permutation is equally likely

● Chaining: 1 (α=0%), 1.5 (α=50%), 2 (α=100%), n (α=n)
● Probing, unsucc: 1.25 (α=20%), 2 (α=50%), 5 (α=80%), 10 (α=90%)
● Probing, succ: 0.28 (α=20%), 1.39 (α=50%), 2.01 (α=80%), 2.56 (α=90%)

O 1
1−

 O 1


ln
1

1−


O1 O1

Slides by M. Böhlen and R. Sebastiani04/26/12 35

Expected Number of
Probes/2

Slides by M. Böhlen and R. Sebastiani04/26/12 36

Summary
● Hashing is very efficient

(not obvious, probability theory).
● Its functionality is limited (printing elements

sorted according to key is not supported).
● The size of the hash table

may not be easy to determine.
● A hash table is not really

a dynamic data structure.

Slides by M. Böhlen and R. Sebastiani04/26/12 37

Suggested exercises

● Implement a Hash Table with the
different techniques

● With paper & pencil, draw the evolution
of a hash table when inserting, deleting
and searching for new element, with the
different techniques

● See also exercises of CLRS

Slides by M. Böhlen and R. Sebastiani04/26/12 38

Next Part

● Graphs:
– Representation in memory
– Breadth-first search
– Depth-first search
– Topological sort

