Computational Logic

Datalog with Negation

Free University of Bozen-Bolzano, 2010

Werner Nutt

(Slides by Thomas Eiter and Wolfgang Faber)

Computational Logic

The Issue

e Queries like “complement of transitive closure” need both,

recursion and negation
e Such queries cannot be expressed in datalog (monotonicity)

e Desired: Extension of datalog with negation

Example: ready(D) <— device(D), — busy(D)

e Giving a semantics is not straightforward because of possibly cyclic definitions
Example:

single(X) <— man(X), — husband(X)
husband(X) «— man(X), — single(X)

Datalog with Negation

Datalog ' Syntax

Definition. A datalog™ program P is a finite set of datalog™ rules r of the form

A<—B1,...,Bn (1)
where n > 0 and

A'is an atom Ry ()

e Each B is an atom R;(Z;) or a negated atom — R, (T;)

e T,...,T, are vectors of variables and constants (from dom)

e every variable in T, . . ., &,, must occur in some atom B; = R;(¥;) (“safety”)
e the head of r is A, denoted H (")

e the body of ris { By, ..., By, }, denoted B(r), and

B*(r) ={R(Z) | 3i B; = R(¥)}, B~ (r) = {R(Z) | 3i B; = ~R(Z)}

P has extensional and intensional relations, edb(P) resp. idb(P), like a datalog program.

Remarks: — “—” is as in LP often denoted by “not”

— Equality (=) and inequality (#, as — =) are usually available as built-ins, but usage must be “safe”

Datalog with Negation

Computational Logic 3

Datalog ' Semantics — The Problem

e Idea: Naturally extend the minimal-model semantics of datalog (equivalently, the least

fixpoint-semantics) to negation

e Generalize to this aim the immediate consequence operator
Tp(K): inst(sch(P)) — inst(sch(P))

Definition. Given a datalog™ program P and K € inst(sch(P)),
afact R(t) is an immediate consequence for K and P, if either

- R € edb(P) and R(t) € K, or

— there exists some ground instance 7 of a rule in P such that
x H(r) = R(1),
x* BT (r) C K, and
* B=(r)NnK = (.

(That is, evaluate “—” w.r.t. K)

Datalog with Negation

Problems with Least Fixpoints

e Natural trial: Define the semantics of datalog ' in terms of the least fixpoint of
Tp.

e However, this suffers from several problems:

1. T p may not have a fixpoint:
Py = { known(a) <« —known(a) }
2. T p may not have a least (i.e., single minimal) fixpoint:

P, = single(X) «<— man(X), ~husband(X)
husband(X) « man(X), -single(X) }

I = {man(dilbert)}

Datalog with Negation

Computational Logic

3. The least fixpoint of T p including I may not be constructible
by fixpoint iteration (i.e., not as limit T (I) of {T%(I)};>0):

Ps = P, U {husband(X) < —husband(X), single(X)}
I = {man(dilbert)}) as above

Note: the operator T p is not monotonic!

Datalog with Negation

Problems with Minimal Models

There are similar problems for model-theoretic semantics

e We can associate with PP naturally a first-order theory > p as in the

negation-free case (write rules as implications):

VavZy - VE(((0)Ru(Z1) A+ A (2)Ro(Zn)) — R(T))
e Still, K € inst(sch(P)) isamodelof Ypiff Tp(K) C K
(and models are not necessarily fixpoints)

e However, multiple minimal models of > p containing I might exist

(see the Dilbert example)

Datalog with Negation

Computational Logic

Solution Approaches

Different proposals have been made to handle the problems above:

e Give up single fixpoint/model semantics: Consider alternative fixpoints (models), and

define results by intersection, called certain semantics.

Most well-known: Stable model semantics (Gelfond & Lifschitz, 1988;1991).

Still suffers from 1.

e Constrain the syntax of programs: Consider only a fragment where negation can be

“naturally” evaluated to a single minimal model.

Most well-known: semantics for stratified programs (Apt, Blair & Walker, 1988),

perfect model semantics (Przymusinski, 1987).

Datalog with Negation

e Give up 2-valued semantics: Facts might be true, false or unknown
Adapt and refine the notion of immediate consequence.

Most well-known: Well-founded semantics (Ross, van Gelder & Schlipf, 1991).
Resolves all problems 1-3

e Give up fixpoint/minimality condition: Operational definition of result.

Most well-known: Inflationary semantics (Abiteboul & Vianu, 1988)

Datalog with Negation

Computational Logic

Semi-Positive Datalog

“Easy” case: Datalog— programs where negation is applied only to edb relations.
e Such programs are called semi-positive
e For a semi-positive program, T p is monotonic if the edb-part is fixed, i.e.,
I C JandI|edb(P) = J|edb(P) implies Tp(I) C Tp(J)
Theorem. Let P be a semi-positive datalog program and I € inst(sch(P)). Then,
1. T p has a unique minimal fixpoint J such that I|edb(P) = J|edb(P).

2. X p has a unique minimal model J such that I|edb(P) = J|edb(P).

Datalog with Negation

Example

Semi-positive datalog can express the transitive closure of the complement of a

graph GG with vertexes vert and edges edge:

neg_te(x,y) « vert(x), vert(y), —edge(x,y)
negtc(x,y) <« vert(x), —edge(x, z),negte(z,y)

Datalog with Negation

Computational Logic

Stratified Semantics

e Intuition: For evaluating the body of a rule instance 7 containing —|R(f),

the value of the “negated” relation R(f) should be known:

1. evaluate first R

2. if R(t) is false, then —R(1) is true

3. if R(t) is true, then =R (%) is false and the rule is not applicable.

e Example:
boring(chess) «— —interesting(chess)

interesting(X) <« difficult(X)
For I = {}, compute result { boring(chess)}.

e Note: this introduces procedurality (violates declarativity)!

Datalog with Negation

11

Dependency Graph for Datalog ' programs

Associate with each datalog™ program P a directed graph DEP(P) = (N, E),

called Dependency Graph, as follows:
e N = sch(P), i.e., the nodes are the relations

e L ={(R,R)|Ire P: Hir)=RAR € B(r)},ie,

arcs R — R’ from the relations in rule heads to the relations in the body

e Mark each arc R — R’ with “«”, if R(Z) is in the head of a rule in P

whose body contains =R’ (/)

Remark: edb relations are often omitted in the dependency graph

Datalog with Negation

Computational Logic

Example

P: husband(X) < man(X), married(X).
single(X) < man(X), —husband(X).

husband™ “married
DEP(P): *

singlev man

Stratification Principle

fR=Ry — R4 — Ry — -+ — R,,_1 — R, = R such that

some R; — R;1 is marked with “”, then R’ must be evaluated prior to .

Datalog with Negation

13

Stratification

Definition. A stratification of a datalog program P is a partitioning
Y= (P,...,P)
of sch(P) into nonempty, pairwise disjoint sets P; such that
1.ifR€ P, R € Pj,and R — R'isin DEP(P), theni > j;
2.t R e P;, R € Pj,and R — R'isin DEP(P) marked with “x,” then ¢ > j.
The sets P, ..., P, are called the strata of P w.r.t. 2.

Definition. A datalog program P is called stratified, if it has some stratification ..

Datalog with Negation

Computational Logic

Evaluation Order

A stratification 2 defines an evaluation order for the relations in P
(given I € inst(edb(P))):
1. First evaluate the relations in P; (which is —-free).
= All relations R in heads of P; are defined. This yields J; € inst(sch(Py)).
2. Evaluate P, considering relations in edb(P) and Py as edb(P;),
where = R(t) is true if R(%) is false in T U J1.
= All relations R in heads of P, are defined. This yields Jo € inst(sch(Ps)).

3. Evaluate P; considering relations in edb(P) and Py, ..., P;_1 as edb(F;),
where = R(t) is true if R() isfalseinTUJ; U---UJ;_;.

4. The result of evaluating P on I w.rt. 3, denoted Px;(I),is givenby IUJ; U - - U J,,.

Datalog with Negation

15

Example |

P={ husband(X) «— man(X), married(X)
single(X) «— man(X), —husband(X) }

Stratification X.:

Py = {man, married}, P, = {husband}, P3s = {single}

I = {man(dilbert)}:

—

. Evaluate P: J; ={}

N

. Evaluate Py: Jo = {}

3. Evaluate Ps3: J3 = {single(dilbert)}

SN

. Hence, Px,(I) = {man(dilbert)}, single(dilbert)}

Datalog with Negation

Computational Logic

Formal Definition of Stratified Semantics

Let P be a stratified datalog™ program with stratification X = (P4, ..., P,).
e Let P be the set of rules from I? whose relations in the head are in P;, and set
* * =1 px .
edb(P;) = edb(P), edb(P}) = rels(Uz.zl Pr)Uedb(P),i > 1.
e Forevery I € inst(edb(P)),letIJ = I and define

¥ = T8I = Wp(Tr@) 2 I
7 = Ty = Up(TpIY) 2 I
P = T = p(TeOR) 2 I
I = T% (i) = Ufp(Te: (i) 2 iy

where T (J) = Lim{T% (J)}i»o with T (J) = J and T = To(Th(J)),
and Ifp(Tq(J)) is the least fixpoint K of T such that K|edb(Q) = J|edb(Q).

e Denote Px(I) = IZ

Datalog with Negation

Proposition. Forevery i € {1,...,n},
o Ifp(Tp-(I,)) exists,
o If/p(Tp; (Ti1)) = TCJ%.* (T 1),

o I- CIF

Therefore, P (I) is always well-defined.
Stratified semantics singles out a model, and in fact a minimal model.

Theorem. Px(I) is a minimal model K of P such that K|edb(P) = 1.

Datalog with Negation

Computational Logic 19

Dilbert Example (cont’d)

P={ husband(X) «— man(X), married(X)
single(X) < man(X), ~husband(X) }
edb(P) = {man}

Stratification 32: Py = {man, married}, P, = {husband}, P3 = {single}

1. P = {}
2. P, = {husband(X) «— man(X), married(X)}
3. P35 = {single(X) < man(X), —husband(X)}

I = {man(dilbert)}:

1. IY = {man(dilbert)}
2. I3 = {man(dilbert)}
3. I¥ = {man(dilbert), single(dilbert)}

Hence, Ps(I) = {man(dilbert), single(dilbert)}

Datalog with Negation

| Stratification Theorem

e The stratification > above is not unique.

e Alternative stratification X.’:

Py = {man, married, husband}, Py = {single}

e Evaluation with respect to Y’ yields same result!
The choice of a particular stratification is irrelevant:

Stratification Theorem. Let P be a stratifiable datalog " program. Then, for any
stratifications Y and >’ and I € inst(sch(P)), Ps(I) = Ps/(I).

e Thus, syntactic stratification yields semantically a canonical way of evaluation.

e The result Py, (I) is called the perfect model or stratified model of P for 1.

Datalog with Negation

Computational Logic

Example: Railroad Network

Determine safe connections between locations in a railroad network

bis

olfe

e Cutpoint c for a and b: if ¢ fails, there is no connection between a and b
e Safe connection between a and b: no cutpoints between a and b exist

e E.g., teris a cutpoint for olfe and semel, while quincy is not.

Datalog with Negation

21

Relations:

link(X,Y): direct connection from station X to Y (edb facts)

linked (A,

symmetric closure of link

connected(, there is path between A and B (one or more links)

circumvent(X, A, B): there is a path between A and B not passing X

has_icut_point(A, B): there is at least one cutpoint between A and B

safely_connected (A, B):

)

B)

B)

cutpoint(X, A, B): each path from A to B goes through station X

)

)

) A and B are connected with no cutpoint

)

station(X): X is a railway station

Datalog with Negation

Computational Logic

Railroad program P:

Ri :linked(A, B) :— link(A, B).
Ry: linked(A, B) :— link(B, A).
Rs: connected(A, B) :— linked (A, B).
Ra: connected(A, B) :— connected(A, C), linked(C, B).
Rs: cutpoint(X, A, B) :— connected(A, B), station(X),
—circumvent(X, A, B).
Re: circumvent(X, A, B) :— linked(A, B), X # A, station(X), X # B.
R7: circumvent(X, A, B) :— circumvent(X, A, C), circumvent(X, C, B).
Rs: has_icut_point(A, B) :— cutpoint(X, A, B), X # A, X # B.
Ry: safely_connected(A, B) :— connected(A, B),
—has_icut_point(A, B).
Rio: station(X) :— linked(X, Y).

Remark: Inequality (#) is used here as built-in. It can be easily defined in stratified manner.

Datalog with Negation

DEP(P):

/_\linked

station Q / \

circumvent link
y d
has_icut_point = conpecte
S .
cutpoint

*

safely_connected

Stratification >.:

Py = {link, linked, station, circumvent, connected }
Py = {cutpoint, has_icut_point}

Ps = {safely_connected }

Datalog with Negation

Computational Logic

I(link) = { (semel, bis), (bis, ter), (terolte), (ter, icsi), {ter, quincy),

(quincy,semel), {quincy,clote), {quincy,mamuk),. . ., (dalte,quater) }

Evaluation P (I):
1. P = {link, linked, station, circumvent, connected }:

J1 = linked(semel, bis), linked (bis, ter), linked(ter, olfe), ...,
connected(semel, olfe), ..., circumvent(quincy, semel, bis), ...

2. P, = {cutpoint, has_icut_point }:
Jo = cutpoint(ter, semel, olfe), has_icut_point(semel, olfe) ...
3. Py = {safely_connected}:

J3 = safely_connected(semel, bis), safely_connected(semel, ter)

But, safely_connected(semel, olfe) & J3

Datalog with Negation

Algorithm STRATIFY

Input: a datalog™ program P.
Output: a stratification X2 for P, or “no” if none exists.

1. construct the directed graph G := DEP(P) (=(N, E)) with markers “+”;
2. for each pair R, R’ € N do
if R reaches R’ via some path containing a marked arc
then begin £ := E U{R — R'}; mark R — R’ with “x” end;
3. 1:=1;
4. identify the set K of all vertices R in N s.t. no marked R — R isin F;
5. if K = () and G has vertices left, then output “no”
else begin output K as stratum P;;
remove all vertices in /X and corresponding arcs from G
end;
6. if G has vertices left then begin i := 7 + 1; goto step 4 end
else stop.

Runs in polynomial time!

Datalog with Negation

Computational Logic

Inflationary Semantics for Datalog

Idea: A adopt a production-oriented view of datalog ,

similar as in rule-base expert systems

e A rule should be applied (fired) if the premises (= body literals) are satisfied

with respect to the current state

e Rather than applying one rule at a time (as in expert systems),

fire all applicable rules in parallel
e New facts may fire other rules
e Repeat application of rules, until no more new facts are generated

e This amounts to the least fixpoint of the inflationary version of T p(K)

Datalog with Negation

27

For any datalog™ program P, let TS : inst(sch(P)) — inst(sch(P)) denote

the inflationary variant of T p:

TH(K) =KUTp(K)

Definition. Given a datalog™ program P and I € inst(edb(P)), the inflationary
semantics of P w.rt. I, denoted P;,s (), is the limit of the sequence {T5'(I) }i>o,

where T50(I) = Iand THY TV (1) = TH(TEH (1)),
Notice:
o Pj,s(I) is well-defined for each program P and input database I.
o P, (I) is a model of P containing I, but not necessarily a minimal model.

o Pj,r(I) is a (not necessarily minimal) fixpoint of T}; containing I.

Datalog with Negation

Computational Logic

Example

P ={q(b) — —pla), r(c) —==q(b) pla) —r(c),—pb)}
Consider T;i(I), i>0,forI=10:
0
° T; (I)=1=1{}.
The first two rules are applicable, as —p(a), ~q(b) are satisfied wrt. I.

TH (1) = {q(b), r(c)}.

The third rule is now applicable, as 7 (c), —p(b) are satisfied wrt. I;.

TH(T) = {g(b),7(c), p(a)}.

e No new facts can be obtained, as all rules have been applied.

o Hence, Py (I) = TH(T).
Note that P, (I) is not a minimal model of P containing 1.

Datalog with Negation

29

‘ Example: One-Step-Behind Technique |

Undirected graph G = (V, E), distance d: V? — {0,1,2,...} U{oco}
(d(:zz, y) = length of shortest path between x, y and oo if no path exists)

Define shorter(z,y,z’,y") & dist(z',y') < o

Program P (with edb(P) = {v, e}, where e is symmetric):

t(x,z) — v(x)
t(x,y) — t(z, 2),e(z,y)
t1(z,y) — t(z,y)
shorter(x1,y1,xa,y2) «— t1(x1,y1), t(z2,y2), ~t1(x2, y2)

t1(x,y) is “one step behind” t(z, y)
i>0: tlz,y) € T;i(I) & dist(x,y) <i—1,
tl(z,y) € T#(I) & dist(z,y) <i—2

Datalog with Negation

Computational Logic

Inflationary vs Stratified Semantics

e Inflationary Semantics is well-defined for all datalog ' programs, not only for stratified

programs. (It was used e.g. in the FLORID system.)
e For semi-positive programs, inflationary and stratified semantics coincide.

e Datalog ' queries under stratified semantics are subsumed by inflationary semantics:

Theorem. For every stratified datalog™ program P with “output” relation R, there exists
a datalog™ program P’ such that edb(P’) = edb(P) and for all I € inst(edb(P)),

i/nf (I) (R) = Pstrat (I)(R)

e The converse fails, i.e., there are datalog " queries P under inflationary semantics that

are not equivalent to any datalog ' query under stratified semantics (Kolaitis, 1991).

Intuitive reason: Stratified semantics has a static, fixed number of negation layers, while

inflationary semantics allows dynamically many.

Datalog with Negation

31

| Stable Model Semantics

e Idea: Try to construct a (minimal) fixpoint by iteration from input

If the construction succeeds, the result is the semantics.

e Problem: Application of rules might be compromised.

Example:
P ={p(a) — —p(a), q(b) —pla), pla)«—q(b)}

(edb(P) is void, thus I is immaterial and omitted)

— T p has the least fixpoint {p(a), q(b) }

It is iteratively constructed T = {p(a), q(b) }

p(a) is included into T'} by the first rule, since p(a) ¢ T% = 0.

This compromises the rule application, and p(a) is not “foundedly” derived!

Note: T$ = {p(a),q(b)}

Datalog with Negation

Computational Logic

Fixed Evaluation of Negation

e Reason: T p is not monotonic.

e Solution: Keep negation throughout fixpoint-iteration fixed.

Evaluate negation w.r.t. a fixed candidate fixpoint model J.

e Introduce for datalog ™ program and J € inst(sch(P)) a new immediate

consequence operator T'p j:

Datalog with Negation

33

Immediate Consequences under Fixed Negation

Definition. Given a datalog ™ program P and J, K € inst(sch(P)),
a fact R(t) is an immediate consequence for K and P under negation J,

if either
e R € edb(P)and R(t) € K, or

e there exists some ground instance 7 of a rule in PP such that
- H(r) = R(1),
- BT(r) C K, and
- B (r)ynJ =10.

(That is, evaluate “—” under J instead of K)

Datalog with Negation

Computational Logic

Definition. For any datalog™ program P and J, K € inst(sch(P)), let

Tpy(K)={A| Ais animmediate consequence for K and P under negation J }

Notice:

e T p(K) coincides with T p k (K)

e T p j is a monotonic operator, hence has for each K € inst(sch(P))

a least fixpoint containing K, denoted Ifp(T p 3(K))

e |fp(Tpy(I)) coincides with I on edb(P) and is the limit T} 5 of the sequence

{Th5(@)}iz0

where TOP,J (I) =Iand Tfj',;j(I) =Tpy (TZ]'D’J(I)).

Datalog with Negation

35

Stable Models

Using Tp,,], stable models are defined by requiring that J is reproduced by the

program:

Definition. Let P be a datalog™ program P and I € inst(edb(P)). Then, a stable
model for P and Lis any J € inst(sch(P)) such that

1. Jledb(P) =1, and
2. J = pr(Tp’J(I))
Notice: Monotonicity of TP’J ensures that at no point in the construction of

lfp(T p,3(I)) using fixpoint iteration from I, the application of a rule can be

compromised later.

Datalog with Negation

Computational Logic

Example

P={pla) =-pla), qb)—pla), pla)—qb) }
(edb(P) is void, thus I is immaterial and omitted)

e Take J = {p(a), q(b)}. Then
- T%J —
-Tpy; =10
o Thus lfp(Tpy) =0 # J.
e Hence, the fixpoint J of T p is refuted.

e For P, no stable model exists; thus, it may be regarded as “inconsistent”.

Datalog with Negation

37

| Nondeterminism |

e Problem: A datalog program may have multiple stable models:

P={ single(X) < man(X), —husband(X)
husband(X) « man(X), -single(X) }

I = {man(dilbert)}
e Ji = {man(dilbert), single(dilbert)} is a stable model:
- T% 5, (I) = {man(dilbert)}

(
- Th g, (I) = {man(dilbert), single(dilbert)} (apply 1st rule)
- T% 5, (I) = {man(dilbert), single(dilbert)} = T 5 (I)

e Similarly, J1 = {man(dilbert), husband(dilbert)} is a stable model

(symmetry)

Datalog with Negation

Computational Logic

Stable Model Semantics — Definition

e Solution: Define stable semantics of P as the intersection of all stable models

(certain semantics):

For a datalog™ program P and I € inst(edb(P)),
denote by SM (P, I) the set of all stable models for I and P.

Definition. The stable model semantics of a datalog™ program P for
I € inst(edb(P)), denoted Pk, (I), is given by

N SM(P,1), it SM(P,I)#0,

Py (I) =
B(P,1), otherwise.

Datalog with Negation

39

Examples

P={ single(X) < man(X), —husband(X)
husband(X) « man(X), -single(X) }

Py ({man(dilbert)}) = {man(dilbert)}

P ={pa) < —p(a), q(b) < pla), pla) < q(b)}

Py (0) = {p(a),p(b),q(a),q(b)} = B(P,I).

Datalog with Negation

Computational Logic

Some Properties

e Proposition. Each K € SM (P, 1) is a minimal model of P such that
Kledb(P) = 1.

e Proposition. Each K € SM (P, I) is a minimal fixpoint of T p such that
Kledb(P) =L

e Theorem. If P is a stratified program, than for every I € edb(P),
Psm(I) — Pstrat(I)-
Thus, stable model semantics extends stratified semantics to a larger class of

programs

e Evaluation of stable semantics is intractable: Deciding whether R(C) € P, (I)

for given R(c) and I (while P is fixed) is coNP-complete.

Datalog with Negation

41

Well-Founded Semantics

e Principle: Use three truth values: Some facts are true, some false, all others are

unknown.

e Intuition:
— Positive literals must be derived by applying rules whose body is true

— Conclude that a negated atom — A is true, if A can not be derived by

assuming that all facts which are not true are false.

Datalog with Negation

Computational Logic
Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] K.R. Apt, H.A. Blair, A. Walker, Towards a Theory of Declarative Knowledge, in Foundations of
Deductive Databases and Logic Programming, J. Minker (ed), pp. 89—148, Morgan Kaufmann,
1988.

[8] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems — The Complete Book. Prentice
Hall, 2002.

[4] DLV homepage, since 1996. http://www.dbai.tuwien.ac.at/proj/dlv/.

[5] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In Logic
Programming: Proc. Fifth Intl Conference and Symposium, pp. 1070-1080, 1988. MIT Press.

[6] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases. New
Generation Computing, 9:365-385, 1991.

[7]1 N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV System for
Knowledge Representation and Reasoning. To appear in ACM Transaction on Computational
Logic. Available at http://www.arxiv.org/ps/cs.AI/0211004.

[8] A.van Gelder, K.A. Ross, J.S. Schlipf, The Well-Founded Semantics for General Logic Programs,
Journal of the ACM, 38(3):620-650, 1991.

Datalog with Negation

43

