
Computational Logic

Datalog with Negation

Free University of Bozen-Bolzano, 2010

Werner Nutt

(Slides by Thomas Eiter and Wolfgang Faber)

Computational Logic 1

The Issue

• Queries like “complement of transitive closure” need both,
recursion and negation

• Such queries cannot be expressed in datalog (monotonicity)

• Desired: Extension of datalog with negation

Example: ready(D)← device(D), ¬ busy(D)

• Giving a semantics is not straightforward because of possibly cyclic definitions

Example:

single(X)← man(X), ¬ husband(X)
husband(X)← man(X), ¬ single(X)

Datalog with Negation

Datalog¬ Syntax

Definition. A datalog¬ program P is a finite set of datalog¬ rules r of the form

A ← B1, . . . , Bn (1)
where n ≥ 0 and

• A is an atom R0(!x0)

• Each Bi is an atom Ri(!xi) or a negated atom ¬Ri(!xi)

• !x0, . . . , !xn are vectors of variables and constants (from dom)
• every variable in !x0, . . . , !xn must occur in some atom Bi = Ri(!xi) (“safety”)
• the head of r is A, denotedH(r)

• the body of r is {B1, . . . , Bn }, denoted B(r), and
B+(r) = {R(!x) | ∃i Bi = R(!x)}, B−(r) = {R(!x) | ∃i Bi = ¬R(!x)}

P has extensional and intensional relations, edb(P) resp. idb(P), like a datalog program.

Remarks: – “¬” is as in LP often denoted by “not”
– Equality (=) and inequality (!=, as ¬ =) are usually available as built-ins, but usage must be “safe”

Datalog with Negation

Computational Logic 3

Datalog¬ Semantics – The Problem

• Idea: Naturally extend the minimal-model semantics of datalog (equivalently, the least
fixpoint-semantics) to negation

• Generalize to this aim the immediate consequence operator

TP (K) : inst(sch(P)) → inst(sch(P))

Definition. Given a datalog¬ program P andK ∈ inst(sch(P)),
a fact R(!t) is an immediate consequence for K and P , if either

– R ∈ edb(P) and R(!t) ∈ K, or

– there exists some ground instance r of a rule in P such that

∗ H(r) = R(!t),
∗ B+(r) ⊆ K, and
∗ B−(r) ∩ K = ∅.

(That is, evaluate “¬” w.r.t. K)

Datalog with Negation

Problems with Least Fixpoints

• Natural trial: Define the semantics of datalog¬ in terms of the least fixpoint of
TP .

• However, this suffers from several problems:

1. TP may not have a fixpoint:

P1 = { known(a) ← ¬known(a) }

2. TP may not have a least (i.e., single minimal) fixpoint:

P2 = { single(X) ← man(X),¬husband(X)
husband(X) ← man(X),¬single(X) }

I = {man(dilbert)}

Datalog with Negation

Computational Logic 5

3. The least fixpoint ofTP including I may not be constructible
by fixpoint iteration (i.e., not as limit Tω

P (I) of {Ti
P (I)}i≥0):

P3 = P2 ∪ {husband(X) ← ¬husband(X), single(X)}

I = {man(dilbert)}) as above

Note: the operator TP is not monotonic!

Datalog with Negation

Problems with Minimal Models

There are similar problems for model-theoretic semantics

• We can associate with P naturally a first-order theory ΣP as in the
negation-free case (write rules as implications):

R(!x) ← (¬)R1(!x1), . . . , (¬)Rn(!xn)

!

∀!x∀!x1 · · · ∀!xn(((¬)R1(!x1) ∧ · · · ∧ (¬)Rn(!xn)) → R(!x))

• Still, K ∈ inst(sch(P)) is a model of ΣP iff TP (K) ⊆ K

(and models are not necessarily fixpoints)

• However, multiple minimal models of ΣP containing I might exist
(see the Dilbert example)

Datalog with Negation

Computational Logic 7

Solution Approaches

Different proposals have been made to handle the problems above:

• Give up single fixpoint/model semantics: Consider alternative fixpoints (models), and
define results by intersection, called certain semantics.

Most well-known: Stable model semantics (Gelfond & Lifschitz, 1988;1991).
Still suffers from 1.

• Constrain the syntax of programs: Consider only a fragment where negation can be
“naturally” evaluated to a single minimal model.

Most well-known: semantics for stratified programs (Apt, Blair & Walker, 1988),
perfect model semantics (Przymusinski, 1987).

Datalog with Negation

• Give up 2-valued semantics: Facts might be true, false or unknown

Adapt and refine the notion of immediate consequence.

Most well-known: Well-founded semantics (Ross, van Gelder & Schlipf, 1991).
Resolves all problems 1-3

• Give up fixpoint/minimality condition: Operational definition of result.

Most well-known: Inflationary semantics (Abiteboul & Vianu, 1988)

Datalog with Negation

Computational Logic 9

Semi-Positive Datalog

“Easy” case: Datalog¬ programs where negation is applied only to edb relations.

• Such programs are called semi-positive

• For a semi-positive program, TP is monotonic if the edb-part is fixed, i.e.,
I ⊆ J and I|edb(P) = J|edb(P) implies TP (I) ⊆ TP (J)

Theorem. Let P be a semi-positive datalog program and I ∈ inst(sch(P)). Then,

1. TP has a unique minimal fixpoint J such that I|edb(P) = J|edb(P).

2. ΣP has a unique minimal model J such that I|edb(P) = J|edb(P).

Datalog with Negation

Example

Semi-positive datalog can express the transitive closure of the complement of a
graph G with vertexes vert and edges edge :

neg tc(x, y) ← vert(x), vert(y),¬edge(x, y)

neg tc(x, y) ← vert(x),¬edge(x, z), neg tc(z, y)

Datalog with Negation

Computational Logic 11

Stratified Semantics

• Intuition: For evaluating the body of a rule instance r containing ¬R(!t),
the value of the “negated” relation R(!t) should be known:

1. evaluate first R

2. if R(!t) is false, then ¬R(!t) is true

3. if R(!t) is true, then ¬R(!t) is false and the rule is not applicable.

• Example:

boring(chess) ← ¬interesting(chess)

interesting(X) ← difficult(X)

For I = {}, compute result {boring(chess)}.

• Note: this introduces procedurality (violates declarativity)!

Datalog with Negation

Dependency Graph for Datalog¬ programs

Associate with each datalog¬ program P a directed graph DEP(P) = (N,E),
called Dependency Graph, as follows:

• N = sch(P), i.e., the nodes are the relations

• E = {〈R,R′〉 | ∃r ∈ P : H(r) = R ∧ R′ ∈ B(r)}, i.e.,
arcs R → R′ from the relations in rule heads to the relations in the body

• Mark each arc R → R′ with “∗”, if R(!x) is in the head of a rule in P

whose body contains ¬R′(!y)

Remark: edb relations are often omitted in the dependency graph

Datalog with Negation

Computational Logic 13

Example

P : husband(X) ← man(X), married(X).

single(X) ← man(X), ¬husband(X).

DEP(P): ∗

married

man

husband

single

Stratification Principle

If R = R0 → R1 → R2 → · · · → Rn−1 → Rn = R′ such that
some Ri → Ri+1 is marked with “*”, then R′ must be evaluated prior to R.

Datalog with Negation

Stratification

Definition. A stratification of a datalog program P is a partitioning

Σ = (P1, . . . , Pn)

of sch(P) into nonempty, pairwise disjoint sets Pi such that

1. if R ∈ Pi, R′ ∈ Pj , and R → R′ is in DEP(P), then i ≥ j;

2. if R ∈ Pi, R′ ∈ Pj , and R → R′ is in DEP(P) marked with “∗,” then i > j.

The sets P1, . . . , Pn are called the strata of P w.r.t. Σ.

Definition. A datalog program P is called stratified, if it has some stratification Σ.

Datalog with Negation

Computational Logic 15

Evaluation Order

A stratification Σ defines an evaluation order for the relations in P

(given I ∈ inst(edb(P))):

1. First evaluate the relations in P1 (which is ¬-free).

⇒ All relations R in heads of P1 are defined. This yields J1 ∈ inst(sch(P1)).

2. Evaluate P2 considering relations in edb(P) and P1 as edb(P1),
where ¬R(!t) is true if R(!t) is false in I ∪ J1.

⇒ All relations R in heads of P2 are defined. This yields J2 ∈ inst(sch(P2)).

. . .

3. Evaluate Pi considering relations in edb(P) and P1, . . . , Pi−1 as edb(Pi),
where ¬R(!t) is true if R(!t) is false in I ∪ J1 ∪ · · · ∪ Ji−1.

4. The result of evaluating P on I w.r.t. Σ, denoted PΣ(I), is given by I ∪ J1 ∪ · · ·∪ Jn.

Datalog with Negation

Example

P = { husband(X) ← man(X), married(X)

single(X) ← man(X), ¬husband(X) }

Stratification Σ:

P1 = {man,married}, P2 = {husband}, P3 = {single}

I = {man(dilbert)}:

1. Evaluate P1: J1 = {}

2. Evaluate P2: J2 = {}

3. Evaluate P3: J3 = {single(dilbert)}

4. Hence, PΣ(I) = {man(dilbert)}, single(dilbert)}

Datalog with Negation

Computational Logic 17

Formal Definition of Stratified Semantics

Let P be a stratified datalog¬ program with stratification Σ = (P1, . . . , Pn).
• Let P ∗

i be the set of rules from P whose relations in the head are in Pi, and set
edb(P ∗

1) = edb(P), edb(P ∗
i) = rels(

⋃i−1

j=1 P ∗
j) ∪ edb(P), i > 1.

• For every I ∈ inst(edb(P)), let IΣ
0 = I and define

I
Σ
1 = T

ω

P∗

1
(IΣ

0) = lfp(TP∗

1
(IΣ

0)) ⊇ I
Σ
0

I
Σ
2 = T

ω

P∗

2
(IΣ

1) = lfp(TP∗

2
(IΣ

1)) ⊇ I
Σ
1

. . .

I
Σ
i = T

ω

P∗

i
(IΣ

i−1) = lfp(TP∗

i
(IΣ

i−1)) ⊇ I
Σ
i−1

. . .

I
Σ
n = T

ω
P∗

n
(IΣ

n−1) = lfp(TP∗

n
(IΣ

n−1)) ⊇ I
Σ
n−1

whereTω
Q(J) = lim{Ti

Q(J)}i≥0 with T0
Q(J) = J andT

i+1
Q = TQ(Ti

Q(J)),
and lfp(TQ(J)) is the least fixpointK ofTQ such thatK|edb(Q) = J|edb(Q).

• Denote PΣ(I) = IΣ
n

Datalog with Negation

Proposition. For every i ∈ {1, . . . , n},

• lfp(TP ∗

i
(IΣ

i−1)) exists,

• lfp(TP ∗

i
(IΣ

i−1)) = Tω
P ∗

i

(IΣ
i−1),

• IΣ
i−1 ⊆ IΣ

i .

Therefore, PΣ(I) is always well-defined.

Stratified semantics singles out a model, and in fact a minimal model.

Theorem. PΣ(I) is a minimal modelK of P such thatK|edb(P) = I.

Datalog with Negation

Computational Logic 19

Dilbert Example (cont’d)

P = { husband(X) ← man(X), married(X)

single(X) ← man(X), ¬husband(X) }

edb(P) = {man}

Stratification Σ: P1 = {man, married}, P2 = {husband}, P3 = {single}

1. P1 = {}

2. P2 = {husband(X) ← man(X), married(X)}

3. P3 = {single(X) ← man(X), ¬husband(X)}

I = {man(dilbert)}:

1. I
Σ
1 = {man(dilbert)}

2. I
Σ
2 = {man(dilbert)}

3. I
Σ
3 = {man(dilbert), single(dilbert)}

Hence, PΣ(I) = {man(dilbert), single(dilbert)}

Datalog with Negation

Stratification Theorem

• The stratification Σ above is not unique.

• Alternative stratification Σ′:
P1 = {man,married , husband}, P2 = {single}

• Evaluation with respect to Σ′ yields same result!

The choice of a particular stratification is irrelevant:

Stratification Theorem. Let P be a stratifiable datalog¬ program. Then, for any
stratifications Σ and Σ′ and I ∈ inst(sch(P)), PΣ(I) = PΣ′(I).

• Thus, syntactic stratification yields semantically a canonical way of evaluation.

• The result Pstr(I) is called the perfect model or stratified model of P for I.

Datalog with Negation

Computational Logic 21

Example: Railroad Network

Determine safe connections between locations in a railroad network

mamuk

clote

semel
quincy

olfe

ter

bis

dalte
quater

icsi

• Cutpoint c for a and b: if c fails, there is no connection between a and b

• Safe connection between a and b: no cutpoints between a and b exist

• E.g., ter is a cutpoint for olfe and semel, while quincy is not.

Datalog with Negation

Relations:

link(X ,Y): direct connection from station X to Y (edb facts)

linked(A,B): symmetric closure of link

connected(A,B): there is path betweenA and B (one or more links)

cutpoint(X ,A,B): each path from A to B goes through station X

circumvent(X ,A,B): there is a path between A and B not passingX

has icut point(A,B): there is at least one cutpoint betweenA and B

safely connected(A,B): A and B are connected with no cutpoint

station(X): X is a railway station

Datalog with Negation

Computational Logic 23

Railroad program P :

R1 : linked(A,B) :− link(A,B).

R2: linked(A,B) :− link(B ,A).

R3: connected(A, B) :− linked(A, B).

R4: connected(A, B) :− connected(A, C), linked(C ,B).

R5: cutpoint(X , A,B) :− connected(A, B), station(X),

¬circumvent(X , A,B).

R6: circumvent(X , A,B) :− linked(A,B),X != A, station(X), X != B .

R7: circumvent(X , A,B) :− circumvent(X , A,C), circumvent(X , C ,B).

R8: has icut point(A,B) :− cutpoint(X , A,B),X != A,X != B .

R9: safely connected(A, B) :− connected(A, B),

¬has icut point(A,B).

R10: station(X) :− linked(X , Y).

Remark: Inequality (!=) is used here as built-in. It can be easily defined in stratified manner.

Datalog with Negation

DEP(P):

connected

circumvent
station linked

has_icut_point

link

cutpoint

safely_connected
*

*

Stratification Σ:

P1 = {link , linked , station, circumvent , connected}

P2 = {cutpoint , has icut point}

P3 = {safely connected}

Datalog with Negation

Computational Logic 25

I(link) = { 〈semel, bis〉, 〈bis, ter〉, 〈ter,olfe〉, 〈ter, icsi〉, 〈ter, quincy〉,

〈quincy,semel〉, 〈quincy,clote〉, 〈quincy,mamuk〉,. . . , 〈dalte,quater〉 }

Evaluation PΣ(I):

1. P1 = {link , linked , station, circumvent , connected}:

J1 = linked(semel , bis), linked(bis, ter), linked(ter , olfe), . . . ,
connected(semel , olfe), . . . , circumvent(quincy , semel , bis), . . .

2. P2 = {cutpoint , has icut point}:

J2 = cutpoint(ter , semel , olfe), has icut point(semel , olfe) . . .

3. P3 = {safely connected}:

J3 = safely connected(semel , bis), safely connected(semel , ter)

But, safely connected(semel , olfe) /∈ J3

Datalog with Negation

Algorithm STRATIFY

Input: a datalog¬ program P .
Output: a stratification Σ for P , or “no” if none exists.

1. construct the directed graph G := DEP(P) (=〈N, E〉) with markers “∗”;
2. for each pair R, R′ ∈ N do

ifR reachesR′ via some path containing a marked arc
then begin E := E ∪ {R → R′}; mark R → R′ with “∗” end;

3. i := 1;
4. identify the set K of all vertices R in N s.t. no marked R → R′ is in E;
5. ifK = ∅ and G has vertices left, then output “no”
else begin output K as stratum Pi;
remove all vertices in K and corresponding arcs from G;

end;
6. ifG has vertices left then begin i := i + 1; goto step 4 end
else stop.

Runs in polynomial time!

Datalog with Negation

Computational Logic 27

Inflationary Semantics for Datalog

Idea: A adopt a production-oriented view of datalog¬,
similar as in rule-base expert systems

• A rule should be applied (fired) if the premises (= body literals) are satisfied
with respect to the current state

• Rather than applying one rule at a time (as in expert systems),
fire all applicable rules in parallel

• New facts may fire other rules

• Repeat application of rules, until no more new facts are generated

• This amounts to the least fixpoint of the inflationary version of TP (K)

Datalog with Negation

For any datalog¬ program P , let T+
P : inst(sch(P)) → inst(sch(P)) denote

the inflationary variant of TP :

T
+
P (K) = K ∪ TP (K)

Definition. Given a datalog¬ program P and I ∈ inst(edb(P)), the inflationary

semantics of P w.r.t. I, denoted Pinf (I), is the limit of the sequence {T+
P

i
(I)}i≥0,

where T
+
P

0
(I) = I and T

+
P

(i+1)
(I) = T

+
P (T+

P

i
(I)).

Notice:

• Pinf (I) is well-defined for each program P and input database I.

• Pinf (I) is a model of P containing I, but not necessarily a minimal model.

• Pinf (I) is a (not necessarily minimal) fixpoint of T+
P containing I.

Datalog with Negation

Computational Logic 29

Example

P = {q(b) ← ¬p(a), r(c) ← ¬q(b) p(a) ← r(c),¬p(b)}

ConsiderT+
P

i
(I), i ≥ 0, for I = ∅:

• T
+
P

0
(I) = I = {}.

• The first two rules are applicable, as ¬p(a), ¬q(b) are satisfied wrt. I0.

• T
+
P

1
(I) = {q(b), r(c)}.

• The third rule is now applicable, as r(c), ¬p(b) are satisfied wrt. I1.

• T
+
P

2
(I) = {q(b), r(c), p(a)}.

• No new facts can be obtained, as all rules have been applied.

• Hence, Pinf (I) = T
+
P

2
(I).

Note that Pinf (I) is not a minimal model of P containing I.

Datalog with Negation

Example: One-Step-Behind Technique

Undirected graph G = 〈V, E〉, distance d : V 2 −→ {0, 1, 2, . . .} ∪ {∞}

(d(x, y) = length of shortest path between x, y and∞ if no path exists)

Define shorter(x, y, x′, y′) :⇔ dist(x′, y′) < ∞

Program P (with edb(P) = {v, e}, where e is symmetric):

t(x, x) ← v(x)

t(x, y) ← t(x, z), e(z, y)

t1(x, y) ← t(x, y)

shorter(x1, y1, x2, y2) ← t1(x1, y1), t(x2, y2),¬t1(x2, y2)

t1(x, y) is “one step behind” t(x, y)

i ≥ 0 : t(x, y) ∈ T
+
P

i
(I) ⇔ dist(x, y) ≤ i − 1,

t1(x, y) ∈ T
+
P

i
(I) ⇔ dist(x, y) ≤ i − 2

Datalog with Negation

Computational Logic 31

Inflationary vs Stratified Semantics

• Inflationary Semantics is well-defined for all datalog¬ programs, not only for stratified
programs. (It was used e.g. in the FLORID system.)

• For semi-positive programs, inflationary and stratified semantics coincide.

• Datalog¬ queries under stratified semantics are subsumed by inflationary semantics:

Theorem. For every stratified datalog¬ program P with “output” relation R, there exists
a datalog¬ program P ′ such that edb(P ′) = edb(P) and for all I ∈ inst(edb(P)),
P ′

inf (I)(R) = Pstrat(I)(R).

• The converse fails, i.e., there are datalog¬ queries P under inflationary semantics that
are not equivalent to any datalog¬ query under stratified semantics (Kolaitis, 1991).

Intuitive reason: Stratified semantics has a static, fixed number of negation layers, while
inflationary semantics allows dynamically many.

Datalog with Negation

Stable Model Semantics

• Idea: Try to construct a (minimal) fixpoint by iteration from input

If the construction succeeds, the result is the semantics.

• Problem: Application of rules might be compromised.

Example:

P = {p(a) ← ¬p(a), q(b) ← p(a), p(a) ← q(b)}

(edb(P) is void, thus I is immaterial and omitted)

– TP has the least fixpoint {p(a), q(b)}

– It is iteratively constructedTω
P = {p(a), q(b)}

– p(a) is included into T1
P by the first rule, since p(a) /∈ T0

P = ∅.

– This compromises the rule application, and p(a) is not “foundedly” derived!

– Note: T+
P = {p(a), q(b)}

Datalog with Negation

Computational Logic 33

Fixed Evaluation of Negation

• Reason: TP is not monotonic.

• Solution: Keep negation throughout fixpoint-iteration fixed.

Evaluate negation w.r.t. a fixed candidate fixpoint model J.

• Introduce for datalog¬ program and J ∈ inst(sch(P)) a new immediate
consequence operator TP,J:

Datalog with Negation

Immediate Consequences under Fixed Negation

Definition. Given a datalog¬ program P and J,K ∈ inst(sch(P)),
a fact R(!t) is an immediate consequence for K and P under negation J,
if either

• R ∈ edb(P) and R(!t) ∈ K, or

• there exists some ground instance r of a rule in P such that

– H(r) = R(!t),

– B+(r) ⊆ K, and

– B−(r) ∩ J = ∅.

(That is, evaluate “¬” under J instead of K)

Datalog with Negation

Computational Logic 35

Definition. For any datalog¬ program P and J,K ∈ inst(sch(P)), let

TP,J(K) = {A | A is an immediate consequence for K and P under negation J}

Notice:

• TP (K) coincides with TP,K(K)

• TP,J is a monotonic operator, hence has for each K ∈ inst(sch(P))

a least fixpoint containing K, denoted lfp(TP,J(K))

• lfp(TP,J(I)) coincides with I on edb(P) and is the limit Tω
P,J of the sequence

{Ti
P,J(I)}i≥0

where T0
P,J(I) = I and T

i+1
P,J(I) = TP,J(Ti

P,J(I)).

Datalog with Negation

Stable Models

Using TP,J, stable models are defined by requiring that J is reproduced by the
program:

Definition. Let P be a datalog¬ program P and I ∈ inst(edb(P)). Then, a stable
model for P and I is any J ∈ inst(sch(P)) such that

1. J|edb(P) = I, and

2. J = lfp(TP,J(I)).

Notice: Monotonicity of TP,J ensures that at no point in the construction of
lfp(TP,J(I)) using fixpoint iteration from I, the application of a rule can be
compromised later.

Datalog with Negation

Computational Logic 37

Example

P = { p(a) ← ¬p(a), q(b) ← p(a), p(a) ← q(b) }

(edb(P) is void, thus I is immaterial and omitted)

• Take J = {p(a), q(b)}. Then

– T0
P,J = ∅

– T1
P,J = ∅

• Thus lfp(TP,J) = ∅ 4= J.

• Hence, the fixpoint J of TP is refuted.

• For P , no stable model exists; thus, it may be regarded as “inconsistent”.

Datalog with Negation

Nondeterminism

• Problem: A datalog program may have multiple stable models:

P = { single(X) ← man(X),¬husband(X)
husband(X) ← man(X),¬single(X) }

I = {man(dilbert)}

• J1 = {man(dilbert), single(dilbert)} is a stable model:

– T0
P,J1

(I) = {man(dilbert)}

– T1
P,J1

(I) = {man(dilbert), single(dilbert)} (apply 1st rule)

– T2
P,J1

(I) = {man(dilbert), single(dilbert)} = Tω
P,J1

(I)

• Similarly, J1 = {man(dilbert), husband(dilbert)} is a stable model
(symmetry)

Datalog with Negation

Computational Logic 39

Stable Model Semantics – Definition

• Solution: Define stable semantics of P as the intersection of all stable models
(certain semantics):

For a datalog¬ program P and I ∈ inst(edb(P)),
denote by SM (P, I) the set of all stable models for I and P .

Definition. The stable model semantics of a datalog¬ program P for
I ∈ inst(edb(P)), denoted Psm(I), is given by

Psm(I) =

⋂

SM (P, I), if SM (P, I) 4= ∅,

B(P, I), otherwise.

Datalog with Negation

Examples

•

P = { single(X) ← man(X),¬husband(X)

husband(X) ← man(X),¬single(X) }

Psm({man(dilbert)}) = {man(dilbert)}

•

P = {p(a) ← ¬p(a), q(b) ← p(a), p(a) ← q(b)}

Psm(∅) = {p(a), p(b), q(a), q(b)} = B(P, I).

Datalog with Negation

Computational Logic 41

Some Properties

• Proposition. Each K ∈ SM (P, I) is a minimal model of P such that
K|edb(P) = I.

• Proposition. Each K ∈ SM (P, I) is a minimal fixpoint of TP such that
K|edb(P) = I.

• Theorem. If P is a stratified program, than for every I ∈ edb(P),
Psm(I) = Pstrat(I).

Thus, stable model semantics extends stratified semantics to a larger class of
programs

• Evaluation of stable semantics is intractable: Deciding whether R(!c) ∈ Psm(I)

for given R(!c) and I (while P is fixed) is coNP-complete.

Datalog with Negation

Well-Founded Semantics

• Principle: Use three truth values: Some facts are true, some false, all others are
unknown.

• Intuition:

– Positive literals must be derived by applying rules whose body is true

– Conclude that a negated atom ¬A is true, if A can not be derived by
assuming that all facts which are not true are false.

Datalog with Negation

Computational Logic 43

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] K.R. Apt, H.A. Blair, A. Walker, Towards a Theory of Declarative Knowledge, in Foundations of
Deductive Databases and Logic Programming, J. Minker (ed), pp. 89–148, Morgan Kaufmann,
1988.

[3] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems – The Complete Book. Prentice
Hall, 2002.

[4] DLV homepage, since 1996. http://www.dbai.tuwien.ac.at/proj/dlv/.

[5] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In Logic
Programming: Proc. Fifth Intl Conference and Symposium, pp. 1070–1080, 1988. MIT Press.

[6] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases. New
Generation Computing, 9:365–385, 1991.

[7] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV System for
Knowledge Representation and Reasoning. To appear in ACM Transaction on Computational
Logic. Available at http://www.arxiv.org/ps/cs.AI/0211004.

[8] A. van Gelder, K.A. Ross, J.S. Schlipf, The Well-Founded Semantics for General Logic Programs,
Journal of the ACM, 38(3):620–650, 1991.

Datalog with Negation

