
Computational Logic

Datalog

Free University of Bozen-Bolzano, 2010

Werner Nutt

(Based on slides by Thomas Eiter and Wolfgang Faber)

Foundations of Databases 1

Motivation

• Relational Calculus and Relational Algebra were considered to be “the” database

languages for a long time

• Codd: A query language is “complete,” if it yields Relational Calculus

• However, Relational Calculus misses an important feature: recursion

• Example: A metro database with relation links:line, station, nextstation

What stations are reachable from station “Odeon”?

Can we go from Odeon to Tuileries?

etc.

• It can be proved: such queries cannot be expressed in Relational Calculus

• This motivated a logic-programming extension to conjunctive queries: datalog

Datalog

Foundations of Databases 2

Example: Metro Database Instance

links line station nextstation

4 St.Germain Odeon

4 Odeon St.Michel

4 St. Michel Chatelet

1 Chatelet Louvres

1 Louvres Palais Royal

1 Palais-Royal Tuileries

1 Tuileries Concorde

Datalog program for first query:

reach(X, X) ← links(L, X, Y)

reach(X, X) ← links(L, Y, X)

reach(X, Y) ← links(L, X, Z), reach(Z, Y)

answer(X) ← reach(‘Odeon‘, X)

Note: recursive definition

Intuitively, if the part right of “←” is true, the rule “fires” and the atom left of “←” is concluded.

Datalog

Foundations of Databases 3

The Datalog Language

• datalog is akin to Logic Programming

• The basic language (considered next) has many extensions

• There exist several approaches to defining the semantics:

Model-theoretic approach:

View rules as logical sentences, which state the query result

Operational (fixpoint) approach:

Obtain query result by applying an inference procedure,

until a fixpoint is reached

Proof-theoretic approach:

Obtain proofs of facts in the query result, following a proof calculus

(based on resolution)

Datalog

Foundations of Databases 4

Datalog vs. Logic Programming

Although Datalog is akin to Logic Programming, there are important differences:

• There are no functions symbols in datalog. Consequently, no potentially

infinite data structures, such as lists, are supported

• Datalog has a purely declarative semantics. In a datalog program,

– the order of clauses is irrelevant

– the order of atoms in a rule body is irrelevant

• Datalog programs adhere to the active domain semantics

(like Safe Relational Calculus, Relational Algebra)

• Datalog distinguishes between

– database relations (“extensional database”, edb) and

– derived relations (“intensional database”, idb)

Datalog

Foundations of Databases 5

Syntax of “plain datalog”, or “datalog”

Definition. A datalog rule r is an expression of the form

R0(~x0)← R1(~x1), . . . , Rn(~xn) (1)

• where n ≥ 0,

R0, . . . , Rn are relations names, and

~x0, . . . , ~xn are vectors of variables and constants (from dom)

• every variable in ~x0 occurs in ~x1, . . . , ~xn (“safety”)

Remarks.

• The head of r, denoted H(r), is R0(~x0)

• The body of r, denoted B(r), is { R1(~x1), . . . , Rn(~xn) }

• The rule symbol “←” is often also written as “:-”

Definition. A datalog program is a finite set of datalog rules.

Datalog

Foundations of Databases 6

Datalog Programs

Let P be a datalog program.

• An extensional relation of P is a relation occurring only in rule bodies of P

• An intensional relation of P is a relation occurring in the head of some rule in P

• The extensional schema of P , edb(P), consists of all extensional relations of P

• The intensional schema of P , idb(P), consists of all intensional relations of P

• The schema of P , sch(P), is the union of edb(P) and idb(P).

Remarks.

• Sometimes, extensional and intensional relations are explicitly specified. It is

possible then for intensional relations to occur only in rule bodies (but such

relations are of no use then).

• In a Logic Programming view, the term “predicate” is used as synonym for

“relation” or “relation name.”

Datalog

Foundations of Databases 7

The Metro Example /1

Datalog program P on metro database scheme

M = {links : line, station, nextstation}:

reach(X, X) ← links(L, X, Y)

reach(X, X) ← links(L, Y, X)

reach(X, Y) ← links(L, X, Z), reach(Z, Y)

answer(X) ← reach(′Odeon′, X)

Here,

edb(P) = {links} (=M),

idb(P) = {reach, answer},

sch(P) = {links, reach, answer}

Datalog

Foundations of Databases 8

Datalog Syntax (cntd)

• The set of constants occurring in a datalog program P is denoted as adom(P)

• Given a database instance I, we define the active domain of P with respect to I

as

adom(P, I) := adom(P) ∪ adom(I),

that is, as the set of constants occurring in P and I

Definition. Let ν : var(r) ∪ dom→ dom be a valuation for a rule r of form (1).

Then the instantiation of r with ν, denoted ν(r), is the rule

R0(ν(~x0))← R1(ν(~x1)), . . . , Rn(ν(~xn))

which results from replacing each variable x with ν(x).

Datalog

Foundations of Databases 9

The Metro Example /2

• For the datalog program P above, we have that adom(P) = { Odeon }

• We consider the database instance I:

links line station nextstation

4 St.Germain Odeon

4 Odeon St.Michel

4 St. Michel Chatelet

1 Chatelet Louvres

1 Louvres Palais-Royal

1 Palais-Royal Tuileries

1 Tuileries Concorde

Then adom(I) = {4, 1, St.Germain, Odeon, St.Michel, Chatelet, Louvres,

Palais-Royal, Tuileries, Concorde}

• Also adom(P, I) = adom(I).

Datalog

Foundations of Databases 10

The Metro Example /3

• The rule

reach(St.Germain, Odeon) ← links(Louvres, St.Germain, Concorde),

reach(Concorde, Odeon)

is an instance of the rule

reach(X, Y) ← links(L, X, Z), reach(Z, Y)

of P :

take ν(X) = St.Germain, ν(L) = Louvres, ν(Y) = Odeon, ν(Z) = Concorde

Datalog

Foundations of Databases 11

Datalog: Model-Theoretic Semantics

General Idea:

• We view a program as a set of first-order sentences

• Given an instance I of edb(P), the result of P is a database instance of

sch(P) that extends I and satisfies the sentences (or, is a model of the

sentences)

• There can be many models

• The intended answer is specified by particular models

• These particular models are selected by “external” conditions

Datalog

Foundations of Databases 12

Logical Theory ΣP

• To every datalog rule r of the form R0(~x0)← R1(~x1), . . . , Rn(~xn), with

variables x1, . . . , xm, we associate the logical sentence σ(r):

∀x1, · · · ∀xm (R1(~x1) ∧ · · · ∧Rn(~xn)→ R0(~x0))

• To a program P , we associate the set of sentences ΣP = {σ(r) | r ∈ P}.

Definition. Let P be a datalog program and I an instance of edb(P). Then,

• A model of P is an instance of sch(P) that satisfies ΣP

• We compare models wrt set inclusion “⊆” (in the Logic Programming

perspective)

• The semantics of P on input I, denoted P (I), is the least model of P

containing I, if it exists.

Datalog

Foundations of Databases 13

Example

For program P and instance I of the Metro Example, the least model is:

links line station nextstation

4 St.Germain Odeon

4 Odeon St.Michel

4 St. Michel Chatelet

1 Chatelet Louvres

1 Louvres Palais-Royal

1 Palais-Royal Tuileries

1 Tuileries Concorde

reach

St.Germain St.Germain

Odeon Odeon

· · ·

Concorde Concorde

St.Germain Odeon

St.Germain St.Michel

St.Germain Chatelet

St.Germain Louvres

· · ·

answer

Odeon

St.Michel

Chatelet

Louvres

Palais-Royal

Tuileries

Concorde

Datalog

Foundations of Databases 14

Questions

• Is the semantics P (I) well-defined for every input instance I?

• How can one compute P (I)?

Observation: For any I, there is a model of P containing I

• Let B(P, I) be the instance of sch(P) such that

B(P, I)(R) =

I(R) for each R ∈ edb(P)

adom(P, I)arity(R) for each R ∈ idb(P)

• Then: B(P, I) is a model of P containing I

⇒ P (I) is a subset of B(P, I) (if it exists)

• Naive algorithm: explore all subsets of B(P, I)

Datalog

Foundations of Databases 15

Elementary Properties of P (I)

Let P be a datalog program, I an instance of edb(P), andM(I) the set of all

models of P containing I.

Theorem. The intersection
⋂

M∈M(I) M is a model of P .

Corollary.

1. P (I) =
⋂

M∈M(I) M

2. adom(P (I)) ⊆ adom(P, I), that is, no new values appear

3. P (I)(R) = I(R), for each R ∈ edb(P).

Consequences:

• P (I) is well-defined for every I

• If P and I are finite, the P (I) is finite

Datalog

Foundations of Databases 16

Why Choose the Least Model?

There are two reasons to choose the least model containing I:

1. The Closed World Assumption:

• If a fact R(~c) is not true in all models of a database I, then infer that R(~c) is

false

• This amounts to considering I as complete

• . . . which is customary in database practice

2. The relationship to Logic Programming:

• Datalog should desirably match Logic Programming (seamless integration)

• Logic Programming builds on the minimal model semantics

Datalog

Foundations of Databases 17

Relating Datalog to Logic Programming

• A logic program makes no distinction between edb and idb

• A datalog program P and an instance I of edb(P) can be mapped to the logic

program

P(P, I) = P ∪ I

(where I is viewed as a set of atoms in the Logic Programming perspective)

• Correspondingly, we define the logical theory

ΣP,I = ΣP ∪ I

• The semantics of the logic program P = P(P, I) is defined in terms of

Herbrand interpretations of the language induced by P :

– The domain of discourse is formed by the constants occurring in P

– Each constant occurring in P is interpreted by itself

Datalog

Foundations of Databases 18

Herbrand Interpretations of Logic Programs

Given a rule r, we denote by Const(r) the set of all constants in r

Definition. For a (function-free) logic program P , we define

• the Herbrand universe of P , by

HU(P) =
⋃

r∈P

Const(r)

• the Herbrand base of P , by

HB(P) = {R(c1, . . . , cn) | R is a relation in P ,

c1, . . . , cn ∈ HU(P), and ar(R) = n}

Datalog

Foundations of Databases 19

Example

P = { arc(a, b).

arc(b, c).

reachable(a).

reachable(Y)← arc(X, Y), reachable(X). }

HU(P) = {a, b, c}

HB(P) = {arc(a, a), arc(a, b), arc(a, c),

arc(b, a), arc(b, b), arc(b, c),

arc(c, a), arc(c, b), arc(c, c),

reachable(a), reachable(b), reachable(c)}

Datalog

Foundations of Databases 20

Grounding

• A rule r′ is a ground instance of a rule r with respect to HU(P), if r′ = ν(r)

for a valuation ν such that ν(x) ∈ HU(P) for each x ∈ var(r).

• The grounding of a rule r with respect to HU(P), denoted GroundP(r), is the

set of all ground instances of r wrt HU(P)

• The grounding of a logic program P is

Ground(P) =
⋃

r∈P

GroundP(r)

Datalog

Foundations of Databases 21

Example

Ground(P) = {arc(a, b). arc(b, c). reachable(a).

reachable(a) ← arc(a, a), reachable(a).

reachable(b) ← arc(a, b), reachable(a).

reachable(c) ← arc(a, c), reachable(a).

reachable(a) ← arc(b, a), reachable(b).

reachable(b) ← arc(b, b), reachable(b).

reachable(c) ← arc(b, c), reachable(b).

reachable(a) ← arc(c, a), reachable(c).

reachable(b) ← arc(c, b), reachable(c).

reachable(c) ← arc(c, c), reachable(c). }

Datalog

Foundations of Databases 22

Herbrand Models

• A Herbrand-interpretation I of P is any subset I ⊆ HB(P)

• A Herbrand-model of P is a Herbrand-interpretation that satisfies all sentences

in ΣP,I

Equivalently, M ⊆ HB(P) is a Herbrand model if

• for all r ∈ Ground(P) such that B(r) ⊆M we have that H(r) ⊆M

Datalog

Foundations of Databases 23

Example

The Herbrand models of program P above are exactly the following:

• M1 = { arc(a, b), arc(b, c),

reachable(a), reachable(b), reachable(c) }

• M2 = HB(P)

• every interpretation M such that M1 ⊆M ⊆M2

and no others.

Datalog

Foundations of Databases 24

Logic Programming Semantics

• Proposition. HB(P) is always a model of P

• Theorem. For every logic program there exists a least Herbrand model (wrt “⊆”).

For a program P , this model is denoted MM(P) (for “minimal model”).

The model MM(P) is the semantics of P .

• Theorem (Datalog ↔ Logic Programming). Let P be a datalog program and

I be an instance of edb(P). Then,

P (I) = MM(P(P, I))

Datalog

Foundations of Databases 25

Consequences

Results and techniques for Logic Programming can be exploited for datalog.

For example,

• proof procedures for Logic Programming (e.g., SLD resolution) can be applied to

datalog (with some caveats, regarding for instance termination)

• datalog can be reduced by “grounding” to propositional logic programs

Datalog

Foundations of Databases 26

Fixpoint Semantics

Another view:

“If all facts in I hold, which other facts must hold after firing the rules in P ?”

Approach:

• Define an immediate consequence operator TP (K) on db instances K.

• Start with K = I.

• Apply TP to obtain a new instance: Knew := TP (K) = I ∪ new facts.

• Iterate until nothing new can be produced.

• The result yields the semantics.

Datalog

Foundations of Databases 27

Immediate Consequence Operator

Let P be a datalog program and K be a database instance of sch(P).

A fact R(~t) is an immediate consequence for K and P , if either

• R ∈ edb(P) and R(~t) ∈ K, or

• there exists a ground instance r of a rule in P such that

H(r) = R(~t) and B(r) ⊆ K.

Definition. The immediate consequence operator of a datalog program P is the

mapping

TP : inst(sch(P))→ inst(sch(P))

where

TP (K) = { A | A is an immediate consequence for K and P }.

Datalog

Foundations of Databases 28

Example

Consider

P = { reachable(a)

reachable(Y) ← arc(X, Y), reachable(X) }

where edb(P) = {arc} and idb(P) = {reachable}.

I = K1 = {arc(a, b), arc(b, c)}

K2 = {arc(a, b), arc(b, c), reachable(a)}

K3 = {arc(a, b), arc(b, c), reachable(a), reachable(b) }

K4 = {arc(a, b), arc(b, c), reachable(a), reachable(b), reachable(c)}

Datalog

Foundations of Databases 29

Example (cntd)

Then,

TP (K1) = {arc(a, b), arc(b, c), reachable(a)} = K2

TP (K2) = {arc(a, b), arc(b, c), reachable(a), reachable(b)} = K3

TP (K3) = {arc(a, b), arc(b, c), reachable(a), reachable(b), reachable(c) } = K4

TP (K4) = {arc(a, b), arc(b, c), reachable(a), reachable(b), reachable(c)} = K4

Thus, K4 is a fixpoint of TP .

Definition. K is a fixpoint of operator TP if TP (K) = K.

Datalog

Foundations of Databases 30

Properties

Proposition. For every datalog program P we have:

1. The operator TP is monotonic, that is, K ⊆ K
′ implies TP (K) ⊆ TP (K′);

2. For any K ∈ inst(sch(P)) we have:

K is a model of ΣP if and only if TP (K) ⊆ K;

3. If TP (K) = K (i.e., K is a fixpoint), then K is a model of ΣP .

Note: The converse of 3. does not hold in general.

Datalog

Foundations of Databases 31

Datalog Semantics via Least Fixpoint

The semantics of P on database instance I of edb(P) is a special fixpoint:

Theorem. Let P be a datalog program and I be a database instance. Then

1. TP has a least (wrt “⊆”) fixpoint containing I, denoted lfp(P, I).

2. Moreover, lfp(P, I) = MM(P(P, I)) = P (I).

Advantage: Constructive definition of P (I) by fixpoint iteration

Proof of Claim 2, first equality (Sketch): Let M1 := lfp(P, I) and M2 := MM(P(P, I)).

Since M1 is a fixpoint of TP , it is a model of ΣP , and since it contains I it is a model of

P(P, I). Hence, M2 ⊆M1. Since M2 is a model of P(P, I), it holds that

TP (M2) ⊆M2. Note that for every model M of P(P, I) we have, due to the

monotonicity of TP , that TP (M) is model. Hence, TP (M2) = M2, since M2 is a

minimal model. This implies that M2 is a fixpoint, hence M1 ⊆M2.

Datalog

Foundations of Databases 32

Fixpoint Iteration

For a datalog program P and database instance I, define the sequence (Ii)i≥0 by

I0 = I

Ii = TP (Ii−1) for i > 0.

• By monotoncity of TP , we have I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Ii ⊆ Ii+1 ⊆ · · ·

• For every i ≥ 0, we have Ii ⊆ B(P, I)

• Hence, for some integer n ≤ |B(P, I)|, we have In+1 = In (=: Tω
P (I))

• It holds that Tω
P (I) = lfp(P, I) = P (I).

This can be readily implemented by an algorithm.

Datalog

Foundations of Databases 33

Example

P = { reachable(a)

reachable(Y) ← arc(X, Y), reachable(X) }

I = {arc(a, b), arc(b, c)}

Then,

I0 = {arc(a, b), arc(b, c)}

I1 = T
1

P (I) = {arc(a, b), arc(b, c), reachable(a)}

I2 = T
2

P (I) = {arc(a, b), arc(b, c), reachable(a), reachable(b)}

I3 = T
3

P (I) = {arc(a, b), arc(b, c), reachable(a), reachable(b), reachable(c)}

I4 = T
4

P (I) = {arc(a, b), arc(b, c), reachable(a), reachable(b), reachable(c)}

= T
3

P (I)

Thus, Tω

P (I) = lfp(P, I) = I4.

Datalog

Foundations of Databases 34

Proof-Theoretic Approach

Basic idea: The answer of a datalog program P on I is given by the set of facts

which can be proved from P and I.

Definition. A proof tree for a fact A from I and P is a labeled finite tree T such that

• each vertex of T is labeled by a fact

• the root of T is labeled by A

• each leaf of T is labeled by a fact in I

• if a non-leaf of T is labeled with A1 and its children are labeled with

A2, . . . , An, then there exists a ground instance r of a rule in P such that

H(r) = A1 and B(r) = {A2, . . . , An}

Datalog

Foundations of Databases 35

Example (Same Generation)

P = { r1 : sgc(X, X) ← person(X)

r2 : sgc(X, Y) ← par(X, X1), sgc(X1, Y1), par(Y, Y1) }

where edb(P) = {person, par} and idb(P) = {sgc}

Consider I as follows:

I(person) = { 〈ann〉, 〈bertrand〉, 〈charles〉, 〈dorothy〉,

〈evelyn〉, 〈fred〉, 〈george〉, 〈hilary〉}

I(par) = { 〈dorothy, george〉, 〈evelyn, george〉, 〈bertrand, dorothy〉,

〈ann, dorothy〉, 〈hilary, ann〉, 〈charles, evelyn〉}.

Datalog

Foundations of Databases 36

Example (Same Generation)/2

Proof tree for A = sgc(ann, charles) from I and P :

r2 : par(ann, dorothy) par(charles, evelyn)

sgc(ann, charles)

r2 : par(dorothy, george)

r1 : person(george)

sgc(george, george)
par(evelyn, george)

sgc(dorothy, evelyn)

Datalog

Foundations of Databases 37

Proof Tree Construction

Different ways to construct a proof tree for A from P and I exist

• Bottom Up construction: From leaves to root

Intimately related to fixpoint approach

– Define S ⊢P B to prove fact B from facts S if B ∈ S or by a rule in P

– Give S = I for granted

• Top Down construction: From root to leaves

In Logic Programming view, consider program P(P, I).

– This amounts to a set of logical sentences HP(P,I) of the form

∀x1 · · · ∀xm(R1(~x1) ∨ ¬R2(~x2) ∨ ¬R3(~x3) ∨ · · · ∨ ¬Rn(~xn))

– Prove A = R(~t) via resolution refutation, that is, that HP(P,I) ∪ {¬A} is

unsatisfiable.

Datalog

Foundations of Databases 38

Datalog and SLD Resolution

• Logic Programming uses SLD resolution

• SLD: Selection Rule Driven Linear Resolution for Definite Clauses

• For datalog programs P on I, resp. P(P, I), things are simpler than for general

logic programs (no function symbols, unification is easy)

• Also non-ground atoms can be handled (e.g., sgc(ann, X))

Let SLD(P) be the set of ground atoms provable with SLD Resolution from P .

Theorem. For any datalog program P and database instance I,

SLD(P(P, I)) = P (I) = T
∞
P(P,I) = lfp(TP(P,I)) = MM(P(P, I))

Datalog

Foundations of Databases 39

SLD Resolution – Termination

• Notice: Selection rule for next rule / atom to be considered for resolution might

affect termination

• Prolog’s strategy (leftmost atom / first rule) is problematic

Example:

child of(karl, franz).

child of(franz, frieda).

child of(frieda, pia).

descendent of(X, Y)← child of(X, Y).

descendent of(X, Y)← child of(X, Z), descendent of(Z, Y).

← descendent of(karl, X).

Datalog

Foundations of Databases 40

SLD Resolution – Termination /2

child of(karl, franz).

child of(franz, frieda).

child of(frieda, pia).

descendent of(X, Y)← child of(X, Y).

descendent of(X, Y)← descendent of(X,Z), child of(Z,Y).

← descendent of(karl, X).

Datalog

Foundations of Databases 41

SLD Resolution – Termination /3

child of(karl, franz).

child of(franz, frieda).

child of(frieda, pia).

descendent of(X, Y)← child of(X, Y).

descendent of(X, Y)← descendent of(X, Z),

descendent of(Z, Y).

← descendent of(karl, X).

Datalog

