Computational Logic

Datalog

Free University of Bozen-Bolzano, 2010

Werner Nutt

(Based on slides by Thomas Eiter and Wolfgang Faber)

Motivation

1

- Relational Calculus and Relational Algebra were considered to be "the" database languages for a long time
- Codd: A query language is "complete," if it yields Relational Calculus
- However, Relational Calculus misses an important feature: *recursion*
- Example: A metro database with relation links:line, station, nextstation
 What stations are reachable from station "Odeon"?
 Can we go from Odeon to Tuileries?
 etc.
- It can be proved: such queries cannot be expressed in Relational Calculus
- This motivated a logic-programming extension to conjunctive queries: *datalog*

.

Example: Metro Database Instance

links	line	station	nextstation	
	4	St.Germain	Odeon	
	4	Odeon	St.Michel	
	4	St. Michel	Chatelet	
	1	Chatelet	Louvres	
	1	Louvres	Palais Royal	
	1	Palais-Royal	Tuileries	
	1	Tuileries	Concorde	

Datalog program for first query:

$$\begin{array}{rll} \texttt{reach}(\mathtt{X}, \mathtt{X}) & \leftarrow & \texttt{links}(\mathtt{L}, \mathtt{X}, \mathtt{Y}) \\ \texttt{reach}(\mathtt{X}, \mathtt{X}) & \leftarrow & \texttt{links}(\mathtt{L}, \mathtt{Y}, \mathtt{X}) \\ \texttt{reach}(\mathtt{X}, \mathtt{Y}) & \leftarrow & \texttt{links}(\mathtt{L}, \mathtt{X}, \mathtt{Z}), \texttt{reach}(\mathtt{Z}, \mathtt{Y}) \\ \texttt{answer}(\mathtt{X}) & \leftarrow & \texttt{reach}(\texttt{`Odeon'}, \mathtt{X}) \end{array}$$

Note: recursive definition

Intuitively, if the part right of " \leftarrow " is true, the rule "fires" and the atom left of " \leftarrow " is concluded.

The Datalog Language

- datalog is akin to Logic Programming
- The basic language (considered next) has many extensions
- There exist several approaches to defining the semantics:

Model-theoretic approach:

View rules as logical sentences, which state the query result

Operational (fixpoint) approach:

Obtain query result by applying an inference procedure,

until a fixpoint is reached

Proof-theoretic approach:

Obtain proofs of facts in the query result, following a proof calculus (based on resolution)

Datalog vs. Logic Programming

Although Datalog is akin to Logic Programming, there are important differences:

- There are **no functions symbols** in datalog. Consequently, no potentially infinite data structures, such as lists, are supported
- Datalog has a **purely declarative semantics.** In a datalog program,
 - the order of clauses is irrelevant
 - the order of atoms in a rule body is irrelevant
- Datalog programs adhere to the active domain semantics (like Safe Relational Calculus, Relational Algebra)
- Datalog distinguishes between
 - database relations ("extensional database", edb) and
 - derived relations ("*intensional database*", *idb*)

Syntax of "plain datalog", or "datalog"

Definition. A datalog rule r is an expression of the form

$$R_0(\vec{x}_0) \leftarrow R_1(\vec{x}_1), \dots, R_n(\vec{x}_n) \tag{1}$$

• where $n \ge 0$,

 R_0, \ldots, R_n are relations names, and $\vec{x}_0, \ldots, \vec{x}_n$ are vectors of variables and constants (from **dom**)

• every variable in \vec{x}_0 occurs in $\vec{x}_1, \ldots, \vec{x}_n$ ("safety")

Remarks.

- The *head* of r, denoted H(r), is $R_0(\vec{x}_0)$
- The *body* of r, denoted B(r), is $\{R_1(\vec{x}_1), \ldots, R_n(\vec{x}_n)\}$
- The rule symbol "←" is often also written as ": –"

Definition. A datalog program is a finite set of datalog rules.

Datalog Programs

Let P be a datalog program.

- $\bullet\,$ An extensional relation of P is a relation occurring only in rule bodies of P
- An intensional relation of P is a relation occurring in the head of some rule in P
- The extensional schema of P, edb(P), consists of all extensional relations of P
- The intensional schema of P, idb(P), consists of all intensional relations of P
- The schema of P, sch(P), is the union of edb(P) and idb(P).

Remarks.

- Sometimes, extensional and intensional relations are explicitly specified. It is
 possible then for intensional relations to occur only in rule bodies (but such
 relations are of no use then).
- In a Logic Programming view, the term "predicate" is used as synonym for "relation" or "relation name."

The Metro Example /1

Datalog program P on metro database scheme $\mathcal{M} = \{ \text{links} : \text{line}, \text{station}, \text{nextstation} \}:$

$$\begin{aligned} \texttt{reach}(\texttt{X},\texttt{X}) &\leftarrow \texttt{links}(\texttt{L},\texttt{X},\texttt{Y}) \\ \texttt{reach}(\texttt{X},\texttt{X}) &\leftarrow \texttt{links}(\texttt{L},\texttt{Y},\texttt{X}) \\ \texttt{reach}(\texttt{X},\texttt{Y}) &\leftarrow \texttt{links}(\texttt{L},\texttt{X},\texttt{Z}),\texttt{reach}(\texttt{Z},\texttt{Y}) \\ \texttt{answer}(\texttt{X}) &\leftarrow \texttt{reach}(\texttt{'Odeon'},\texttt{X}) \end{aligned}$$

Here,

Datalog Syntax (cntd)

- The set of constants occurring in a datalog program P is denoted as adom(P)
- Given a database instance ${\bf I},$ we define the active domain of P with respect to I as

$$adom(P, \mathbf{I}) := adom(P) \cup adom(\mathbf{I}),$$

that is, as the set of constants occurring in P and ${\bf I}$

Definition. Let $\nu : var(r) \cup dom \to dom$ be a valuation for a rule r of form (1). Then the *instantiation* of r with ν , denoted $\nu(r)$, is the rule

$$R_0(\nu(\vec{x}_0)) \leftarrow R_1(\nu(\vec{x}_1)), \dots, R_n(\nu(\vec{x}_n))$$

which results from replacing each variable x with $\nu(x)$.

The Metro Example /2

- For the datalog program P above, we have that $adom(P) = \{ \text{ Odeon } \}$
- We consider the database instance I:

links	line	station	nextstation	
	4	St.Germain	Odeon	
	4	Odeon	St.Michel	
	4	St. Michel	Chatelet	
	1	Chatelet	Louvres	
	1	Louvres	Palais-Royal	
	1	Palais-Royal	Tuileries	
	1	Tuileries	Concorde	

Then $adom(\mathbf{I}) = \{4, 1, St.Germain, Odeon, St.Michel, Chatelet, Louvres, Palais-Royal, Tuileries, Concorde\}$

• Also $adom(P, \mathbf{I}) = adom(\mathbf{I})$.

The Metro Example /3

• The rule

$$\begin{split} \texttt{reach}(\texttt{St.Germain},\texttt{Odeon}) & \leftarrow \quad \texttt{links}(\texttt{Louvres},\texttt{St.Germain},\texttt{Concorde}), \\ & \quad \texttt{reach}(\texttt{Concorde},\texttt{Odeon}) \end{split}$$

is an instance of the rule

 $reach(X, Y) \leftarrow links(L, X, Z), reach(Z, Y)$

of P:

take $\nu(X)$ = St.Germain, $\nu(L)$ = Louvres, $\nu(Y)$ = Odeon, $\nu(Z)$ = Concorde

Datalog: Model-Theoretic Semantics

General Idea:

- We view a program as a set of first-order sentences
- Given an instance \mathbf{I} of edb(P), the result of P is a database instance of sch(P) that extends \mathbf{I} and satisfies the sentences (or, is a *model* of the sentences)
- There can be many models
- The intended answer is specified by particular models
- These particular models are selected by "external" conditions

11

Logical Theory Σ_P

• To every datalog rule r of the form $R_0(\vec{x}_0) \leftarrow R_1(\vec{x}_1), \ldots, R_n(\vec{x}_n)$, with variables x_1, \ldots, x_m , we associate the logical sentence $\sigma(r)$:

$$\forall x_1, \cdots \forall x_m \left(R_1(\vec{x}_1) \land \cdots \land R_n(\vec{x}_n) \to R_0(\vec{x}_0) \right)$$

• To a program P, we associate the set of sentences $\Sigma_P = \{\sigma(r) \mid r \in P\}$.

Definition. Let P be a datalog program and I an instance of edb(P). Then,

- A model of P is an instance of sch(P) that satisfies Σ_P
- We compare models wrt set inclusion "⊆" (in the Logic Programming perspective)
- The semantics of P on input I, denoted P(I), is the *least model* of P containing I, if it exists.

Example

. . .

For program P and instance \mathbf{I} of the Metro Example, the least model is:

links	line	station	nextstation	reach		
	4	St.Germain	Odeon		St.Germain	St.Germain
	4	Odeon	St.Michel		Odeon	Odeon
	4	St. Michel	Chatelet			•
	1	Chatelet	Louvres		Concorde	Concorde
	1	Louvres	Palais-Royal		St.Germain	Odeon
	1	Palais-Royal	Tuileries		St.Germain	St.Michel
	1	Tuileries	Concorde		St.Germain	Chatelet
					St.Germain	Louvres

answer	
	Odeon
	St.Michel
	Chatelet
	Louvres
	Palais-Royal
	Tuileries
	Concorde

Questions

- Is the semantics $P(\mathbf{I})$ well-defined for every input instance \mathbf{I} ?
- How can one compute $P(\mathbf{I})$?

Observation: For any I, there is a model of P containing I

• Let $\mathbf{B}(P,\mathbf{I})$ be the instance of sch(P) such that

$$\mathbf{B}(P,\mathbf{I})(R) = \begin{cases} \mathbf{I}(R) & \text{for each } R \in edb(P) \\ adom(P,\mathbf{I})^{arity(R)} & \text{for each } R \in idb(P) \end{cases}$$

• Then: $\mathbf{B}(P, \mathbf{I})$ is a model of P containing \mathbf{I}

 $\Rightarrow P(\mathbf{I})$ is a subset of $\mathbf{B}(P, \mathbf{I})$ (if it exists)

• Naive algorithm: explore all subsets of $\mathbf{B}(P, \mathbf{I})$

Elementary Properties of $P(\mathbf{I})$

Let P be a datalog program, I an instance of edb(P), and $\mathcal{M}(I)$ the set of all models of P containing I.

Theorem. The intersection $\bigcap_{M \in \mathcal{M}(\mathbf{I})} M$ is a model of P.

Corollary.

1.
$$P(\mathbf{I}) = \bigcap_{M \in \mathcal{M}(\mathbf{I})} M$$

- 2. $adom(P(\mathbf{I})) \subseteq adom(P, \mathbf{I})$, that is, no new values appear
- 3. $P(\mathbf{I})(R) = \mathbf{I}(R)$, for each $R \in edb(P)$.

Consequences:

- $\bullet~P(\mathbf{I})$ is well-defined for every \mathbf{I}
- If P and ${\bf I}$ are finite, the $P({\bf I})$ is finite

Why Choose the Least Model?

There are two reasons to choose the least model containing I:

- 1. The Closed World Assumption:
 - If a fact $R(\vec{c})$ is not true in all models of a database ${f I}$, then infer that $R(\vec{c})$ is false
 - $\bullet\,$ This amounts to considering I as complete
 - ... which is customary in database practice
- 2. The relationship to Logic Programming:
 - Datalog should desirably match Logic Programming (seamless integration)
 - Logic Programming builds on the minimal model semantics

Relating Datalog to Logic Programming

- A logic program makes no distinction between edb and idb
- A datalog program P and an instance ${\bf I}$ of edb(P) can be mapped to the logic program

$$\mathcal{P}(P,\mathbf{I}) = P \cup \mathbf{I}$$

(where ${f I}$ is viewed as a set of atoms in the Logic Programming perspective)

• Correspondingly, we define the logical theory

$$\Sigma_{P,\mathbf{I}} = \Sigma_P \cup \mathbf{I}$$

- The semantics of the logic program $\mathcal{P} = \mathcal{P}(P, \mathbf{I})$ is defined in terms of *Herbrand interpretations* of the language induced by \mathcal{P} :
 - The domain of discourse is formed by the constants occurring in ${\cal P}$
 - Each constant occurring in ${\mathcal P}$ is interpreted by itself

Herbrand Interpretations of Logic Programs

Given a rule r, we denote by Const(r) the set of all constants in r

Definition. For a (function-free) logic program \mathcal{P} , we define

• the Herbrand universe of \mathcal{P} , by

$$\mathbf{HU}(\mathcal{P}) = \bigcup_{r \in \mathcal{P}} \mathit{Const}(r)$$

• the Herbrand base of \mathcal{P} , by

$$\mathbf{HB}(\mathcal{P}) = \{R(c_1, \dots, c_n) \mid R \text{ is a relation in } \mathcal{P}, \ c_1, \dots, c_n \in \mathbf{HU}(\mathcal{P}), \text{ and } ar(R) = n\}$$

Example

 $\mathcal{P} = \{ arc(a, b). \}$ arc(b, c). reachable(a). $reachable(Y) \leftarrow arc(X, Y), reachable(X).$ $HU(\mathcal{P}) = \{a, b, c\}$ $HB(\mathcal{P}) = \{arc(a, a), arc(a, b), arc(a, c), \}$ arc(b, a), arc(b, b), arc(b, c), $\operatorname{arc}(c, a), \operatorname{arc}(c, b), \operatorname{arc}(c, c),$ reachable(a), reachable(b), reachable(c)}

Grounding

- A rule r' is a ground instance of a rule r with respect to $HU(\mathcal{P})$, if $r' = \nu(r)$ for a valuation ν such that $\nu(x) \in HU(\mathcal{P})$ for each $x \in var(r)$.
- The grounding of a rule r with respect to $HU(\mathcal{P})$, denoted $Ground_{\mathcal{P}}(r)$, is the set of all ground instances of r wrt $HU(\mathcal{P})$
- The grounding of a logic program ${\mathcal P}$ is

$$\operatorname{Ground}(\mathcal{P}) = \bigcup_{r \in \mathcal{P}} \operatorname{Ground}_{\mathcal{P}}(r)$$

Example

Herbrand Models

- A Herbrand-interpretation I of \mathcal{P} is any subset $I \subseteq \mathbf{HB}(\mathcal{P})$
- A Herbrand-model of ${\mathcal P}$ is a Herbrand-interpretation that satisfies all sentences in $\Sigma_{P,{\bf I}}$

Equivalently, $M \subseteq \mathbf{HB}(\mathcal{P})$ is a Herbrand model if

• for all $r \in \operatorname{Ground}(\mathcal{P})$ such that $B(r) \subseteq M$ we have that $H(r) \subseteq M$

Example

The Herbrand models of program ${\cal P}$ above are exactly the following:

•
$$M_1 = \{ \operatorname{arc}(a, b), \operatorname{arc}(b, c), \}$$

reachable(a), reachable(b), reachable(c) }

- $M_2 = \mathbf{HB}(\mathcal{P})$
- every interpretation M such that $M_1 \subseteq M \subseteq M_2$

and no others.

Logic Programming Semantics

- Proposition. $HB(\mathcal{P})$ is always a model of \mathcal{P}
- Theorem. For every logic program there exists a least Herbrand model (wrt "⊆").
 For a program P, this model is denoted *MM*(P) (for "minimal model").
 The model *MM*(P) is the semantics of P.
- Theorem (Datalog \leftrightarrow Logic Programming). Let P be a datalog program and I be an instance of edb(P). Then,

 $P(\mathbf{I}) = MM(\mathcal{P}(P, \mathbf{I}))$

Consequences

Results and techniques for Logic Programming can be exploited for datalog.

For example,

- proof procedures for Logic Programming (e.g., SLD resolution) can be applied to datalog (with some caveats, regarding for instance termination)
- datalog can be reduced by "grounding" to propositional logic programs

Fixpoint Semantics

Another view:

"If all facts in ${f I}$ hold, which other facts must hold after firing the rules in P?"

Approach:

- Define an *immediate consequence operator* $T_P(K)$ on db instances K.
- Start with $\mathbf{K} = \mathbf{I}$.
- Apply \mathbf{T}_P to obtain a new instance: $\mathbf{K}_{new} := \mathbf{T}_P(\mathbf{K}) = \mathbf{I} \cup$ new facts.
- Iterate until nothing new can be produced.
- The result yields the semantics.

Immediate Consequence Operator

Let *P* be a datalog program and **K** be a database instance of sch(P). A fact $R(\vec{t})$ is an *immediate* consequence for **K** and *P*, if either

- $R \in edb(P)$ and $R(\vec{t}) \in \mathbf{K}$, or
- there exists a ground instance r of a rule in P such that $H(r) = R(\vec{t})$ and $B(r) \subseteq \mathbf{K}$.

Definition. The *immediate consequence operator* of a datalog program P is the mapping

$$\mathbf{T}_P \colon inst(sch(P)) \to inst(sch(P))$$

where

 $\mathbf{T}_{P}(\mathbf{K}) = \{ A \mid A \text{ is an immediate consequence for } \mathbf{K} \text{ and } P \}.$

Example

Consider

$$P = \{ \text{ reachable(a)} \\ \text{reachable(Y)} \leftarrow \operatorname{arc(X, Y)}, \text{reachable(X)} \}$$

where $edb(P) = \{ \text{arc} \}$ and $idb(P) = \{ \text{reachable} \}$.
$$\mathbf{I} = \mathbf{K}_1 = \{ \operatorname{arc(a, b)}, \operatorname{arc(b, c)} \}$$

$$\begin{array}{lll} \mathbf{K}_2 &=& \{ \texttt{arc}(\mathtt{a}, \mathtt{b}), \, \texttt{arc}(\mathtt{b}, \mathtt{c}), \, \texttt{reachable}(\mathtt{a}) \} \\ \mathbf{K}_3 &=& \{ \texttt{arc}(\mathtt{a}, \mathtt{b}), \, \texttt{arc}(\mathtt{b}, \mathtt{c}), \texttt{reachable}(\mathtt{a}), \, \texttt{reachable}(\mathtt{b}) \, \} \\ \mathbf{K}_4 &=& \{ \texttt{arc}(\mathtt{a}, \mathtt{b}), \, \texttt{arc}(\mathtt{b}, \mathtt{c}), \texttt{reachable}(\mathtt{a}), \, \texttt{reachable}(\mathtt{b}), \, \texttt{reachable}(\mathtt{c}) \} \end{array}$$

Example (cntd)

Then,

Thus, \mathbf{K}_4 is a *fixpoint* of \mathbf{T}_P .

Definition. K is a *fixpoint* of operator T_P if $T_P(K) = K$.

Properties

Proposition. For every datalog program P we have:

- 1. The operator \mathbf{T}_P is monotonic, that is, $\mathbf{K} \subseteq \mathbf{K}'$ implies $\mathbf{T}_P(\mathbf{K}) \subseteq \mathbf{T}_P(\mathbf{K}')$;
- 2. For any $\mathbf{K} \in inst(sch(P))$ we have:

 \mathbf{K} is a model of Σ_P if and only if $\mathbf{T}_P(\mathbf{K}) \subseteq \mathbf{K}$;

3. If $\mathbf{T}_P(\mathbf{K}) = \mathbf{K}$ (i.e., \mathbf{K} is a fixpoint), then \mathbf{K} is a model of Σ_P .

Note: The converse of 3. does not hold in general.

Datalog Semantics via Least Fixpoint

The semantics of P on database instance \mathbf{I} of edb(P) is a special fixpoint:

Theorem. Let P be a datalog program and \mathbf{I} be a database instance. Then

- 1. \mathbf{T}_P has a least (wrt " \subseteq ") fixpoint containing \mathbf{I} , denoted $lfp(P, \mathbf{I})$.
- 2. Moreover, $lfp(P, \mathbf{I}) = MM(\mathcal{P}(P, \mathbf{I})) = P(\mathbf{I}).$

Advantage: Constructive definition of $P(\mathbf{I})$ by *fixpoint iteration*

Proof of Claim 2, first equality (Sketch): Let $M_1 := lfp(P, \mathbf{I})$ and $M_2 := MM(\mathcal{P}(P, \mathbf{I}))$.

Since M_1 is a fixpoint of \mathbf{T}_P , it is a model of Σ_P , and since it contains \mathbf{I} it is a model of $\mathcal{P}(P, \mathbf{I})$. Hence, $M_2 \subseteq M_1$. Since M_2 is a model of $\mathcal{P}(P, \mathbf{I})$, it holds that $\mathbf{T}_P(M_2) \subseteq M_2$. Note that for every model M of $\mathcal{P}(P, \mathbf{I})$ we have, due to the monotonicity of \mathbf{T}_P , that $\mathbf{T}_P(M)$ is model. Hence, $\mathbf{T}_P(M_2) = M_2$, since M_2 is a minimal model. This implies that M_2 is a fixpoint, hence $M_1 \subseteq M_2$.

Fixpoint Iteration

For a datalog program P and database instance \mathbf{I} , define the sequence $(\mathbf{I}_i)_{i\geq 0}$ by

$$\mathbf{I}_0 = \mathbf{I}$$

 $\mathbf{I}_i = \mathbf{T}_P(\mathbf{I}_{i-1}) \quad \text{ for } i > 0.$

- By monotoncity of \mathbf{T}_P , we have $\mathbf{I}_0 \subseteq \mathbf{I}_1 \subseteq \mathbf{I}_2 \subseteq \cdots \subseteq \mathbf{I}_i \subseteq \mathbf{I}_{i+1} \subseteq \cdots$
- For every $i \ge 0$, we have $\mathbf{I}_i \subseteq \mathbf{B}(P, \mathbf{I})$
- Hence, for some integer $n \leq |\mathbf{B}(P, \mathbf{I})|$, we have $\mathbf{I}_{n+1} = \mathbf{I}_n$ (=: $\mathbf{T}_P^{\omega}(\mathbf{I})$)

• It holds that
$$\mathbf{T}_P^{\omega}(\mathbf{I}) = lfp(P, \mathbf{I}) = P(\mathbf{I}).$$

This can be readily implemented by an algorithm.

Example

$$\begin{split} P = \{ & \texttt{reachable}(\texttt{a}) \\ & \texttt{reachable}(\texttt{Y}) \leftarrow \texttt{arc}(\texttt{X},\texttt{Y}),\texttt{reachable}(\texttt{X}) \} \\ & \mathbf{I} &= & \{\texttt{arc}(\texttt{a},\texttt{b}),\,\texttt{arc}(\texttt{b},\texttt{c})\} \end{split}$$

Then,

$$\begin{split} \mathbf{I}_0 &= \{ \operatorname{arc}(\mathbf{a}, \mathbf{b}), \operatorname{arc}(\mathbf{b}, \mathbf{c}) \} \\ \mathbf{I}_1 &= \mathbf{T}_P^1(\mathbf{I}) &= \{ \operatorname{arc}(\mathbf{a}, \mathbf{b}), \operatorname{arc}(\mathbf{b}, \mathbf{c}), \operatorname{reachable}(\mathbf{a}) \} \\ \mathbf{I}_2 &= \mathbf{T}_P^2(\mathbf{I}) &= \{ \operatorname{arc}(\mathbf{a}, \mathbf{b}), \operatorname{arc}(\mathbf{b}, \mathbf{c}), \operatorname{reachable}(\mathbf{a}), \operatorname{reachable}(\mathbf{b}) \} \\ \mathbf{I}_3 &= \mathbf{T}_P^3(\mathbf{I}) &= \{ \operatorname{arc}(\mathbf{a}, \mathbf{b}), \operatorname{arc}(\mathbf{b}, \mathbf{c}), \operatorname{reachable}(\mathbf{a}), \operatorname{reachable}(\mathbf{b}), \operatorname{reachable}(\mathbf{c}) \} \\ \mathbf{I}_4 &= \mathbf{T}_P^4(\mathbf{I}) &= \{ \operatorname{arc}(\mathbf{a}, \mathbf{b}), \operatorname{arc}(\mathbf{b}, \mathbf{c}), \operatorname{reachable}(\mathbf{a}), \operatorname{reachable}(\mathbf{b}), \operatorname{reachable}(\mathbf{c}) \} \\ &= \mathbf{T}_P^3(\mathbf{I}) \end{split}$$

Thus, $\mathbf{T}_P^\omega(\mathbf{I}) = lfp(P, \mathbf{I}) = \mathbf{I}_4.$

Proof-Theoretic Approach

Basic idea: The answer of a datalog program P on I is given by the set of facts which can be *proved* from P and I.

Definition. A proof tree for a fact A from I and P is a labeled finite tree T such that

- $\bullet \,$ each vertex of T is labeled by a fact
- $\bullet\,$ the root of T is labeled by A
- $\bullet\,$ each leaf of T is labeled by a fact in ${\bf I}$
- if a non-leaf of T is labeled with A_1 and its children are labeled with A_2, \ldots, A_n , then there exists a ground instance r of a rule in P such that $H(r) = A_1$ and $B(r) = \{A_2, \ldots, A_n\}$

Example (Same Generation)

$$P = \{ r_1 : \operatorname{sgc}(X, X) \leftarrow \operatorname{person}(X) \\ r_2 : \operatorname{sgc}(X, Y) \leftarrow \operatorname{par}(X, X1), \operatorname{sgc}(X1, Y1), \operatorname{par}(Y, Y1) \}$$

where $edb(P) = \{\texttt{person},\texttt{par}\} \text{ and } idb(P) = \{\texttt{sgc}\}$

Consider ${\boldsymbol{I}}$ as follows:

$$\begin{split} \mathbf{I}(person) &= \{ \langle ann \rangle, \langle bertrand \rangle, \langle charles \rangle, \langle dorothy \rangle, \\ \langle evelyn \rangle, \langle fred \rangle, \langle george \rangle, \langle hilary \rangle \} \\ \mathbf{I}(par) &= \{ \langle dorothy, george \rangle, \langle evelyn, george \rangle, \langle bertrand, dorothy \rangle, \\ \langle ann, dorothy \rangle, \langle hilary, ann \rangle, \langle charles, evelyn \rangle \}. \end{split}$$

Example (Same Generation)/2

Proof tree for A = sgc(ann, charles) from I and P:

Proof Tree Construction

Different ways to construct a proof tree for A from P and \mathbf{I} exist

• Bottom Up construction: From leaves to root

Intimately related to fixpoint approach

- Define $S \vdash_P B$ to prove fact B from facts S if $B \in S$ or by a rule in P
- Give $S=\mathbf{I}$ for granted
- Top Down construction: From root to leaves

In Logic Programming view, consider program $\mathcal{P}(P, \mathbf{I})$.

– This amounts to a set of logical sentences $H_{\mathcal{P}(P,\mathbf{I})}$ of the form

 $\forall x_1 \cdots \forall x_m (R_1(\vec{x}_1) \lor \neg R_2(\vec{x}_2) \lor \neg R_3(\vec{x}_3) \lor \cdots \lor \neg R_n(\vec{x}_n))$

- Prove $A = R(\vec{t})$ via resolution refutation, that is, that $H_{\mathcal{P}(P,\mathbf{I})} \cup \{\neg A\}$ is unsatisfiable.

Datalog and SLD Resolution

- Logic Programming uses SLD resolution
- SLD: Selection Rule Driven Linear Resolution for Definite Clauses
- For datalog programs P on \mathbf{I} , resp. $\mathcal{P}(P, \mathbf{I})$, things are simpler than for general logic programs (no function symbols, unification is easy)
- Also non-ground atoms can be handled (e.g., sgc(ann, X))

Let $SLD(\mathcal{P})$ be the set of ground atoms provable with SLD Resolution from \mathcal{P} .

Theorem. For any datalog program P and database instance \mathbf{I} ,

$$SLD(\mathcal{P}(P,\mathbf{I})) = P(\mathbf{I}) = \mathbf{T}_{\mathcal{P}(P,\mathbf{I})}^{\infty} = lfp(\mathbf{T}_{\mathcal{P}(P,\mathbf{I})}) = MM(\mathcal{P}(P,\mathbf{I}))$$

SLD Resolution – Termination

- Notice: Selection rule for next rule / atom to be considered for resolution might affect termination
- Prolog's strategy (leftmost atom / first rule) is problematic

Example:

```
\begin{array}{l} \texttt{child_of(karl,franz).} \\ \texttt{child_of(franz,frieda).} \\ \texttt{child_of(frieda,pia).} \\ \texttt{descendent_of(X,Y)} \leftarrow \texttt{child_of(X,Y).} \\ \texttt{descendent_of(X,Y)} \leftarrow \texttt{child_of(X,Z),descendent_of(Z,Y).} \\ \leftarrow \texttt{descendent_of(karl,X).} \end{array}
```

SLD Resolution – Termination /2

```
child_of(karl,franz).
```

```
child_of(franz, frieda).
```

```
child_of(frieda, pia).
```

```
\texttt{descendent_of}(X, Y) \leftarrow \texttt{child_of}(X, Y).
```

 $\texttt{descendent_of}(X, Y) \leftarrow \texttt{descendent_of}(X, Z), \texttt{child_of}(Z, Y).$

 $\leftarrow \texttt{descendent_of}(\texttt{karl},\texttt{X}).$

SLD Resolution – Termination /3

```
\begin{array}{l} \texttt{child_of(karl, franz).} \\ \texttt{child_of(franz, frieda).} \\ \texttt{child_of(frieda, pia).} \\ \texttt{descendent_of(X, Y)} \leftarrow \texttt{child_of(X, Y).} \\ \texttt{descendent_of(X, Y)} \leftarrow \texttt{descendent_of(X, Z),} \\ & \texttt{descendent_of(X, Y).} \\ \leftarrow \texttt{descendent_of(karl, X).} \end{array}
```