Datalog

Free University of Bozen-Bolzano, 2010

Werner Nutt

(Based on slides by Thomas Eiter and Wolfgang Faber)

Computational Logic

Motivation

- Relational Calculus and Relational Algebra were considered to be "the" database languages for a long time
- Codd: A query language is "complete," if it yields Relational Calculus
- However, Relational Calculus misses an important feature: recursion
- Example: A metro database with relation links:line, station, nextstation
 What stations are reachable from station "Odeon"?
 Can we go from Odeon to Tuileries?
 etc.
- It can be proved: such queries cannot be expressed in Relational Calculus
- This motivated a logic-programming extension to conjunctive queries: datalog

N

Example: Metro Database Instance

							links
_	_	_	_	4	4	4	line
Tuileries	Palais-Royal	Louvres	Chatelet	St. Michel	Odeon	St.Germain	station
Concorde	Tuileries	Palais Royal	Louvres	Chatelet	St.Michel	Odeon	nextstation

Datalog program for first query:

```
\begin{split} reach(X,X) &\leftarrow & links(L,X,Y) \\ reach(X,X) &\leftarrow & links(L,Y,X) \\ reach(X,Y) &\leftarrow & links(L,X,Z), reach(Z,Y) \\ answer(X) &\leftarrow & reach('Odeon',X) \end{split}
```

Note: recursive definition

Intuitively, if the part right of " \leftarrow " is true, the rule "fires" and the atom left of " \leftarrow " is concluded.

atalog

computational Logic

The Datalog Language

ω

datalog is akin to Logic Programming

- The basic language (considered next) has many extensions
- There exist several approaches to defining the semantics:

Model-theoretic approach:

View rules as logical sentences, which state the query result

Operational (fixpoint) approach:

Obtain query result by applying an inference procedure, until a fixpoint is reached

Proof-theoretic approach:

(based on resolution) Obtain proofs of facts in the query result, following a proof calculus

Datalog vs. Logic Programming

Although Datalog is akin to Logic Programming, there are important differences:

- There are no functions symbols in datalog. Consequently, no potentially infinite data structures, such as lists, are supported
- Datalog has a purely declarative semantics. In a datalog program
- the order of clauses is irrelevant
- the order of atoms in a rule body is irrelevant
- Datalog programs adhere to the active domain semantics (like Safe Relational Calculus, Relational Algebra)
- Datalog distinguishes between
- database relations ("extensional database", edb) and
- derived relations ("intensional database", idb)

atalog

omputational Logic

5

Syntax of "plain datalog", or "datalog"

Definition. A datalog rule r is an expression of the form

$$R_0(\vec{x}_0) \leftarrow R_1(\vec{x}_1), \dots, R_n(\vec{x}_n)$$
 (1)

• where $n \geq 0$,

 $\vec{x}_0,\dots,\vec{x}_n$ are vectors of variables and constants (from \mathbf{dom}) R_0,\ldots,R_n are relations names, and

ullet every variable in $ec{x}_0$ occurs in $ec{x}_1,\ldots,ec{x}_n$ ("safety")

Remarks.

- ullet The *head* of r, denoted H(r), is $R_0(ec{x}_0)$
- The *body* of r, denoted B(r), is $\{R_1(\vec{x}_1),\ldots,R_n(\vec{x}_n)\}$
- The rule symbol "←" is often also written as ": -"

Definition. A datalog program is a finite set of datalog rules

Datalog Programs

Let P be a datalog program.

- An extensional relation of P is a relation occurring only in rule bodies of P
- An intensional relation of P is a relation occurring in the head of some rule in P
- The extensional schema of P, edb(P), consists of all extensional relations of P
- The intensional schema of P, idb(P), consists of all intensional relations of P
- The schema of P, sch(P), is the union of edb(P) and idb(P).

Remarks.

- Sometimes, extensional and intensional relations are explicitly specified. It is relations are of no use then). possible then for intensional relations to occur only in rule bodies (but such
- In a Logic Programming view, the term "predicate" is used as synonym for "relation" or "relation name."

atalog

computational Logic

The Metro Example /1

Datalog program P on metro database scheme $\mathcal{M} = \{ \texttt{links} : \texttt{line}, \, \texttt{station}, \, \texttt{nextstation} \} :$

$$\begin{split} reach(X,X) & \leftarrow \ links(L,X,Y) \\ reach(X,X) & \leftarrow \ links(L,Y,X) \\ reach(X,Y) & \leftarrow \ links(L,X,Z), reach(Z,Y) \\ answer(X) & \leftarrow \ reach('Odeon',X) \end{split}$$

Here,

$$edb(P) = \{links\} (= \mathcal{M}),$$

 $idb(P) = \{reach, answer\},$
 $sch(P) = \{links, reach, answer\}$

ω

Datalog Syntax (cntd)

- The set of constants occurring in a datalog program P is denoted as adom(P)
- Given a database instance ${f I}$, we define the *active domain* of P with respect to I

$$adom(P,\mathbf{I}):=adom(P)\cup adom(\mathbf{I}),$$

that is, as the set of constants occurring in P and $\mathbf I$

Definition. Let $\nu \colon var(r) \cup \mathbf{dom} \to \mathbf{dom}$ be a valuation for a rule r of form (1). Then the $\emph{instantiation}$ of r with u, denoted u(r), is the rule

$$R_0(\nu(\vec{x}_0)) \leftarrow R_1(\nu(\vec{x}_1)), \dots, R_n(\nu(\vec{x}_n))$$

which results from replacing each variable x with $\nu(x)$.

atalog

computational Logic

9

The Metro Example /2

- $\bullet \:$ For the datalog program P above, we have that adom(P) = $\{\:$ Odeon $\:\}$
- We consider the database instance I:

							inks
_	_	_	_	4	4	4	line
Tuileries	Palais-Royal	Louvres	Chatelet	St. Michel	Odeon	St.Germain	station
Concorde	Tuileries	Palais-Royal	Louvres	Chatelet	St.Michel	Odeon	nextstation

Then $adom(\mathbf{I})=\{$ 4, 1, St.Germain, Odeon, St.Michel, Chatelet, Louvres, Palais-Royal, Tuileries, Concorde }

• Also $adom(P, \mathbf{I}) = adom(\mathbf{I})$.

The Metro Example /3

The rule

$$\texttt{reach}(\texttt{St.Germain}, \texttt{Odeon}) \;\; \leftarrow \;\; \texttt{links}(\texttt{Louvres}, \texttt{St.Germain}, \texttt{Concorde}), \\ \\ \texttt{reach}(\texttt{Concorde}, \texttt{Odeon})$$

is an instance of the rule

$$\texttt{reach}(\texttt{X},\texttt{Y}) \ \leftarrow \ \texttt{links}(\texttt{L},\texttt{X},\texttt{Z}), \texttt{reach}(\texttt{Z},\texttt{Y})$$

of P

take
$$\nu(X)$$
 = St.Germain, $\nu(L)$ = Louvres, $\nu(Y)$ = Odeon, $\nu(Z)$ = Concorde

atalog

computational Logic

1

Datalog: Model-Theoretic Semantics

General Idea:

- We view a program as a set of first-order sentences
- Given an instance ${f I}$ of edb(P), the result of P is a database instance of sentences) $\operatorname{sch}(P)$ that extends ${f I}$ and satisfies the sentences (or, is a *model* of the
- There can be many models
- The intended answer is specified by particular models
- These particular models are selected by "external" conditions

Logical Theory Σ_P

To every datalog rule r of the form $R_0(\vec{x}_0) \leftarrow R_1(\vec{x}_1), \ldots, R_n(\vec{x}_n)$, with variables x_1,\dots,x_m , we associate the logical sentence $\sigma(r)$:

$$\forall x_1, \dots \forall x_m \left(R_1(\vec{x}_1) \wedge \dots \wedge R_n(\vec{x}_n) \to R_0(\vec{x}_0) \right)$$

To a program P, we associate the set of sentences $\Sigma_P = \{\sigma(r) \mid r \in P\}$.

Definition. Let P be a datalog program and ${f I}$ an instance of edb(P). Then,

- A *model* of P is an instance of sch(P) that satisfies Σ_P
- We compare models wrt set inclusion "⊆" (in the Logic Programming perspective)
- The semantics of P on input ${f I}$, denoted $P({f I})$, is the least model of Pcontaining I, if it exists.

atalog

computational Logic

Example

3

For program P and instance ${\bf I}$ of the Metro Example, the least model is:

									ii.	
									links	
		_	_	_	_	4	4	4	line	
		Tuileries	Palais-Royal	Louvres	Chatelet	St. Michel	Odeon	St.Germain	station	
		Concorde	Tuileries	Palais-Royal	Louvres	Chatelet	St.Michel	Odeon	nextstation	
									reach	
:	St.Germain	St.Germain	St. Germain	St.Germain	Concorde	:	Odeon	St.Germain St.Germain		
	Louvres	Chatelet	St.Michel	Odeon	Concorde	•	Odeon	St.Germain		

							answer
Concorde	Tuileries	Palais-Royal	Louvres	Chatelet	St.Michel	Odeon	

4

Questions

- Is the semantics $P(\mathbf{I})$ well-defined for every input instance \mathbf{I} ?
- ullet How can one compute $P(\mathbf{I})$?

Observation: For any ${f I}$, there is a model of P containing ${f I}$

ullet Let ${f B}(P,{f I})$ be the instance of sch(P) such that

$$\mathbf{B}(P,\mathbf{I})(R) = \begin{cases} \mathbf{I}(R) & \text{for each } R \in edb(P) \\ adom(P,\mathbf{I})^{arity(R)} & \text{for each } R \in idb(P) \end{cases}$$

ullet Then: ${f B}(P,{f I})$ is a model of P containing ${f I}$

$$\Rightarrow \ \ P(\mathbf{I})$$
 is a subset of $\mathbf{B}(P,\mathbf{I})$ (if it exists)

ullet Naive algorithm: explore all subsets of ${f B}(P,{f I})$

atalog

computational Logic

15

Elementary Properties of $P(\mathbf{I})$

models of P containing ${f I}$. Let P be a datalog program, ${f I}$ an instance of edb(P), and ${\cal M}({f I})$ the set of all

Theorem. The intersection $igcap_{M\in\mathcal{M}(\mathbf{I})}M$ is a model of P

Corollary.

- 1. $P(\mathbf{I}) = \bigcap_{M \in \mathcal{M}(\mathbf{I})} M$
- 2. $adom(P(\mathbf{I})) \subseteq adom(P,\mathbf{I})$, that is, no new values appear
- 3. $P(\mathbf{I})(R) = \mathbf{I}(R)$, for each $R \in edb(P)$.

Consequences:

- ullet $P({f I})$ is well-defined for every ${f I}$
- ullet If P and ${f I}$ are finite, the $P({f I})$ is finite

Why Choose the Least Model?

There are two reasons to choose the least model containing 1:

- 1. The Closed World Assumption:
- ullet If a fact $R(ec{c})$ is not true in all models of a database ${f I}$, then infer that $R(ec{c})$ is
- This amounts to considering I as complete
- ...which is customary in database practice
- The relationship to Logic Programming:
- Datalog should desirably match Logic Programming (seamless integration)
- Logic Programming builds on the minimal model semantics

atalog

omputational Logic

17

Relating Datalog to Logic Programming

- ullet A logic program makes no distinction between edb and idb
- A datalog program P and an instance ${f I}$ of edb(P) can be mapped to the logic program

$$\mathcal{P}(P, \mathbf{I}) = P \cup \mathbf{I}$$

(where ${f I}$ is viewed as a set of atoms in the Logic Programming perspective)

Correspondingly, we define the logical theory

$$\Sigma_{P,\mathbf{I}} = \Sigma_P \cup \mathbf{I}$$

- The semantics of the logic program $\mathcal{P}=\mathcal{P}(P,\mathbf{I})$ is defined in terms of Herbrand interpretations of the language induced by ${\cal P}$:
- The domain of discourse is formed by the constants occurring in ${\cal P}$
- Each constant occurring in ${\mathcal P}$ is interpreted by itself

Herbrand Interpretations of Logic Programs

Given a rule r, we denote by $\mathit{Const}(r)$ the set of all constants in r

Definition. For a (function-free) logic program \mathcal{P} , we define

ullet the Herbrand universe of ${\cal P}$, by

$$\mathbf{HU}(\mathcal{P}) = \bigcup_{r \in \mathcal{P}} \mathit{Const}(r)$$

ullet the Herbrand base of ${\cal P}$, by

$$\mathbf{HB}(\mathcal{P})=\{R(c_1,\ldots,c_n)\mid R \text{ is a relation in } \mathcal{P},$$

$$c_1,\ldots,c_n\in\mathbf{HU}(\mathcal{P}), \text{ and } ar(R)=n\}$$

atalog

computational Logic

19

Example

 $\mathcal{P} =$

arc(a,b).

```
\mathbf{HB}(\mathcal{P})
                                                                                                                                                                      \mathbf{HU}(\mathcal{P})
                                                                                                                                 \parallel
                                                                                                                                                                         reachable(a).
                                                                                                                                                                                                                               \texttt{reachable}(\texttt{Y}) \leftarrow \texttt{arc}(\texttt{X},\texttt{Y}), \texttt{reachable}(\texttt{X}). \ \}
                                                                                                                                                                                                                                                                                                                               arc(b,c).
                                                                                                                                                                   \{a,b,c\}
                                                                                                                            \{arc(a, a), arc(a, b), arc(a, c),
reachable(a), reachable(b), reachable(c)}
                                        arc(c, a), arc(c, b), arc(c, c),
                                                                                 arc(b, a), arc(b, b), arc(b, c).
```

Grounding

- ullet A rule r' is a ground instance of a rule r with respect to $\mathbf{HU}(\mathcal{P})$, if r'=
 u(r)for a valuation ν such that $\nu(x) \in \mathbf{HU}(\mathcal{P})$ for each $x \in var(r)$.
- The grounding of a rule r with respect to $\mathbf{HU}(\mathcal{P})$, denoted $Ground_{\mathcal{P}}(r)$, is the set of all ground instances of r wrt $\mathbf{HU}(\mathcal{P})$
- ullet The $\emph{grounding}$ of a logic program ${\mathcal P}$ is

$$\mathit{Ground}(\mathcal{P}) = \bigcup_{r \in \mathcal{P}} \mathit{Ground}_{\mathcal{P}}(r)$$

atalog

Computational Logic

21

Example

 $Ground(\mathcal{P}) = \{arc(a, b). arc(b, c). reachable(a).$ reachable(c)reachable(b) reachable(a)reachable(c)reachable(b)reachable(a)reachable(c)reachable(b) $\texttt{reachable}(\texttt{a}) \leftarrow \texttt{arc}(\texttt{a},\texttt{a}), \texttt{reachable}(\texttt{a}).$ arc(c,c), reachable(c). arc(c,b), reachable(c). arc(b,c), reachable(b).arc(b,b), reachable(b). arc(b,a), reachable(b).arc(a,b), reachable(a)arc(c,a), reachable(c).arc(a,c), reachable(a)

Herbrand Models

- ullet A Herbrand-interpretation I of ${\mathcal P}$ is any subset $I\subseteq {f HB}({\mathcal P})$
- A $\mathit{Herbrand} ext{-}\mathit{model}$ of $\mathcal P$ is a Herbrand-interpretation that satisfies all sentences

Equivalently, $M \subseteq \mathbf{HB}(\mathcal{P})$ is a Herbrand model if

for all $r \in \operatorname{Ground}(\mathcal{P})$ such that $B(r) \subseteq M$ we have that $H(r) \subseteq M$

atalog

computational Logic

23

Example

The Herbrand models of program ${\mathcal P}$ above are exactly the following:

- arc(a,b), arc(b,c),reachable(a), reachable(b), reachable(c)
- $M_2 = \mathbf{HB}(\mathcal{P})$
- $\bullet \,$ every interpretation M such that $M_1 \subseteq M \subseteq M_2$

and no others

Logic Programming Semantics

- ullet Proposition. $\mathbf{HB}(\mathcal{P})$ is always a model of \mathcal{P}
- **Theorem.** For every logic program there exists a least Herbrand model (wrt " \subseteq "). The model $\mathit{MM}(\mathcal{P})$ is the semantics of $\mathcal{P}.$ For a program \mathcal{P} , this model is denoted $\mathit{MM}(\mathcal{P})$ (for "minimal model").
- Theorem (Datalog \leftrightarrow Logic Programming). Let P be a datalog program and ${f I}$ be an instance of edb(P). Then,

$$P(\mathbf{I}) = \mathit{MM}(\mathcal{P}(P, \mathbf{I}))$$

atalog

computational Logic

25

Consequences

Results and techniques for Logic Programming can be exploited for datalog.

For example,

- proof procedures for Logic Programming (e.g., SLD resolution) can be applied to datalog (with some caveats, regarding for instance termination)
- datalog can be reduced by "grounding" to propositional logic programs

26

Fixpoint Semantics

Another view:

"If all facts in ${f I}$ hold, which other facts must hold after firing the rules in P?"

Approach:

- Define an immediate consequence operator $\mathbf{T}_P(\mathbf{K})$ on db instances \mathbf{K} .
- Start with $\mathbf{K} = \mathbf{I}$.
- Apply \mathbf{T}_P to obtain a new instance: $\mathbf{K}_{new} := \mathbf{T}_P(\mathbf{K}) = \mathbf{I} \cup$ new facts.
- Iterate until nothing new can be produced.
- The result yields the semantics.

atalog

computational Logic

27

Immediate Consequence Operator

Let P be a datalog program and ${f K}$ be a database instance of sch(P).

A fact R(t) is an *immediate* consequence for ${f K}$ and P, if either

- ullet $R \in edb(P)$ and $R(ec{t}) \in \mathbf{K}$, or
- there exists a ground instance \boldsymbol{r} of a rule in \boldsymbol{P} such that

$$H(r)=R(t)$$
 and $B(r)\subseteq \mathbf{K}$.

mapping **Definition.** The *immediate consequence operator* of a datalog program P is the

$$\mathbf{T}_P \colon inst(sch(P)) \to inst(sch(P))$$

where

 $\mathbf{T}_P(\mathbf{K}) = \{ A \mid A \text{ is an immediate consequence for } \mathbf{K} \text{ and } P \}.$

Example

```
Consider
```

```
where edb(P) = \{ \operatorname{arc} \} and idb(P) = \{ \operatorname{reachable} \}.
                                                                                                                                                                                                                                                                                                               P = \{
                                                                                                                                \mathbf{I}=\mathbf{K}_1
                                                                                       \mathbf{K}_2
                                            \mathbf{K}_3
       {f X}_4
                                                                                                                                                                                                                                                                                                               reachable(a)
                                                                                                                                                                                                                                                          \texttt{reachable}(\texttt{Y}) \leftarrow \texttt{arc}(\texttt{X},\texttt{Y}), \texttt{reachable}(\texttt{X}) \; \}
\{arc(a,b), arc(b,c), reachable(a), reachable(b), reachable(c)\}
                                                                                                                        \{arc(a,b), arc(b,c)\}
                                        \{arc(a,b), arc(b,c), reachable(a), reachable(b)\}
                                                                                 \{arc(a,b), arc(b,c), reachable(a)\}
```

atalog

Computational Logic

29

Example (cntd)

Then,

```
\mathbf{T}_P\big(\mathbf{K}_4\big)
                                                                                    \mathbf{T}_P(\mathbf{K}_3)
                                                                                                                                                             \mathbf{T}_P(\mathbf{K}_2)
                                                                                                                                                                                                                                       \mathbf{T}_P(\mathbf{K}_1)
                                                                                                                                                             \{\texttt{arc}(\texttt{a},\texttt{b}),\,\texttt{arc}(\texttt{b},\texttt{c}),\,\texttt{reachable}(\texttt{a}),\,\texttt{reachable}(\texttt{b}),\,\texttt{reachable}(\texttt{c})\} = \mathbf{K}_4\\ \{\texttt{arc}(\texttt{a},\texttt{b}),\,\texttt{arc}(\texttt{b},\texttt{c}),\,\texttt{reachable}(\texttt{a}),\,\texttt{reachable}(\texttt{b}),\,\texttt{reachable}(\texttt{c})\} = \mathbf{K}_4
                                                                                                                                                                                                                                \{\mathtt{arc}(\mathtt{a},\mathtt{b}),\,\mathtt{arc}(\mathtt{b},\mathtt{c}),\mathtt{reachable}(\mathtt{a})\}\,=\,\mathbf{K}_2
                                                                                                                                                      \{arc(a,b), arc(b,c), reachable(a), reachable(b)\} = \mathbf{K}_3
```

Thus, \mathbf{K}_4 is a fixpoint of \mathbf{T}_P .

Definition. ${f K}$ is a *fixpoint* of operator ${f T}_P$ if ${f T}_P({f K})={f K}.$

Properties

Proposition. For every datalog program ${\cal P}$ we have:

- 1. The operator \mathbf{T}_P is monotonic, that is, $\mathbf{K}\subseteq\mathbf{K}'$ implies $\mathbf{T}_P(\mathbf{K})\subseteq\mathbf{T}_P(\mathbf{K}')$;
- 2. For any $\mathbf{K} \in inst(sch(P))$ we have:

 ${f K}$ is a model of Σ_P if and only if ${f T}_P({f K})\subseteq {f K};$

If $\mathbf{T}_P(\mathbf{K}) = \mathbf{K}$ (i.e., \mathbf{K} is a fixpoint), then \mathbf{K} is a model of Σ_P

Note: The converse of 3. does not hold in general.

atalog

computational Logic

<u>3</u>

Datalog Semantics via Least Fixpoint

The semantics of P on database instance ${f I}$ of edb(P) is a special fixpoint:

Theorem. Let P be a datalog program and ${f I}$ be a database instance. Then

- \mathbf{T}_P has a least (wrt " \subseteq ") fixpoint containing \mathbf{I} , denoted $\mathit{lfp}(P,\mathbf{I})$.
- 2. Moreover, $lfp(P, \mathbf{I}) = \mathit{MM}(\mathcal{P}(P, \mathbf{I})) = P(\mathbf{I}).$

Advantage: Constructive definition of $P(\mathbf{I})$ by fixpoint iteration

Proof of Claim 2, first equality (Sketch): Let $M_1:=\mathit{lfp}(P,\mathbf{I})$ and $M_2:=\mathit{MM}(\mathcal{P}(P,\mathbf{I}))$.

minimal model. This implies that M_2 is a fixpoint, hence $M_1\subseteq M_2$ monotonicity of ${f T}_P$, that ${f T}_P(M)$ is model. Hence, ${f T}_P(M_2)=M_2$, since M_2 is a Since M_1 is a fixpoint of \mathbf{T}_P , it is a model of Σ_P , and since it contains \mathbf{I} it is a model of $\mathbf{T}_P(M_2)\subseteq M_2.$ Note that for every model M of $\mathcal{P}(P,\mathbf{I})$ we have, due to the $\mathcal{P}(P,\mathbf{I})$. Hence, $M_2\subseteq M_1$. Since M_2 is a model of $\mathcal{P}(P,\mathbf{I})$, it holds that

Fixpoint Iteration

For a datalog program P and database instance ${f I}$, define the sequence $({f I}_i)_{i\geq 0}$ by

$$\mathbf{I}_0 = \mathbf{I}$$
 $\mathbf{I}_i = \mathbf{T}_P(\mathbf{I}_{i-1})$ for $i > 0$.

- ullet By monotoncity of ${f T}_P$, we have ${f I}_0\subseteq {f I}_1\subseteq {f I}_2\subseteq \cdots \subseteq {f I}_i\subseteq {f I}_{i+1}\subseteq \cdots$
- ullet For every $i\geq 0$, we have $\mathbf{I}_i\subseteq \mathbf{B}(P,\mathbf{I})$
- Hence, for some integer $n \leq |\mathbf{B}(P,\mathbf{I})|$, we have $\mathbf{I}_{n+1} = \mathbf{I}_n$ (=: $\mathbf{T}_P^{\omega}(\mathbf{I})$)
- ullet It holds that $\mathbf{T}_P^\omega(\mathbf{I}) = \mathit{lfp}(P,\mathbf{I}) = P(\mathbf{I}).$

This can be readily implemented by an algorithm.

atalog

computational Logic

33

Example |

 $P = \{ & \texttt{reachable(a)} \\ & \texttt{reachable(Y)} \leftarrow \texttt{arc(X,Y)}, \texttt{reachable(X)} \} \\ & \textbf{I} = & \{\texttt{arc(a,b)}, \texttt{arc(b,c)} \} \\ \end{cases}$

Then,

$$\begin{split} \mathbf{I}_0 &= & \{ \operatorname{arc}(\mathtt{a},\mathtt{b}), \operatorname{arc}(\mathtt{b},\mathtt{c}) \} \\ \mathbf{I}_1 &= \mathbf{T}_P^1(\mathbf{I}) &= \{ \operatorname{arc}(\mathtt{a},\mathtt{b}), \operatorname{arc}(\mathtt{b},\mathtt{c}), \operatorname{reachable}(\mathtt{a}) \} \\ \mathbf{I}_2 &= \mathbf{T}_P^2(\mathbf{I}) &= \{ \operatorname{arc}(\mathtt{a},\mathtt{b}), \operatorname{arc}(\mathtt{b},\mathtt{c}), \operatorname{reachable}(\mathtt{a}), \operatorname{reachable}(\mathtt{b}) \} \\ \mathbf{I}_3 &= \mathbf{T}_P^3(\mathbf{I}) &= \{ \operatorname{arc}(\mathtt{a},\mathtt{b}), \operatorname{arc}(\mathtt{b},\mathtt{c}), \operatorname{reachable}(\mathtt{a}), \operatorname{reachable}(\mathtt{b}), \operatorname{reachable}(\mathtt{c}) \} \\ \mathbf{I}_4 &= \mathbf{T}_P^4(\mathbf{I}) &= \{ \operatorname{arc}(\mathtt{a},\mathtt{b}), \operatorname{arc}(\mathtt{b},\mathtt{c}), \operatorname{reachable}(\mathtt{a}), \operatorname{reachable}(\mathtt{b}), \operatorname{reachable}(\mathtt{c}) \} \\ &= & \mathbf{T}_P^3(\mathbf{I}) \end{split}$$

Thus, $\mathbf{T}_{P}^{\omega}(\mathbf{I})=lfp(P,\mathbf{I})=\mathbf{I}_{4}.$

atalog

Proof-Theoretic Approach

which can be *proved* from P and \mathbf{I} . Basic idea: The answer of a datalog program P on ${f I}$ is given by the set of facts

Definition. A proof tree for a fact A from ${f I}$ and P is a labeled finite tree T such that

- each vertex of T is labeled by a fact
- the root of T is labeled by A
- each leaf of T is labeled by a fact in ${f I}$
- if a non-leaf of T is labeled with $A_{\mathbf{1}}$ and its children are labeled with A_2,\dots,A_n , then there exists a ground instance r of a rule in P such that $H(r) = A_1$ and $B(r) = \{A_2, \dots, A_n\}$

atalog

computational Logic

35

Example (Same Generation)

```
where edb(P) = \{ \mathtt{person}, \mathtt{par} \} and idb(P) = \{ \mathtt{sgc} \}
                                                                                                                          r_1:
                                                                                                                       {\tt sgc}({\tt X},{\tt X}) \; \leftarrow \;
                                                                    \texttt{sgc}(\mathtt{X},\mathtt{Y}) \; \leftarrow \;
                                                                                                                     person(X)
                                                                  par(X, X1), sgc(X1, Y1), par(Y, Y1)
```

Consider I as follows:

```
\mathbf{I}(person) = \{ \langle ann \rangle, \langle bertrand \rangle, \langle charles \rangle, \langle dorothy \rangle, 
                                                                                                                 I(par) = \{
                                                                                                          \langle dorothy, george \rangle, \langle evelyn, george \rangle, \langle bertrand, dorothy \rangle,
                                                                                                                                                                                                                    \langle evelyn \rangle, \langle fred \rangle, \ \langle george \rangle, \ \langle hilary \rangle \}
\langle ann, dorothy \rangle, \langle hilary, ann \rangle, \langle charles, evelyn \rangle \}
```

atalog

36

Example (Same Generation)/2

Proof tree for $A = \mathtt{sgc}(\mathtt{ann},\mathtt{charles})$ from $\mathbf I$ and P:

atalog

computational Logic

37

Proof Tree Construction

Different ways to construct a proof tree for A from P and $\mathbf I$ exist

Bottom Up construction: From leaves to root

Intimately related to fixpoint approach

- Define $S \vdash_P B$ to prove fact B from facts S if $B \in$ ${\cal S}$ or by a rule in ${\cal P}$
- Give $S={f I}$ for granted
- Top Down construction: From root to leaves

In Logic Programming view, consider program $\mathcal{P}(P,\mathbf{I})$

This amounts to a set of logical sentences $H_{\mathcal{P}(P,\mathbf{I})}$ of the form

$$\forall x_1 \cdots \forall x_m (R_1(\vec{x}_1) \vee \neg R_2(\vec{x}_2) \vee \neg R_3(\vec{x}_3) \vee \cdots \vee \neg R_n(\vec{x}_n))$$

Prove $A=R(ar{t})$ via resolution refutation, that is, that $H_{\mathcal{P}(P,\mathbf{I})}\cup\{\lnot A\}$ is unsatisfiable.

Datalog and SLD Resolution

- Logic Programming uses SLD resolution
- SLD: Selection Rule Driven Linear Resolution for Definite Clauses
- For datalog programs P on ${f I}$, resp. ${\cal P}(P,{f I})$, things are simpler than for general logic programs (no function symbols, unification is easy)
- Also non-ground atoms can be handled (e.g., sgc(ann, X))

Let $SLD(\mathcal{P})$ be the set of ground atoms provable with SLD Resolution from \mathcal{P} .

Theorem. For any datalog program P and database instance \mathbf{I}_{\cdot}

$$SLD(\mathcal{P}(P,\mathbf{I})) = P(\mathbf{I}) = \mathbf{T}_{\mathcal{P}(P,\mathbf{I})}^{\infty} = lfp(\mathbf{T}_{\mathcal{P}(P,\mathbf{I})}) = MM(\mathcal{P}(P,\mathbf{I}))$$

atalog

computational Logic

39

SLD Resolution – Termination

- Notice: Selection rule for next rule / atom to be considered for resolution might affect termination
- Prolog's strategy (leftmost atom / first rule) is problematic

Example:

```
\texttt{descendent\_of}(X,Y) \leftarrow \texttt{child\_of}(X,Z), \texttt{descendent\_of}(Z,Y).
                                                                                                                    \texttt{descendent\_of}(X,Y) \leftarrow \texttt{child\_of}(X,Y)
                                                                                                                                                                                   child_of(frieda, pia).
                                                                                                                                                                                                                                                    {\tt child\_of(franz,frieda)}.
                                                                                                                                                                                                                                                                                                                   child_of(karl, franz)
descendent_of(karl, X).
```

SLD Resolution – Termination /2

 $\texttt{descendent_of}(X,Y) \leftarrow \texttt{descendent_of}(X,Z), \texttt{child_of}(Z,Y).$ $\texttt{descendent_of}(X,Y) \leftarrow \texttt{child_of}(X,Y).$ child_of(frieda, pia). ${\tt child_of(franz,frieda)}.$ child_of(karl, franz). ${\tt descendent_of(karl,X)}.$

atalog

computational Logic

4

SLD Resolution – Termination /3

$$\begin{split} & child_of(kar1,franz). \\ & child_of(franz,frieda). \\ & child_of(frieda,pia). \\ & descendent_of(X,Y) \leftarrow child_of(X,Y). \\ & descendent_of(X,Y) \leftarrow descendent_of(X,Z), \\ & \land descendent_of(kar1,X). \\ & \\ & \leftarrow descendent_of(kar1,X). \end{split}$$