Computational Logic

Datalog

Free University of Bozen-Bolzano, 2010

Werner Nutt

(Based on slides by Thomas Eiter and Wolfgang Faber)

;omputational Logic

Motivation

e Relational Calculus and Relational Algebra were considered to be “the” database

languages for a long time
e Codd: A query language is “complete,” if it yields Relational Calculus
e However, Relational Calculus misses an important feature: recursion

e Example: A metro database with relation 1inks:1ine, station, nextstation
What stations are reachable from station “Odeon”?
Can we go from Odeon to Tuileries?

etc.
e |t can be proved: such queries cannot be expressed in Relational Calculus

e This motivated a logic-programming extension to conjunctive queries: datalog

‘atalog

;omputational Logic

Example: Metro Database Instance

links | line station nextstation

4 St.Germain Odeon

4 Odeon St.Michel

4 St. Michel Chatelet

1 Chatelet Louvres

1 Louvres Palais Royal

1 Palais-Royal Tuileries

1 Tuileries Concorde

Datalog program for first query:

reach(X,X) <« 1links(L,X,Y)
reach(X,X) <+ 1links(L,Y,X)
reach(X,Y) <« 1links(L,X,Z),reach(Z,Y)
answer(X) <« reach(‘Odeon’,X)

Note: recursive definition

Intuitively, if the part right of “<—" is true, the rule “fires” and the atom left of “<—" is concluded.

‘atalog

;omputational Logic

The Datalog Language

e datalog is akin to Logic Programming

e The basic language (considered next) has many extensions

® There exist several approaches to defining the semantics:

Model-theoretic approach:

View rules as logical sentences, which state the query result

Operational (fixpoint) approach:

Obtain query result by applying an inference procedure,

until a fixpoint is reached

Proof-theoretic approach:

Obtain proofs of facts in the query result, following a proof calculus

(based on resolution)

‘atalog

;omputational Logic

Datalog vs. Logic Programming

Although Datalog is akin to Logic Programming, there are important differences:

e There are no functions symbols in datalog. Consequently, no potentially
infinite data structures, such as lists, are supported
e Datalog has a purely declarative semantics. In a datalog program,
— the order of clauses is irrelevant
— the order of atoms in a rule body is irrelevant
e Datalog programs adhere to the active domain semantics
(like Safe Relational Calculus, Relational Algebra)
e Datalog distinguishes between
— database relations (“extensional database”, edb) and

— derived relations (“intensional database”, idb)

‘atalog

;omputational Logic

Syntax of “plain datalog”, or “datalog”

Definition. A datalog rule r is an expression of the form
Ro(Zp) «— R1(Z1), ..., Ru(Zy)

e wheren > 0,

Ry, ..., R, are relations names, and
xo, . . . , Tr, are vectors of variables and constants (from dom)
e every variable in £ occurs in T'1, ..., Ty, (‘safety”)
Remarks.

e The head of r, denoted H (1), is Ry(Zp)
e The body of r, denoted B(r), is { R1(Z1),..., Rn(Zy) }
e The rule symbol “<—” is often also written as “: -”

Definition. A datalog program is a finite set of datalog rules.

‘atalog

(1)

;omputational Logic

Datalog Programs

Let P be a datalog program.

e An extensional relation of P is a relation occurring only in rule bodies of P

e An intensional relation of P is a relation occurring in the head of some rule in P
e The extensional schema of P, edb(P), consists of all extensional relations of P
e The intensional schema of P, idb(P), consists of all intensional relations of P
e The schema of P, sch(P), is the union of edb(P) and idb(P).

Remarks.

e Sometimes, extensional and intensional relations are explicitly specified. It is
possible then for intensional relations to occur only in rule bodies (but such

relations are of no use then).

e In a Logic Programming view, the term “predicate” is used as synonym for

“relation” or “relation name.”

‘atalog

;omputational Logic

The Metro Example /1

Datalog program P on metro database scheme

M = {links : line, station, nextstation}:

reach(X,X) <« 1links(L,X,Y)

reach(X,X) <« 1links(L,Y,X)

reach(X,Y) <« 1links(L,X,Z),reach(Z,Y)
answer(X) <« reach('Odeon’,X)

Here,

edb(P) = {links} (=M),
idb(P) = {reach,answer},

sch(P) = {links,reach,answer}

‘atalog

;omputational Logic

Datalog Syntax (cntd)

e The set of constants occurring in a datalog program P is denoted as @&QSCUV

e Given a database instance I, we define the active domain of P with respect to [

as

adom(P,TI) := adom(P) U adom(I),

that is, as the set of constants occurring in P and I

Definition. Let v: var(r) Udom — dom be a valuation for a rule r of form (1).

Then the instantiation of r with v/, denoted v/ (7'), is the rule

moQ\A&dvv — mHATA&WVY “e “NSC\A&‘BVV

which results from replacing each variable x with /().

‘atalog

;omputational Logic

The Metro Example /2

e For the datalog program P above, we have that adom(P) = { Odeon }

e \We consider the database instance I:

links | line station nextstation
4 St.Germain Odeon
4 Odeon St.Michel
4 St. Michel Chatelet
1 Chatelet Louvres
1 Louvres Palais-Royal
1 Palais-Royal Tuileries
1 Tuileries Concorde

Then adom(I) = {4, 1, St.Germain, Odeon, St.Michel, Chatelet, Louvres,

Palais-Royal, Tuileries, Oo:oo_d&

e Also adom(P,I) = adom(I).

‘atalog

somputational Logic 10

The Metro Example /3

e The rule

reach(St.Germain, 0Odeon) <« links(Louvres,St.Germain,Concorde),

reach(Concorde, Odeon)
is an instance of the rule
reach(X,Y) « 1links(L,X,Z),reach(Z,Y)

of P:
take /(X) = St.Germain, (L) = Louvres, v(Y) = Odeon, v(Z) = Concorde

‘atalog

;omputational Logic 11

Datalog: Model-Theoretic Semantics

General Idea:
e \We view a program as a set of first-order sentences

e Given an instance I of edb(P), the result of P is a database instance of
sch(P) that extends I and satisfies the sentences (or, is a model of the

sentences)
e There can be many models
e The intended answer is specified by particular models

e These particular models are selected by “external” conditions

‘atalog

;omputational Logic

Logical Theory > p

e To every datalog rule r of the form Ro(Zg) < R1(Z1), ..., Ry (Zy), with

variables x1, . . . , Ty,, We associate the logical sentence o (7):
Vri,---Vo,, Amw;mmwv VANEEEAN msﬁ&:v — Nwo@m‘ovv
e To a program P, we associate the set of sentences Xp = {o(r) | r € P}.

Definition. Let P be a datalog program and I an instance of edb(P). Then,
e A model of P is an instance of sch(P) that satisfies > p

e \We compare models wrt set inclusion “C” (in the Logic Programming

perspective)

e The semantics of P on input I, denoted P(I), is the least model of P

containing I, if it exists.

‘atalog

12

;omputational Logic

Example

For program P and instance I of the Metro Example, the least model is:

links line station nextstation reach
4 St.Germain Odeon St.Germain St.Germain
4 Odeon St.Michel Odeon Odeon
4 St. Michel Chatelet
1 Chatelet Louvres Concorde Concorde
1 Louvres Palais-Royal St.Germain Odeon
1 Palais-Royal Tuileries St.Germain St.Michel
1 Tuileries Concorde St.Germain Chatelet
St.Germain Louvres
answer
Odeon
St.Michel
Chatelet
Louvres
Palais-Royal
Tuileries
Concorde

‘atalog

13

somputational Logic 14

Questions

e Is the semantics P(I) well-defined for every input instance I?

e How can one compute P(I)?

Observation: For any I, there is a model of P containing I
e Let B(P,I) be the instance of sch(P) such that

I(R) for each R € edb(P)

B(P,I)(R) = |
adom(P,T1)**W(R) for each R € idb(P)

e Then: B(P, 1) is a model of P containing I
= P(I)is asubsetof B(P,1I) (if it exists)

e Naive algorithm: explore all subsets of B(P, I

‘atalog

somputational Logic 15

Elementary Properties of P(I)

Let P be a datalog program, I an instance of edb(P), and M (I) the set of all

models of P containing 1.

Theorem. The intersection Dim\,\xc M is a model of P.

Corollary.

1. P(1) = Nyrepmm M
2. adom(P(I)) C adom(P, 1), thatis, no new values appear

3. P(I)(R) = I(R), foreach R € edb(P).

Consequences:
e P(I) is well-defined for every I

e If P and I are finite, the P(I) is finite

atalog

somputational Logic 16

Why Choose the Least Model?

There are two reasons to choose the least model containing I:

1. The Closed World Assumption:

e If afact R(C) is not true in all models of a database I, then infer that R(¢) is

false
e This amounts to considering I as complete

e ... which is customary in database practice

2. The relationship to Logic Programming:
e Datalog should desirably match Logic Programming (seamless integration)

e Logic Programming builds on the minimal model semantics

‘atalog

;omputational Logic 17

Relating Datalog to Logic Programming

e A logic program makes no distinction between edb and tdb

e A datalog program P and an instance I of edb(P) can be mapped to the logic
program

P(P,I)=PUI
(where I is viewed as a set of atoms in the Logic Programming perspective)

e Correspondingly, we define the logical theory
MUNH =XpUI

e The semantics of the logic program P = P (P, I) is defined in terms of

Herbrand interpretations of the language induced by P:
— The domain of discourse is formed by the constants occurring in P

— Each constant occurring in P is interpreted by itself

‘atalog

somputational Logic 18

Herbrand Interpretations of Logic Programs

Given a rule r, we denote by Const(r) the set of all constants in r

Definition. For a (function-free) logic program P, we define
e the Herbrand universe of P, by

HU(P) = C Const(r)

e the Herbrand base of P, by

HB(P) = {R(c1,...,cn) | Risarelationin P,
c1y...,¢, € HU(P), and ar(R) = n}

atalog

somputational Logic 19

Example

P ={ arc(a,b).
arc(b, c).
reachable(a).
reachable(Y) « arc(X,Y),reachable(X). }

HU(P) = {a,b,c}

HB(P) = {arc(a,a), arc(a,b), arc(a,c),
arc(b,a), arc(b,b), arc(b, c),
arc(c,a), arc(c,b), arc(c,c),

reachable(a), reachable(b), reachable(c)}

‘atalog

;omputational Logic

Grounding

e Arule v’ is a ground instance of a rule r with respect to HU (P), if r’ = v/(r)

for a valuation v such that v(z) € HU(P) for each = € var(r).

e The grounding of a rule r with respect to HU(P), denoted Groundp ('), is the
set of all ground instances of r wrt HU(P)

e The grounding of a logic program P is

Ground(P) = C Groundp ()
reP

‘atalog

20

;omputational Logic

Example

Ground(P) = {arc(a,b). arc(b, c). reachable(a).
reachable(a) < arc(a, a), reachable(a).
reachable(b) « arc(a,b), reachable(a).
reachable(c) < arc(a, c), reachable(a).

reachable(a) « arc(b, a), reachable(b).

reachable(b) < arc(b,b), reachable(b).
reachable(a) < arc(c, a), reachable(c).

reachable(b)

T
-
-

reachable(c) < arc(b, c), reachable(b).
—
— arc(c,b), reachable(c).
-

reachable(c)

arc(c, c), reachable(c). }

‘atalog

21

;omputational Logic 22

Herbrand Models

e A Herbrand-interpretation I of P is any subset I C HB(P)

e A Herbrand-model of P is a Herbrand-interpretation that satisfies all sentences

in MUNU“H
Equivalently, M C HB(P) is a Herbrand model if

e for all € Ground('P) such that B(r) C M we have that H(r) C M

‘atalog

somputational Logic 23

Example

The Herbrand models of program PP above are exactly the following:

® My ={ arc(a,b),arc(b,c),
reachable(a), reachable(b), reachable(c) }

L iw == HuHHwQUV

e every interpretation M such that M; C M C M,

and no others.

‘atalog

somputational Logic 24

Logic Programming Semantics

e Proposition. HB(P) is always a model of P

e Theorem. For every logic program there exists a least Herbrand model (wrt “C”).

For a program P, this model is denoted §§qu (for “minimal model”).

The model MM(P) is the semantics of P.

e Theorem (Datalog < Logic Programming). Let PP be a datalog program and

I be an instance of edb(P). Then,

P(I) = MM(P(P,T))

atalog

somputational Logic 25

Consequences

Results and techniques for Logic Programming can be exploited for datalog.
For example,

e proof procedures for Logic Programming (e.g., SLD resolution) can be applied to

datalog (with some caveats, regarding for instance termination)

e datalog can be reduced by “grounding” to propositional logic programs

‘atalog

somputational Logic 26

Fixpoint Semantics

Another view:

“If all facts in I hold, which other facts must hold after firing the rules in P?”

Approach:

e Define an immediate consequence operator T p(K) on db instances K.
e Start with K = 1.

e Apply T p to obtain a new instance: K¢y, := T p(K) = I U new facts.
e |terate until nothing new can be produced.

e The result yields the semantics.

‘atalog

;omputational Logic 27

Immediate Consequence Operator

Let P be a datalog program and K be a database instance of sch(P).
A fact m@v is an immediate consequence for K and P, if either

e R ¢ edb(P)and R(t) € K, or

e there exists a ground instance r of a rule in P such that

H(r) = R(t) and B(r) C K.

Definition. The immediate consequence operator of a datalog program P is the

mapping
Tp: inst(sch(P)) — inst(sch(P))

where

Tp(K)={ A| Ais animmediate consequence for K and P }.

‘atalog

somputational Logic 28

Example

Consider

P ={ reachable(a)
reachable(Y) « arc(X,Y), reachable(X) }

where edb(P) = {arc} and idb(P) = {reachable}.

I=K; = {arc(a,b), arc(b,c)}
K: = {arc(a,b), arc(b,c), reachable(a)}
Ks = {arc(a,b), arc(b,c),reachable(a), reachable(b) }
Ky, = {arc(a,b), arc(b,c),reachable(a), reachable(b), reachable(c)}
‘atalog
somputational Logic 29

Example (cntd)

Then,

Tp(Ki) = {arc(a,b), arc(b,c),reachable(a)} =

Tp(K2) = {arc(a,b), arc(b,c),reachable(a), Hmmowm,o”_.m?vw = K3

Tp(Ks) = {arc(a,b), arc(b,c),reachable(a), reachable(b), reachable(c) } = Ky
Tp(Ks4) = {arc(a,b), arc(b,c),reachable(a), reachable(b), reachable(c)} = K4

Thus, K4 is a fixpoint of T p.

Definition. K is a fixpoint of operator T p if T p(K) = K.

‘atalog

;omputational Logic 30

Properties

Proposition. For every datalog program P we have:
1. The operator T p is monotonic, that is, K C K’ implies Tp(K) C Tp(K/);
2. Forany K € inst(sch(P)) we have:
K is a model of X p if and only if T p(K) C K;

3. ' Tp(K) = K (i.e., K is a fixpoint), then K is a model of ¥ p.

Note: The converse of 3. does not hold in general.

‘atalog

somputational Logic 31

Datalog Semantics via Least Fixpoint

The semantics of P on database instance I of edb(P) is a special fixpoint:
Theorem. Let P be a datalog program and I be a database instance. Then
1. T p has a least (wrt “C”) fixpoint containing I, denoted [fp(P, I).
2. Moreover, Ifp(P,I) = MM(P(P,1)) = P(I).
Advantage: Constructive definition of P(I) by fixpoint iteration

Proof of Claim 2, first equality (Sketch): Let M7 := Ifp(P,I) and My := MM(P(P,I)).

Since M is a fixpoint of T p, it is a model of >J p, and since it contains I it is a model of
P(P,1). Hence, My C M. Since Ms is a model of P(P, I), it holds that

T p(Ms) C Ms. Note that for every model M of P (P, I) we have, due to the
monotonicity of T p, that T p(M) is model. Hence, T p(Mz) = Mo, since M is a
minimal model. This implies that M5 is a fixpoint, hence M1 C M.

‘atalog

somputational Logic 32
Fixpoint Iteration
For a datalog program P and database instance I, define the sequence AHL&NO by
Ib, = I
I, = .H,muAH@.IHV fori > 0.
e By monotoncity of Tp,wehave In CI; CI, C---CIL, CI;41 C--
e Foreveryi > 0,wehave I; C B(P,I)
e Hence, for some integer n < |B(P,I)|, we have I,, 11 = I, (= T%(I))
e It holds that TS (I) = Ifp(P,I) = P(I).
This can be readily implemented by an algorithm.
‘atalog
;omputational Logic 33

Example
P ={ reachable(a)
reachable(Y) <« arc(X,Y), reachable(X) }
I = {arc(a,b), arc(b,c)}
Then,
I, = {arc(a,b), arc(b,c)}
I, =Tp(I) = {arc(a,b), arc(b,c), reachable(a)}
I, =TH(I) = {arc(a,b), arc(b,c), reachable(a), reachable(b)}
I; = T3(I) = {arc(a,b), arc(b,c),reachable(a), reachable(b), reachable(c)}
I, =TpH(I) = {arc(a,b), arc(b,c),reachable(a), reachable(b), reachable(c)}
= Tr(D
Thus, T%(I) = ifp(P,I) = 14.

‘atalog

somputational Logic 34

Proof-Theoretic Approach

Basic idea: The answer of a datalog program P on I is given by the set of facts

which can be proved from P and 1.

Definition. A proof tree for a fact A from I and P is a labeled finite tree I" such that
e each vertex of I is labeled by a fact
e the root of 1" is labeled by A
e each leaf of 1" is labeled by a fact in I

e if a non-leaf of 1" is labeled with A1 and its children are labeled with

Ao, ..., A,, then there exists a ground instance r of a rule in P such that
H(r)=Ayand B(r) ={Ag,..., An}

‘atalog

>omputational Logic 35

Example (Same Generation)

P={ ri: sgc(XX) < person(X)
ro: sgc(X,Y) «— par(X,X1),sgc(X1,Y1),par(Y, Y1)}

where edb(P) = {person, par} and idb(P) = {sgc}
Consider I as follows:

I(person) =/{ n), (bertrand), (charles), (dorothy),

I(par) ={

(an

(evelyn), (fred), (george), (hilary)}

(dorothy, george), (evelyn, george), (bertrand, dorothy),
A

ann, dorothy), (hilary,ann), (charles, evelyn)}.

‘atalog

;omputational Logic 36

Example (Same Generation)/2

Proof tree for A = sgc(ann, charles) from I and P:

sgc(ann, charles)

ro: par(ann, dorothy) par(charles, evelyn)
sgc(dorothy, evelyn)

ro par(dorothy, george) par(evelyn, george)

sgc(george, george)

T person(george)

‘atalog

somputational Logic 37

Proof Tree Construction

Different ways to construct a proof tree for A from P and I exist

e Bottom Up construction: From leaves to root
Intimately related to fixpoint approach
— Define S' Fp B to prove fact B from facts S if B € S or by arule in P
— Give S = I for granted
e Top Down construction: From root to leaves
In Logic Programming view, consider program P (P, I).

— This amounts to a set of logical sentences mﬁtub of the form
Vaq-- <&3AWH A&Hv Vv I_mwAumwv V I_mw@wwv VeV JNSA&SVV

— Prove A = R(t) via resolution refutation, that is, that Hppp U{—-A}is

unsatisfiable.

atalog

;omputational Logic 38

Datalog and SLD Resolution

e Logic Programming uses SLD resolution
e SLD: Selection Rule Driven Linear Resolution for Definite Clauses

e For datalog programs P on I, resp. P (P, I), things are simpler than for general

logic programs (no function symbols, unification is easy)

e Also non-ground atoms can be handled (e.g., mmoAWbP va

Let SLD(P) be the set of ground atoms provable with SLD Resolution from P.

Theorem. For any datalog program P and database instance I,

SLD(P(P,1)) = P(I) = Ty pry = ifp(Tppr) = MM(P(P,1))

‘atalog

>omputational Logic 39

SLD Resolution — Termination

e Notice: Selection rule for next rule / atom to be considered for resolution might

affect termination

e Prolog’s strategy (leftmost atom / first rule) is problematic

Example:

child of(karl, franz).

child of(franz, frieda).

child of(frieda,pia).

descendent of(X,Y) « child of(X,Y).

descendent_of (X,Y) « child.of(X,Z),descendent_of(Z,Y).

«— descendent_of (karl, X).

‘atalog

;omputational Logic

SLD Resolution — Termination /2

child of (karl, franz).

child of (franz,frieda).

child of (frieda,pia).

descendent of (X,Y) « child of(X,Y).

descendent of (X,Y) « descendent_of (X, Z), child of (Z,Y).

«— descendent_of (karl, X).

‘atalog

40

;omputational Logic

SLD Resolution — Termination /3

child of(karl, franz).

child of(franz,frieda).

child of (frieda,pia).

descendent_of (X,Y) < child of (X,Y).

descendent of (X,Y) <« descendent of (X, Z),
descendent of(Z,Y).

«— descendent_of (karl, X).

‘atalog

41

