
Computational Logic

Relational Query Languages with Negation

Free University of Bozen-Bolzano, 2010

Werner Nutt

(Slides adapted from Thomas Eiter and Leonid Libkin)

Computational Logic 1

Queries with “All”

“Who are the directors whose movies are playing in all theaters?”

• What does it actually mean?

{
dir

∣∣∣ ∃ tl’, act’ Movie(tl’, dir, act’) ∧ ∀ th
(
∃ tl” Schedule(th, tl”) →

∃ tl, act Schedule(th, tl) ∧ Movie(tl, dir, act)
) }

• To understand this, we revisit rule-based queries, and write them in logical

notation.

Relational Query Languages with Negation

Computational Logic 2

Expressing Rules in Logic

• By now, we have become familiar with queries like the one below:

answer(th) :– movie(tl, ’Polanski’, act), schedule(th,tl)

• How can we phrase this query in English?

• It specifies those theaters th such that the following holds:

There exist a movie (tl) and an actor (act) such that

(th,tl) is in Schedule and (tl, ’Polanski’, act) is in Movie

• Using notation from mathematical logic, we can introduce

a query predicate Q(·) and define it by the property above:

Q(th) ⇐⇒ ∃ tl ∃ act Movie(tl, ’Polanski’, act) ∧ Schedule(th,tl)

Relational Query Languages with Negation

Computational Logic 3

Other Queries in Logical Notation

• Rule-based query:

answer(th) :– movie(tl, dir, ’Nicholson’), schedule(th,tl)

• Query as formula:

Q(th) ⇐⇒ ∃ tl ∃ dir Movie(tl, dir, ’Nicholson’) ∧ Schedule(th,tl)

• In general, every single-rule query can be written in this logical notation using

only:

existential quantification ∃

and

logical conjunction ∧

Relational Query Languages with Negation

Computational Logic 4

SPJRU Queries in Logical Notation

“Who are the actors who played in movies directed by Kubrick OR Polanski?”

• Rule-based notation, using two rules:

answer(act) :– movie(tl,dir,act), dir=’Kubrick’

answer(act) :– movie(tl,dir,act), dir=’Polanski’

• Logical notation:

Q(act) ⇐⇒ ∃ tl ∃ dir (Movie(tl,dir,act) ∧

(dir = ’Kubrick’ ∨ dir = ’Polanski’))

The new element here is logical disjunction ∨ (OR)

Proposition. SPJRU queries can be expressed in logical notation using

– existential quantifiers ∃

– conjunction “∧” and disjunction “∨”

Relational Query Languages with Negation

Computational Logic 5

Queries with “All” (cntd)

{
dir

∣∣∣ ∃ tl’, act’ Movie(tl’, dir, act’) ∧ ∀ th
(
∃ tl” Schedule(th, tl”) →

∃ tl, act Schedule(th, tl) ∧ Movie(tl, dir, act)
) }

• The new element here is universal quantification ∀ (“for all”)

• We know:

∀xF (x) ≡ ¬∃x¬F (x)

So, we can capture this if we introduce negation

Relational Query Languages with Negation

Computational Logic 6

Relational Calculus

• Relational calculus consists of queries written in the logical notation using:

relation names (e.g., Movie)

constants (e.g., ’Nicholson’)

conjunction ∧, disjunction ∨, implication→

negation ¬

existential quantifiers ∃ and universal quantifiers ∀

• The logical symbols ∧,∃,¬ suffice:

∀xF (x) ≡ ¬∃x¬F (x)

F ∨ G ≡ ¬(¬F ∧ ¬G)

F → G ≡ ¬F ∨ G

• Relational calculus has exactly the syntax of first-order predicate logic.

Relational Query Languages with Negation

Computational Logic 7

Bound and Free Variables

When considering a formula ϕ as a query, the free variables of ϕ play an

outstanding role.

• An occurrence of a variable x in formula ϕ is bound if it is within the scope of a

quantifier ∃x or ∀x

• An occurrence of a variable in ϕ is free iff it is not bound

• A variable of formula ϕ is free if it has a free occurrence

• Free variables go into the output of a query

Relational Query Languages with Negation

Computational Logic 8

Queries in Relational Calculus

Essentially, a query is nothing but a formula.

We use two special notations to highlight the free variables �x of ϕ:

• Q(�x) ⇐⇒ ϕ

• {�x | ϕ}

Examples for the second notation:

• {x, y | ∃z
(
R(x, z) ∧ S(z, y)

)
}

• {x | ∀yR(x, y)}

Queries without free variables are called Boolean queries. Their output is true or

false. Examples:

• ∀xR(x, x)

• ∀x∃yR(x, y)

Relational Query Languages with Negation

Computational Logic 9

Reminder: Semantics of First-Order Predicate Logic

In predicate logic, the semantics of formulas is defined in terms of two ingredients

• interpretations I , where I

has a set ΔI as domain of interpretation

maps constants c to elements cI ∈ ΔI

maps n-ary relation symbols r to relations rI ⊆ (ΔI)n

• assignments α : var → ΔI , where var is the set of all variables.

One defines recursively over the structure of formulas when a pair I, α satisfies a

formula ϕ, written

I, α |= ϕ

Relational Query Languages with Negation

Computational Logic 10

Database Instances as First-Order Interpretations

In a straightforward way, every database instance I gives rise to a first-order

interpretation II that

– has domain ΔII = dom

– maps every constant to itself, i.e., cII = c for all c ∈ dom

– maps every n-ary relation symbol R to RII = I(R) ⊆ dom
n.

To simplify our notation, we will often identify I and II.

Relational Query Languages with Negation

Computational Logic 11

Semantics of Queries

• If �x is a tuple of variables and α : var → dom is an assignment, then α(�x) is

a tuple of constants.

• Let Q = {�x | ϕ} be a query. We define the answer of Q over I as

Q(I) = {α(�x) | I, α |= ϕ }

How does this relate to our previous definition of answers to conjunctive queries?

Relational Query Languages with Negation

Computational Logic 12

Negation in the Calculus Requires Care

• What is the meaning of the query

Q = {x | ¬R(x)} ?

It says something like, “Give me everything that is not in the database”

• According to our formal definition, Q(I) = dom \ I(R).

But this is an infinite set!

Relational Query Languages with Negation

Computational Logic 13

Safe Queries

Definition (Safety). A calculus query is safe if it returns finite results over all (finite)

databases.

• Clearly, practical languages can only allow safe queries.

• Bad news: Safety is undecidable. (That is: No algorithm exists to check whether

a query is safe.)

• Good news: All SPJRU queries are safe.

Reason: Everything constant that occurs in the output must have occurred in the

input.

• We conclude: Queries can become unsafe if we allow negation.

Relational Query Languages with Negation

Computational Logic 14

Negation in Relational Algebra: Difference

Definition (Difference in the Named Perspective). If R and S are two relations

with the same set of attributes, then R \ S is their set difference, i.e., the set of all

tuples that occur in R but not in S.

Example:

A B

a1 b1

a2 b2

a3 b3

\

A B

a2 b2

a3 b3

a4 b4

=
A B

a1 b1

For which relations can one define difference in the unnamed perspective?

Definition. The (full) relational algebra comprises the operators projection, selection,

cartesian product, renaming and difference.

Relational Query Languages with Negation

Computational Logic 15

How Does Relational Calculus Compare to Relational Algebra?

We have seen that close connections exist between fragments of relational algebra

and fragments of relational calculus, e.g.,

• SPC queries ↔ conjunctive queries

• SPCU queries ↔ unions of conjunctive queries

Observation. All relational algebra queries are safe, but not all calculus queries

=⇒ not all calculus queries can be expressed in algebra

Questions:

• Can we characterize the calculus queries that can be expressed in algebra?

• Can all safe queries be expressed in algebra?

Relational Query Languages with Negation

Computational Logic 16

Query Semantics (cntd)

• When fixing the semantics of calculus queries, we defined the domain of II as

ΔII = dom.

However, there are more options.

• For an instance I and a query Q let

– adom(I) = the set of constants occurring in I; the active domain of I

– adom(Q) = the set of constants occurring in Q; the active domain of Q

– adom(Q, I) = adom(Q) ∪ adom(I); the active domain of Q and I

• A set d ⊆ dom is admissible for Q and I if adom(Q, I) ⊆ d.

• Given an admissible d we define Id

I
similarly as II, with the exception that

ΔId

I = d.

Relational Query Languages with Negation

Computational Logic 17

Query Semantics (cntd)

• Let d be admissible for Q = {�x | ϕ} and I

• Then we define the answer of Q over I relative to d as

Qd(I) = {α(�x) | Id

I , α |= ϕ }

Intuitively, different semantics have different quantifier ranges.

• The extreme cases are:

– Natural semantics Qnat(I): unrestricted interpretation, that is d = dom

– Active domain semantics Qadom(I): the range of quantifiers is the set of all

constants in Q and in I, that is d = adom(Q, I).

Relational Query Languages with Negation

Computational Logic 18

Domain Dependent Queries

Sometimes, the answer Qd(I) can be different for the same Q and I if d varies.

Examples:

• {x, y, z | ¬Movie(x, y, z)}

• {x, y | Movie(x,Polanski,Nicholson) ∨ Movie(Chinatown,Polanski,y)}

The results of these queries are domain dependent.

Observation. Relational Algebra queries do not depend on the domain.

Relational Query Languages with Negation

Computational Logic 19

Domain Dependent Queries (cntd)

• The previous examples of domain dependent queries were not safe.

One may think that the problem of domain dependence is the one of possibly

infinite query outputs.

• But something more subtle plays a role: the range of quantifiers

• Example:

Q(x) = {x | ∀y R(x, y)} I =

R A B

a a

a b

For this query Q over this interpretation I we have

Qnat(I) = ∅

Qadom(I) = {〈a〉}.

Relational Query Languages with Negation

Computational Logic 20

Domain Independence

Definition. A calculus query Q is domain independent if for all I and all admissible

d, d′ we have that

Qd(I) = Qd′(I).

Examples.

• Positive examples:

∃ tl ∃ act Movie(tl, ’Polanski’, act) ∧ Schedule(th,tl)

Every SPJU query, rewritten to logical notation

• Negative examples:

{x, y | Movie(x,Polanski,Nicholson) ∨ Movie(Chinatown,Polanski,y)}

{x | ∀y Schedule(y, x)}

Relational Query Languages with Negation

Computational Logic 21

Domain Independence (cntd)

Proposition. If Q is domain independent, then for all instances I and all admissible

d ⊆ dom we have that

Qadom(I) = Qd(I) = Qnat(I)

Definition. The Domain-independent Relational Calculus (DI-RelCalc) consists of

the domain-independent queries in RC.

Relational Query Languages with Negation

Computational Logic 22

Domain Independence (cntd)

Theorem. Domain independence is undecidable.

• Consequence: It is undecidable whether a given formula Q(�x) belongs to

DI-RelCalc

• Still, there are (decidable) syntactic properties of queries that imply domain

independence

• There are even domain-independent fragments of RelCalc that can be efficiently

recognized and that are as expressive as the full DI-RelCalc (e.g., safe range

queries)

Relational Query Languages with Negation

Computational Logic 23

Equivalence Theorem of Relational Query Languages

Theorem. The following query languages have the same expressivity:

• Relational Algebra with the operations π, σ,×, ∪, \, ρ

• Domain-independent Relational Calculus (DI-RelCalc)

• Relational Calculus under Active Domain Semantics

We won’t give a formal proof of this statement (which can be found in the book in

Section 5.3), but try to explain why it is true.

As a side effect, we will see some examples of relational algebra usage

Relational Query Languages with Negation

Computational Logic 24

Proof Sketch: From Relational Algebra to DI-RelCalc

• Show that unnamed relational algebra can be expressed by relational calculus

• Use only ∃ quantifiers in the transformation

• Ensure that each free variable x, resp. each variable quantified by an ∃x is

“grounded” in some atom R(..., x, ...)

• This yields for each RelAlg expression E a domain-independent transform ϕE

such that the semantics of E and of ϕE coincide

• In particular, the semantics of E and the Active Domain Semantics of ϕE

coincide

Relational Query Languages with Negation

Computational Logic 25

From Relational Algebra to DI-RelCalc /1

Principle: Each expression E producing an n-ary relation is translated into a formula

ϕE(x1, . . . , xn) with free variables x1, . . . , xn

• R �→ R(x1, . . . , xn)

• σC(E) �→ ϕE(x1, . . . , xn) ∧ C

Example: Suppose R is binary. Then

σ1=2(R) �→ (R(x1, x2) ∧ x1 = x2).

Relational Query Languages with Negation

Computational Logic 26

From Relational Algebra to DI-RelCalc/2

• If E has arity (n + m), then

π1,...,n(E) �→ ∃y1, . . . , ym ϕE(x1, . . . , xn, y1, . . . , ym).

The attributes that are not projected are quantified.

Example: Suppose R is binary. Then

π1(R) �→ ∃x2R(x1, x2).

• For any E, F with arity n, m, resp.

E × F �→ ϕE(x1, . . . , xn) ∧ ϕF (y1, . . . , ym)

(note that the formula has n + m distinct free variables)

Relational Query Languages with Negation

Computational Logic 27

From Relational Algebra to DI-RelCalc/3

• If E and F both have the same arity, say n, then

E ∪ F �→ ϕE(x1, . . . , xn) ∨ ϕF (x1, . . . , xn)

(note that the output has n distinct free variables)

• If E and F both have the same arity, say n, then

E \ F �→ E(x1, . . . , xn) ∧ ¬F (x1, . . . , xn)

(note that the output has again n distinct free variables)

Relational Query Languages with Negation

Computational Logic 28

From DI-RelCalc to Relational Algebra: Translation

The active domain of a relation is the set of all constants that occur in it.

• Example:

R1 A B

a1 b1

a2 b2

has active domain {a1, a2, b1, b2}.

• We can express the active domain of a relation R in relational algebra.

Suppose R has attributes A1, . . . , An. Then:

ADOM(R) = ρB←A1
(πA1

(R)) ∪ . . . ∪ ρB←An
(πAn

(R))

• The active domain is a relation with one attribute (here: B)

• We can also express the active domain of a database:

ADOM(R1, . . . , Rk) = ADOM(R1) ∪ · · · ∪ ADOM(Rk)

Relational Query Languages with Negation

Computational Logic 29

From DI-RelCalc to Relational Algebra

Let Q(�x) be a query over the relations R1, . . . , Rn.

• If Q is domain-independent,

then Q(�x) can wlog be evaluated over ADOM(R1, . . . , Rn).

• Thus, we need to show how to translate relational calculus queries over

ADOM(R1, . . . , Rn) into relational algebra queries.

• We will translate a relational calculus formula ϕ(x1, . . . , xn) into a relation

algebra expression Eϕ with n attributes.

We will mix named an unnamed perspective

and use whatever is more convenient

Relational Query Languages with Negation

Computational Logic 30

From DI-RelCalc to Relational Algebra /2

Easy cases. Let R be a relation with attributes A1, . . . , An:

• R(x1, . . . , xn) �→ R

• ∃x1R(x1, . . . , xn) �→ πA2,...,An
(R)

Not so easy cases. Conditions and negation:

• C(x1, . . . , xn) �→ σC(ADOM × · · · × ADOM)

E.g., x1 = x2 is translated into σ1=2(ADOM × ADOM)

• ¬R(�x) �→ (ADOM × · · · × ADOM) \ R

We only compute the tuples of database elements that do not belong to R

Relational Query Languages with Negation

Computational Logic 31

From DI-RelCalc to Relational Algebra /3

The hardest case. Disjunction:

• Let both R and S be binary. Consider the relational calculus query:

Q(x, y, z) ⇐⇒ R(x, y) ∨ S(x, z)

• The result is ternary and consists of tuples (x, y, z) such that

either (x, y) ∈ R, z ∈ ADOM, or (x, z) ∈ S, y ∈ ADOM

• The first disjunct translates simply to R × ADOM

• The second translation is more complex: π1,3,5(σ1=4∧2=5(S×ADOM×S))

• Taking the two together yields

Q(x, y, z) �→ R × ADOM ∪ π1,3,5(σ1=4∧2=5(S × ADOM × S))

Relational Query Languages with Negation

Computational Logic 32

From DI-RelCalc to Relational Algebra /4

Conjunction is mapped to (natural) join

• Suppose we have mapped

ϕ(x1, . . . , xm, y1, . . . , yn) �→ E(A1, . . . , Am, B1, . . . , Bn)

ψ(x1, . . . , xm, z1, . . . , zk) �→ F (A1, . . . , Am, C1, . . . , Ck)

• Then

ϕ(x1, . . . , xm, y1, . . . , yn) ∧ ψ(x1, . . . , xm, z1, . . . , zk) �→ E � F

Recall that the natural join can be defined in terms of ρ,×, σ, and π

Relational Query Languages with Negation

Computational Logic 33

Queries with “All” in Relational Algebra

• “Find directors whose movies are playing in all theaters”

{
dir

∣∣∣ ∃ tl’, act’ Movie(tl’, dir, act’) ∧ ∀ th
(
∃ tl” Schedule(th, tl”) →

∃ tl, act Schedule(th, tl) ∧ Movie(tl, dir, act)
) }

• Define, using M for Movie and S for Schedule,

D = πdirector(M), T = πtheater(S), DT = πdirector,theater(M � S)

• D has all directors, T has all theaters,

DT has all directors and theaters where their movies are playing

• Our query is (mixing slightly logic and algebra):

{ d | d ∈ D ∧ ∀t (t ∈ T → (d, t) ∈ DT) }

Relational Query Languages with Negation

Computational Logic 34

Queries with “All” (cntd)

• We can rewrite the query { d | d ∈ D ∧ ∀t (t ∈ T → (d, t) ∈ DT) } as

{ d | d ∈ D ∧ ¬∃t (t ∈ T ∧ (d, t) /∈ DT) }

• This is the relative complement in D of the query

{ d | d ∈ D ∧ ∃t (t ∈ T ∧ (d, t) /∈ DT) },

• This can be equivalently transformed into

{ d | ∃t (d ∈ D ∧ t ∈ T ∧ (d, t) /∈ DT) },

• Finally, this can be expressed as

πdirector(D × T \ DT)

Relational Query Languages with Negation

Computational Logic 35

Queries with “All” (cont’d)

• Hence, the answer to the entire query is

D \ πdirector(D × T \ DT).

• Putting everything together, the answer is:

πdirector(M)\πdirector

(
πdirector(M)×πtheater(S) \ πdirector,theater(M � S)

)

• This is much less intuitive than the logical description of the query.

Relational Query Languages with Negation

Computational Logic 36

Safe-Range Queries

Safe range queries are a syntactically defined fragment of Relational Calculus that

contains only domain-independent queries

(and thus are also a fragment of DI-RelCalc)

• One can show: Safe-Range RelCalc≡ DI-RelCalc

• Steps in defining safe-range queries:

– a syntactic normal form of the queries

– a mechanism for determining whether a variable is range restricted

Then a query is safe-range iff all its free variables are range-restricted.

Relational Query Languages with Negation

Computational Logic 37

Safe-Range Normal Form (SRNF)

Equivalently rewrite query formula ϕ

• Rename variables apart: Rename variables such that each variable x is quantified at

most once and has only free or only bound occurrences.

• Eliminate ∀: Rewrite ∀xϕ �→ ¬∃x¬ϕ

• Eliminate implications: Rewrite ϕ → ψ �→ ¬ϕ ∨ ψ (and similarly for↔)

• Push negation down as far as possible: Use the rules

¬¬ϕ �→ ϕ

¬(ϕ1 ∧ ϕ2) �→ ¬ϕ1 ∨ ¬ϕ2)

¬(ϕ1 ∨ ϕ2) �→ ¬ϕ1 ∧ ¬ϕ2)

• Flatten ‘and’s: No child of an ‘and’ in the formula parse tree is an ‘and’.

Similarly for ‘or’s, and ‘∃’s

Relational Query Languages with Negation

Computational Logic 38

Safe-Range Normal Form /2

• The result of rewriting a query Q is called SRNF(Q)

• A query Q is in safe-range normal form if Q = SRNF(Q)

• Examples:

Q1(th) = ∃ tl ∃ dir (Movie(tl, dir,’Nicholson’) ∧ Schedule(th,tl))

SRNF(Q1) = ∃ tl, dir (Movie(tl, dir,’Nicholson’) ∧ Schedule(th,tl))

Q2(dir) = ∀ th ∀ tl’ (Schedule(th,tl’)→∃ tl ∃ act (Schedule(th,tl) ∧ Movie(tl, dir, act)))

SRNF(Q2) = ¬∃ th, tl’ (Schedule(th,tl’) ∧ ¬∃ tl, act (Schedule(th,tl) ∧ Movie(tl, dir, act)))

Relational Query Languages with Negation

Computational Logic 39

Range Restriction

Three elements:

• Syntactic condition on formulas in SRNF.

• Intuition: all possible values of a variable lie in the active domain.

• If a variable does not fulfill this, then the query is rejected

Relational Query Languages with Negation

Computational Logic 40

Algorithm Range Restriction (rr)

Input: formula ϕ in SRNF

Output: subset of the free variables or⊥ (indicating that a quantified variable is not range restricted)

case ϕ of

R(t1, . . . , tn): rr(ϕ) := the set of variables from t1, . . . , tn.

x = a, a = x: rr(ϕ) := {x}

ϕ1 ∧ ϕ2: rr(ϕ) := rr(ϕ1) ∪ rr(ϕ2)

ϕ1 ∧ x = y: if {x, y} ∩ rr(ϕ1) = ∅ then rr(ϕ) := rr(ϕ1)

else rr(ϕ) := rr(ϕ1) ∪ {x, y}

ϕ1 ∨ ϕ2: rr(ϕ) := rr(ϕ1) ∩ rr(ϕ2)

¬ϕ1: rr(ϕ) := ∅

∃x1, . . . , xnϕ1: if {x1, . . . , xn} ⊆ rr(ϕ1) then rr(ϕ) := rr(ϕ1) \ {x1, . . . , xn}

else return⊥

end case

Here, S ∪ ⊥ = ⊥ ∪ S = ⊥ and similarly for ∩, \

Relational Query Languages with Negation

Computational Logic 41

Range Restriction (cntd)

Examples (contd):

SRNF(Q1) = ∃ tl, dir (Movie(tl, dir,’Nicholson’) ∧ Schedule(th,tl))

rr(SRNF(Q1)) = {th}

SRNF(Q2) = ¬∃ th, tl’ (Schedule(th,tl’) ∧ ¬∃ tl, act (Schedule(th,tl) ∧ Movie(tl, dir, act)))

rr(SRNF(Q2)) = {}

Relational Query Languages with Negation

Computational Logic 42

Safe-Range Calculus

Definition. A query Q(�x) in Relational Calculus is safe-range iff

rr(SRNF(Q)) = free(Q).

The set of all safe-range queries is denoted by SR-RelCalc.

Intuition: A query is safe-range iff all its variables are bound by a database atom or

by an equality atom.

Examples: Q1 is a safe-range query, while Q2 is not.

Theorem. SR-RelCalc≡ DI-RelCalc

(The proof of this theorem is technically involved.)

Relational Query Languages with Negation

Computational Logic 43

“For All” and Negation in SQL

• Two main mechanisms: set theoretic operators and subqueries

• Subqueries are often more natural

• SQL syntax for R ∩ S:

R INTERSECT S

• SQL syntax for R \ S:

R EXCEPT S

• Find all actors who are not directors resp. also directors:

SELECT Actor AS Person SELECT Actor AS Person

FROM Movie FROM Movie

EXCEPT INTERSECT

SELECT Director AS Person SELECT Director AS Person

FROM Movie FROM Movie

Relational Query Languages with Negation

Computational Logic 44

“For All” and Negation in SQL /2

Subqueries with NOT EXISTS, NOT IN

• Example: Who are the directors whose movies are playing in all theaters?

• SQL’s way of saying this: Find directors such that there does not exist a theater where

their movies do not play.

SELECT M1.Director

FROM Movie M1

WHERE NOT EXISTS (SELECT S.Theater

FROM Schedule S

WHERE NOT EXISTS (SELECT M2.Director

FROM Movie M2

WHERE M2.Title=S.Title AND

M1.Director=M2.Director))

Relational Query Languages with Negation

Computational Logic 45

“For All” and Negation in SQL /2

Same query using EXCEPT.

SELECT M.Director

FROM Movie M

WHERE NOT EXISTS (SELECT S.Theater

FROM Schedule S

EXCEPT

SELECT S1.Theater

FROM Schedule S1, Movie M1

WHERE S1.Title=M1.Title AND

M1.Director=M.Director)

• Other conditions: IN, NOT IN, EXISTS

Relational Query Languages with Negation

Computational Logic 46

More examples of nested queries: using EXISTS and IN

Find directors whose movies are playing at Le Champo:

• SELECT M.Director

FROM Movie M

WHERE EXISTS (SELECT *
FROM Schedule S

WHERE S.Title=M.Title AND

S.Theater=’Le Champo’)

• SELECT M.Director

FROM Movie M

WHERE M.Title IN (SELECT S.Title

FROM Schedule S

WHERE S.Theater=’Le Champo’)

Relational Query Languages with Negation

Computational Logic 47

More examples of nested queries: using NOT IN

Find actors who did not play in a movie by Kubrick.

• SELECT M.Actor

FROM Movie M

WHERE M.Actor NOT IN

(SELECT M1.Actor

FROM Movie M1

WHERE M1.Director=’Kubrick’)

The subquery finds actors playing in some movie by Kubrick; the top two lines take

the complement of that.

Relational Query Languages with Negation

Computational Logic 48

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems – The Complete Book.

Prentice Hall, 2002.

[3] D. Maier. The Theory of Relational Databases. Computer Science Press, Rockville, Md.,

1983.

[4] J. D. Ullman. Principles of Database and Knowledge Base Systems. Computer Science

Press, 1989.

Relational Query Languages with Negation

