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Queries with “All”

“Who are the directors whose movies are playing in all theaters?”

• What does it actually mean?

{
dir

∣∣∣ ∃ tl’, act’ Movie(tl’, dir, act’) ∧ ∀ th
(
∃ tl” Schedule(th, tl”) →

∃ tl, act Schedule(th, tl) ∧ Movie(tl, dir, act)
) }

• To understand this, we revisit rule-based queries, and write them in logical

notation.
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Expressing Rules in Logic

• By now, we have become familiar with queries like the one below:

answer(th) :– movie(tl, ’Polanski’, act), schedule(th,tl)

• How can we phrase this query in English?

• It specifies those theaters th such that the following holds:

There exist a movie (tl) and an actor (act) such that

(th,tl) is in Schedule and (tl, ’Polanski’, act) is in Movie

• Using notation from mathematical logic, we can introduce

a query predicate Q(·) and define it by the property above:

Q(th) ⇐⇒ ∃ tl ∃ act Movie(tl, ’Polanski’, act) ∧ Schedule(th,tl)
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Other Queries in Logical Notation

• Rule-based query:

answer(th) :– movie(tl, dir, ’Nicholson’), schedule(th,tl)

• Query as formula:

Q(th) ⇐⇒ ∃ tl ∃ dir Movie(tl, dir, ’Nicholson’) ∧ Schedule(th,tl)

• In general, every single-rule query can be written in this logical notation using

only:

existential quantification ∃

and

logical conjunction ∧
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SPJRU Queries in Logical Notation

“Who are the actors who played in movies directed by Kubrick OR Polanski?”

• Rule-based notation, using two rules:

answer(act) :– movie(tl,dir,act), dir=’Kubrick’

answer(act) :– movie(tl,dir,act), dir=’Polanski’

• Logical notation:

Q(act) ⇐⇒ ∃ tl ∃ dir (Movie(tl,dir,act) ∧

(dir = ’Kubrick’ ∨ dir = ’Polanski’))

The new element here is logical disjunction ∨ (OR)

Proposition. SPJRU queries can be expressed in logical notation using

– existential quantifiers ∃

– conjunction “∧” and disjunction “∨”
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Queries with “All” (cntd)

{
dir

∣∣∣ ∃ tl’, act’ Movie(tl’, dir, act’) ∧ ∀ th
(
∃ tl” Schedule(th, tl”) →

∃ tl, act Schedule(th, tl) ∧ Movie(tl, dir, act)
) }

• The new element here is universal quantification ∀ (“for all”)

• We know:

∀xF (x) ≡ ¬∃x¬F (x)

So, we can capture this if we introduce negation
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Relational Calculus

• Relational calculus consists of queries written in the logical notation using:

relation names (e.g., Movie)

constants (e.g., ’Nicholson’)

conjunction ∧, disjunction ∨, implication→

negation ¬

existential quantifiers ∃ and universal quantifiers ∀

• The logical symbols ∧,∃,¬ suffice:

∀xF (x) ≡ ¬∃x¬F (x)

F ∨ G ≡ ¬(¬F ∧ ¬G)

F → G ≡ ¬F ∨ G

• Relational calculus has exactly the syntax of first-order predicate logic.
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Bound and Free Variables

When considering a formula ϕ as a query, the free variables of ϕ play an

outstanding role.

• An occurrence of a variable x in formula ϕ is bound if it is within the scope of a

quantifier ∃x or ∀x

• An occurrence of a variable in ϕ is free iff it is not bound

• A variable of formula ϕ is free if it has a free occurrence

• Free variables go into the output of a query
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Queries in Relational Calculus

Essentially, a query is nothing but a formula.

We use two special notations to highlight the free variables �x of ϕ:

• Q(�x) ⇐⇒ ϕ

• {�x | ϕ}

Examples for the second notation:

• {x, y | ∃z
(
R(x, z) ∧ S(z, y)

)
}

• {x | ∀yR(x, y)}

Queries without free variables are called Boolean queries. Their output is true or

false. Examples:

• ∀xR(x, x)

• ∀x∃yR(x, y)
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Reminder: Semantics of First-Order Predicate Logic

In predicate logic, the semantics of formulas is defined in terms of two ingredients

• interpretations I , where I

has a set ΔI as domain of interpretation

maps constants c to elements cI ∈ ΔI

maps n-ary relation symbols r to relations rI ⊆ (ΔI)n

• assignments α : var → ΔI , where var is the set of all variables.

One defines recursively over the structure of formulas when a pair I, α satisfies a

formula ϕ, written

I, α |= ϕ
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Database Instances as First-Order Interpretations

In a straightforward way, every database instance I gives rise to a first-order

interpretation II that

– has domain ΔII = dom

– maps every constant to itself, i.e., cII = c for all c ∈ dom

– maps every n-ary relation symbol R to RII = I(R) ⊆ dom
n.

To simplify our notation, we will often identify I and II.
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Semantics of Queries

• If �x is a tuple of variables and α : var → dom is an assignment, then α(�x) is

a tuple of constants.

• Let Q = {�x | ϕ} be a query. We define the answer of Q over I as

Q(I) = {α(�x) | I, α |= ϕ }

How does this relate to our previous definition of answers to conjunctive queries?
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Negation in the Calculus Requires Care

• What is the meaning of the query

Q = {x | ¬R(x)} ?

It says something like, “Give me everything that is not in the database”

• According to our formal definition, Q(I) = dom \ I(R).

But this is an infinite set!
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Safe Queries

Definition (Safety). A calculus query is safe if it returns finite results over all (finite)

databases.

• Clearly, practical languages can only allow safe queries.

• Bad news: Safety is undecidable. (That is: No algorithm exists to check whether

a query is safe.)

• Good news: All SPJRU queries are safe.

Reason: Everything constant that occurs in the output must have occurred in the

input.

• We conclude: Queries can become unsafe if we allow negation.
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Negation in Relational Algebra: Difference

Definition (Difference in the Named Perspective). If R and S are two relations

with the same set of attributes, then R \ S is their set difference, i.e., the set of all

tuples that occur in R but not in S.

Example:

A B

a1 b1

a2 b2

a3 b3

\

A B

a2 b2

a3 b3

a4 b4

=
A B

a1 b1

For which relations can one define difference in the unnamed perspective?

Definition. The (full) relational algebra comprises the operators projection, selection,

cartesian product, renaming and difference.
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How Does Relational Calculus Compare to Relational Algebra?

We have seen that close connections exist between fragments of relational algebra

and fragments of relational calculus, e.g.,

• SPC queries ↔ conjunctive queries

• SPCU queries ↔ unions of conjunctive queries

Observation. All relational algebra queries are safe, but not all calculus queries

=⇒ not all calculus queries can be expressed in algebra

Questions:

• Can we characterize the calculus queries that can be expressed in algebra?

• Can all safe queries be expressed in algebra?
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Query Semantics (cntd)

• When fixing the semantics of calculus queries, we defined the domain of II as

ΔII = dom.

However, there are more options.

• For an instance I and a query Q let

– adom(I) = the set of constants occurring in I; the active domain of I

– adom(Q) = the set of constants occurring in Q; the active domain of Q

– adom(Q, I) = adom(Q) ∪ adom(I); the active domain of Q and I

• A set d ⊆ dom is admissible for Q and I if adom(Q, I) ⊆ d.

• Given an admissible d we define Id

I
similarly as II, with the exception that

ΔId

I = d.
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Query Semantics (cntd)

• Let d be admissible for Q = {�x | ϕ} and I

• Then we define the answer of Q over I relative to d as

Qd(I) = {α(�x) | Id

I , α |= ϕ }

Intuitively, different semantics have different quantifier ranges.

• The extreme cases are:

– Natural semantics Qnat(I): unrestricted interpretation, that is d = dom

– Active domain semantics Qadom(I): the range of quantifiers is the set of all

constants in Q and in I, that is d = adom(Q, I).
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Domain Dependent Queries

Sometimes, the answer Qd(I) can be different for the same Q and I if d varies.

Examples:

• {x, y, z | ¬Movie(x, y, z)}

• {x, y | Movie(x,Polanski,Nicholson) ∨ Movie(Chinatown,Polanski,y)}

The results of these queries are domain dependent.

Observation. Relational Algebra queries do not depend on the domain.
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Domain Dependent Queries (cntd)

• The previous examples of domain dependent queries were not safe.

One may think that the problem of domain dependence is the one of possibly

infinite query outputs.

• But something more subtle plays a role: the range of quantifiers

• Example:

Q(x) = {x | ∀y R(x, y)} I =

R A B

a a

a b

For this query Q over this interpretation I we have

Qnat(I) = ∅

Qadom(I) = {〈a〉}.
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Domain Independence

Definition. A calculus query Q is domain independent if for all I and all admissible

d, d′ we have that

Qd(I) = Qd′(I).

Examples.

• Positive examples:

∃ tl ∃ act Movie(tl, ’Polanski’, act) ∧ Schedule(th,tl)

Every SPJU query, rewritten to logical notation

• Negative examples:

{x, y | Movie(x,Polanski,Nicholson) ∨ Movie(Chinatown,Polanski,y)}

{x | ∀y Schedule(y, x)}
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Domain Independence (cntd)

Proposition. If Q is domain independent, then for all instances I and all admissible

d ⊆ dom we have that

Qadom(I) = Qd(I) = Qnat(I)

Definition. The Domain-independent Relational Calculus (DI-RelCalc) consists of

the domain-independent queries in RC.
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Domain Independence (cntd)

Theorem. Domain independence is undecidable.

• Consequence: It is undecidable whether a given formula Q(�x) belongs to

DI-RelCalc

• Still, there are (decidable) syntactic properties of queries that imply domain

independence

• There are even domain-independent fragments of RelCalc that can be efficiently

recognized and that are as expressive as the full DI-RelCalc (e.g., safe range

queries)
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Equivalence Theorem of Relational Query Languages

Theorem. The following query languages have the same expressivity:

• Relational Algebra with the operations π, σ,×, ∪, \, ρ

• Domain-independent Relational Calculus (DI-RelCalc)

• Relational Calculus under Active Domain Semantics

We won’t give a formal proof of this statement (which can be found in the book in

Section 5.3), but try to explain why it is true.

As a side effect, we will see some examples of relational algebra usage
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Proof Sketch: From Relational Algebra to DI-RelCalc

• Show that unnamed relational algebra can be expressed by relational calculus

• Use only ∃ quantifiers in the transformation

• Ensure that each free variable x, resp. each variable quantified by an ∃x is

“grounded” in some atom R(..., x, ...)

• This yields for each RelAlg expression E a domain-independent transform ϕE

such that the semantics of E and of ϕE coincide

• In particular, the semantics of E and the Active Domain Semantics of ϕE

coincide
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From Relational Algebra to DI-RelCalc /1

Principle: Each expression E producing an n-ary relation is translated into a formula

ϕE(x1, . . . , xn) with free variables x1, . . . , xn

• R �→ R(x1, . . . , xn)

• σC(E) �→ ϕE(x1, . . . , xn) ∧ C

Example: Suppose R is binary. Then

σ1=2(R) �→ (R(x1, x2) ∧ x1 = x2).
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From Relational Algebra to DI-RelCalc/2

• If E has arity (n + m), then

π1,...,n(E) �→ ∃y1, . . . , ym ϕE(x1, . . . , xn, y1, . . . , ym).

The attributes that are not projected are quantified.

Example: Suppose R is binary. Then

π1(R) �→ ∃x2R(x1, x2).

• For any E, F with arity n, m, resp.

E × F �→ ϕE(x1, . . . , xn) ∧ ϕF (y1, . . . , ym)

(note that the formula has n + m distinct free variables)
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From Relational Algebra to DI-RelCalc/3

• If E and F both have the same arity, say n, then

E ∪ F �→ ϕE(x1, . . . , xn) ∨ ϕF (x1, . . . , xn)

(note that the output has n distinct free variables)

• If E and F both have the same arity, say n, then

E \ F �→ E(x1, . . . , xn) ∧ ¬F (x1, . . . , xn)

(note that the output has again n distinct free variables)
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From DI-RelCalc to Relational Algebra: Translation

The active domain of a relation is the set of all constants that occur in it.

• Example:

R1 A B

a1 b1

a2 b2

has active domain {a1, a2, b1, b2}.

• We can express the active domain of a relation R in relational algebra.

Suppose R has attributes A1, . . . , An. Then:

ADOM(R) = ρB←A1
(πA1

(R)) ∪ . . . ∪ ρB←An
(πAn

(R))

• The active domain is a relation with one attribute (here: B)

• We can also express the active domain of a database:

ADOM(R1, . . . , Rk) = ADOM(R1) ∪ · · · ∪ ADOM(Rk)

Relational Query Languages with Negation

Computational Logic 29

From DI-RelCalc to Relational Algebra

Let Q(�x) be a query over the relations R1, . . . , Rn.

• If Q is domain-independent,

then Q(�x) can wlog be evaluated over ADOM(R1, . . . , Rn).

• Thus, we need to show how to translate relational calculus queries over

ADOM(R1, . . . , Rn) into relational algebra queries.

• We will translate a relational calculus formula ϕ(x1, . . . , xn) into a relation

algebra expression Eϕ with n attributes.

We will mix named an unnamed perspective

and use whatever is more convenient
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From DI-RelCalc to Relational Algebra /2

Easy cases. Let R be a relation with attributes A1, . . . , An:

• R(x1, . . . , xn) �→ R

• ∃x1R(x1, . . . , xn) �→ πA2,...,An
(R)

Not so easy cases. Conditions and negation:

• C(x1, . . . , xn) �→ σC(ADOM × · · · × ADOM)

E.g., x1 = x2 is translated into σ1=2(ADOM × ADOM)

• ¬R(�x) �→ (ADOM × · · · × ADOM) \ R

We only compute the tuples of database elements that do not belong to R

Relational Query Languages with Negation

Computational Logic 31

From DI-RelCalc to Relational Algebra /3

The hardest case. Disjunction:

• Let both R and S be binary. Consider the relational calculus query:

Q(x, y, z) ⇐⇒ R(x, y) ∨ S(x, z)

• The result is ternary and consists of tuples (x, y, z) such that

either (x, y) ∈ R, z ∈ ADOM, or (x, z) ∈ S, y ∈ ADOM

• The first disjunct translates simply to R × ADOM

• The second translation is more complex: π1,3,5(σ1=4∧2=5(S×ADOM×S))

• Taking the two together yields

Q(x, y, z) �→ R × ADOM ∪ π1,3,5(σ1=4∧2=5(S × ADOM × S))
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From DI-RelCalc to Relational Algebra /4

Conjunction is mapped to (natural) join

• Suppose we have mapped

ϕ(x1, . . . , xm, y1, . . . , yn) �→ E(A1, . . . , Am, B1, . . . , Bn)

ψ(x1, . . . , xm, z1, . . . , zk) �→ F (A1, . . . , Am, C1, . . . , Ck)

• Then

ϕ(x1, . . . , xm, y1, . . . , yn) ∧ ψ(x1, . . . , xm, z1, . . . , zk) �→ E � F

Recall that the natural join can be defined in terms of ρ,×, σ, and π
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Queries with “All” in Relational Algebra

• “Find directors whose movies are playing in all theaters”

{
dir

∣∣∣ ∃ tl’, act’ Movie(tl’, dir, act’) ∧ ∀ th
(
∃ tl” Schedule(th, tl”) →

∃ tl, act Schedule(th, tl) ∧ Movie(tl, dir, act)
) }

• Define, using M for Movie and S for Schedule,

D = πdirector(M), T = πtheater(S), DT = πdirector,theater(M � S)

• D has all directors, T has all theaters,

DT has all directors and theaters where their movies are playing

• Our query is (mixing slightly logic and algebra):

{ d | d ∈ D ∧ ∀t (t ∈ T → (d, t) ∈ DT ) }
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Queries with “All” (cntd)

• We can rewrite the query { d | d ∈ D ∧ ∀t (t ∈ T → (d, t) ∈ DT ) } as

{ d | d ∈ D ∧ ¬∃t (t ∈ T ∧ (d, t) /∈ DT ) }

• This is the relative complement in D of the query

{ d | d ∈ D ∧ ∃t (t ∈ T ∧ (d, t) /∈ DT ) },

• This can be equivalently transformed into

{ d | ∃t (d ∈ D ∧ t ∈ T ∧ (d, t) /∈ DT ) },

• Finally, this can be expressed as

πdirector(D × T \ DT )

Relational Query Languages with Negation

Computational Logic 35

Queries with “All” (cont’d)

• Hence, the answer to the entire query is

D \ πdirector(D × T \ DT ).

• Putting everything together, the answer is:

πdirector(M)\πdirector

(
πdirector(M)×πtheater(S) \ πdirector,theater(M � S)

)

• This is much less intuitive than the logical description of the query.
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Safe-Range Queries

Safe range queries are a syntactically defined fragment of Relational Calculus that

contains only domain-independent queries

(and thus are also a fragment of DI-RelCalc)

• One can show: Safe-Range RelCalc≡ DI-RelCalc

• Steps in defining safe-range queries:

– a syntactic normal form of the queries

– a mechanism for determining whether a variable is range restricted

Then a query is safe-range iff all its free variables are range-restricted.
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Safe-Range Normal Form (SRNF)

Equivalently rewrite query formula ϕ

• Rename variables apart: Rename variables such that each variable x is quantified at

most once and has only free or only bound occurrences.

• Eliminate ∀: Rewrite ∀xϕ �→ ¬∃x¬ϕ

• Eliminate implications: Rewrite ϕ → ψ �→ ¬ϕ ∨ ψ (and similarly for↔)

• Push negation down as far as possible: Use the rules

¬¬ϕ �→ ϕ

¬(ϕ1 ∧ ϕ2) �→ ¬ϕ1 ∨ ¬ϕ2)

¬(ϕ1 ∨ ϕ2) �→ ¬ϕ1 ∧ ¬ϕ2)

• Flatten ‘and’s: No child of an ‘and’ in the formula parse tree is an ‘and’.

Similarly for ‘or’s, and ‘∃’s
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Safe-Range Normal Form /2

• The result of rewriting a query Q is called SRNF(Q)

• A query Q is in safe-range normal form if Q = SRNF(Q)

• Examples:

Q1(th) = ∃ tl ∃ dir (Movie(tl, dir,’Nicholson’) ∧ Schedule(th,tl))

SRNF(Q1) = ∃ tl, dir (Movie(tl, dir,’Nicholson’) ∧ Schedule(th,tl))

Q2(dir) = ∀ th ∀ tl’ (Schedule(th,tl’)→∃ tl ∃ act (Schedule(th,tl) ∧ Movie(tl, dir, act)))

SRNF(Q2) = ¬∃ th, tl’ (Schedule(th,tl’) ∧ ¬∃ tl, act (Schedule(th,tl) ∧ Movie(tl, dir, act)))
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Range Restriction

Three elements:

• Syntactic condition on formulas in SRNF.

• Intuition: all possible values of a variable lie in the active domain.

• If a variable does not fulfill this, then the query is rejected
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Algorithm Range Restriction (rr)

Input: formula ϕ in SRNF

Output: subset of the free variables or⊥ (indicating that a quantified variable is not range restricted)

case ϕ of

R(t1, . . . , tn): rr(ϕ) := the set of variables from t1, . . . , tn.

x = a, a = x: rr(ϕ) := {x}

ϕ1 ∧ ϕ2: rr(ϕ) := rr(ϕ1) ∪ rr(ϕ2)

ϕ1 ∧ x = y: if {x, y} ∩ rr(ϕ1) = ∅ then rr(ϕ) := rr(ϕ1)

else rr(ϕ) := rr(ϕ1) ∪ {x, y}

ϕ1 ∨ ϕ2: rr(ϕ) := rr(ϕ1) ∩ rr(ϕ2)

¬ϕ1: rr(ϕ) := ∅

∃x1, . . . , xnϕ1: if {x1, . . . , xn} ⊆ rr(ϕ1) then rr(ϕ) := rr(ϕ1) \ {x1, . . . , xn}

else return⊥

end case

Here, S ∪ ⊥ = ⊥ ∪ S = ⊥ and similarly for ∩, \
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Range Restriction (cntd)

Examples (contd):

SRNF(Q1) = ∃ tl, dir (Movie(tl, dir,’Nicholson’) ∧ Schedule(th,tl))

rr(SRNF(Q1)) = {th}

SRNF(Q2) = ¬∃ th, tl’ (Schedule(th,tl’) ∧ ¬∃ tl, act (Schedule(th,tl) ∧ Movie(tl, dir, act)))

rr(SRNF(Q2)) = {}
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Safe-Range Calculus

Definition. A query Q(�x) in Relational Calculus is safe-range iff

rr(SRNF(Q)) = free(Q).

The set of all safe-range queries is denoted by SR-RelCalc.

Intuition: A query is safe-range iff all its variables are bound by a database atom or

by an equality atom.

Examples: Q1 is a safe-range query, while Q2 is not.

Theorem. SR-RelCalc≡ DI-RelCalc

(The proof of this theorem is technically involved.)
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“For All” and Negation in SQL

• Two main mechanisms: set theoretic operators and subqueries

• Subqueries are often more natural

• SQL syntax for R ∩ S:

R INTERSECT S

• SQL syntax for R \ S:

R EXCEPT S

• Find all actors who are not directors resp. also directors:

SELECT Actor AS Person SELECT Actor AS Person

FROM Movie FROM Movie

EXCEPT INTERSECT

SELECT Director AS Person SELECT Director AS Person

FROM Movie FROM Movie
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“For All” and Negation in SQL /2

Subqueries with NOT EXISTS, NOT IN

• Example: Who are the directors whose movies are playing in all theaters?

• SQL’s way of saying this: Find directors such that there does not exist a theater where

their movies do not play.

SELECT M1.Director

FROM Movie M1

WHERE NOT EXISTS (SELECT S.Theater

FROM Schedule S

WHERE NOT EXISTS (SELECT M2.Director

FROM Movie M2

WHERE M2.Title=S.Title AND

M1.Director=M2.Director))
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“For All” and Negation in SQL /2

Same query using EXCEPT.

SELECT M.Director

FROM Movie M

WHERE NOT EXISTS (SELECT S.Theater

FROM Schedule S

EXCEPT

SELECT S1.Theater

FROM Schedule S1, Movie M1

WHERE S1.Title=M1.Title AND

M1.Director=M.Director)

• Other conditions: IN, NOT IN, EXISTS
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More examples of nested queries: using EXISTS and IN

Find directors whose movies are playing at Le Champo:

• SELECT M.Director

FROM Movie M

WHERE EXISTS (SELECT *
FROM Schedule S

WHERE S.Title=M.Title AND

S.Theater=’Le Champo’)

• SELECT M.Director

FROM Movie M

WHERE M.Title IN (SELECT S.Title

FROM Schedule S

WHERE S.Theater=’Le Champo’)
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More examples of nested queries: using NOT IN

Find actors who did not play in a movie by Kubrick.

• SELECT M.Actor

FROM Movie M

WHERE M.Actor NOT IN

(SELECT M1.Actor

FROM Movie M1

WHERE M1.Director=’Kubrick’)

The subquery finds actors playing in some movie by Kubrick; the top two lines take

the complement of that.
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