
Computational Logic

Relational Query Languages

Free University of Bozen-Bolzano, 2010

Werner Nutt

(Slides adapted from Thomas Eiter and Leonid Libkin)

Computational Logic 1

Databases

A database is

• a collection of structured data

• along with a set of access and control mechanisms

We deal with them every day:

• back end of Web sites

• telephone billing

• bank account information

• e-commerce

• airline reservation systems, store inventories, library catalogs, . . .

Relational Query Languages

Computational Logic 2

Data Models: Ingredients

• Formalisms to represent information (schemas and their instances), e.g.,

– relations containing tuples of values

– trees with labeled nodes, where leaves contain values

– collections of triples (subject, predicate, object)

• Languages to query represented information, e.g.,

– relational algebra, first-order logic, Datalog, Datalog¬

– tree patterns

– graph pattern expressions

– SQL, XPath, SPARQL

• Languages to describe changes of data (updates)

Relational Query Languages

Computational Logic 3

Questions About Data Models and Queries

Given a schema S (of a fixed data model)

• is a given structure (FOL interpretation, tree, triple collection)

an instance of the schema S?

• does S have an instance at all?

Given queries Q, Q′ (over the same schema)

• what are the answers of Q over a fixed instance I?

• given a potential answer a, is a an answer to Q over I?

• is there an instance I where Q has an answer?

• do Q and Q′ return the same answers over all instances?

Relational Query Languages

Computational Logic 4

Questions About Query Languages

Given query languages L, L′

• how difficult is it for queries in L

– to evaluate such queries?

– to check satisfiability?

– to check equivalence?

• for every query Q in L, is there a query Q′ in L′ that is equivalent to Q?

Relational Query Languages

Computational Logic 5

Research Questions About Databases

• Incompleteness, uncertainty

– How can we represent incomplete and uncertain information?

– How can we query it? . . . and what should be the meaning of an answer?

• Information integration

– How can we query many independent databases simultaneously?

– How do we represent their contents? . . . and the relationships between them?

• Data streams

– What is a good language for querying rapidly changing data?

• Concurrency control

– How should we coordinate access to data?

Relational Query Languages

Computational Logic 6

The Relational Data Model: Named Perspective

• Data is organized in relations (“tables”)

• A relational database schema consists of

a set of relation names

a list of attributes for each relation

• Notation: <relation name>: <list of attributes>

• Examples:

Account: number, branch, customerId

Movie: title, director, actor

Schedule: theater, title

• Relations have different names

• Attributes within a relation have different names

Relational Query Languages

Computational Logic 7

Example: Relational Database

Movie title director actor

Shining Kubrick Nicholson

Player Altman Robbins

Chinatown Polanski Nicholson

Chinatown Polanski Polanski

Repulsion Polanski Deneuve

Schedule theater title

Le Champo Shining

Le Champo Chinatown

Le Champo Player

Odéon Chinatown

Odéon Repulsion

Relational Query Languages

Computational Logic 8

Formal Definitions

We assume three disjoint countably infinte sets of symbols:

• att, the possible attributes

. . . we assume there is a total ordering “≤att” on att

• dom, the possible constants

dom is called the domain

• relname, the possible relation names

Relations have a sort and an arity , formalized as follows:

• For every relation name R there is a finite set of attributes sort(R).

That is, sort is a function

sort : relname → Pfin(att)

We assume as well: sort−1(U) is infinite, for each U ∈ Pfin(att)

What does this mean?

Relational Query Languages

Computational Logic 9

• The arity of a relation is the number of attributes: arity(R) = |sort(R)|

• Notation: Often R[U] where U = sort(R), or

R : A1, . . . , An if sort(R) = {A1, . . . , An} and A1 ≤att · · · ≤att An.

Example: sort(Account) = {number, branch, customerId }

is denoted Account: number, branch, customerId

Relations and databases have schemas:

• A relation schema is a relation name

• A database schemaR is a nonempty finite set of relation schemas

Example: Database schema C = { Account, Movie, Schedule }

Account: number, branch, customerId

Movie: title, director, actor

Schedule: theater, title

Relational Query Languages

Computational Logic 10

Tuples

• A tuple is a function

t : U → dom

mapping a finite set U ⊆ att (a sort) to constants.

Example: Tuple t on sort(Movie) such that

t(title) = Shining

t(director) = Kubrick

t(actor) = Nicholson

• For U = ∅, there is only one tuple: the empty tuple, denoted 〈 〉

• If U ⊆ V , then t[V] is the restriction of t to V

Example:

〈title : Shining, director : Kubrick, actor : Nicholson〉

Relational Query Languages

Computational Logic 11

The Relational Model: Unnamed Perspective

Alternative view: We ignore names of attributes, relations have only arities

• Tuples are elements of a Cartesian product of dom

• A tuple t of arity n ≥ 0 is an element of dom
n, for example

t = 〈Shining, Kubrick, Nicholson〉

• We access components of tuples via their position i ∈ {1, . . . , n}:

t(2) = Kubrick

• Note: Because of “≤att”, unnamed and named perspective naturally correspond

Relational Query Languages

Computational Logic 12

Instances of Relations and Databases

• A relation or relation instance of a relation schema R[U]

is a finite set of tuples on U

• A database instance of database schema R is

a mapping I that assigns to each R ∈ R a relation instance

� Other perspectives:

Logic programming p.

First-order logic p.

Relational Query Languages

Computational Logic 13

Logic Programming Perspective

• A fact over relation R with arity n is an expression R(a1, . . . , an),

where a1, . . . , an ∈ dom.

• A relation (instance) is a finite set of facts over R

• A database instance I ofR is the union of relation instances for each R ∈ R

Example:

I = { Movie(Shining,Kubrick,Nicholson), Movie(Player,Altman,Robbins),

Movie(Chinatown,Polanski,Nicholson),

Movie(Chinatown,Polanski,Polanski),

Movie(Repulsion,Polanski,Deneuve), Schedule(Le Champo,Shining),

Schedule(Le Champo,Chinatown), Schedule(Le Champo,Player),

Schedule(Odeon,Chinatown), Schedule(Odeon,Repulsion) }

Relational Query Languages

Computational Logic 14

First-Order Logic: Database Instances as Theories

• For a database instance I, construct an extended relational theory ΣI consisting of:

– Atoms Ri(�a) for each �a ∈ I(Ri);

– Extension Axioms ∀�x(Ri(�x) ↔ �x = �a1 ∨ · · · ∨ �x = �am), where �a1, . . .�am, are

all elements of Ri in I, and “=” ranges over tuples of the same arity;

– Unique Name Axioms: ¬(ci = cj) for each pair ci, cj of distinct constants

occurring in I;

– Domain Closure Axiom: ∀x(x = c1 ∨ · · · ∨ x = cn), where c1, . . . , cn is a listing

of all constants occurring in I.

• If the “=” are not available, the intended meaning can be emulated with equality axioms.

• Theorem: The interpretations of dom andR that satisfy ΣI are isomorphic to I

• Corollary: A set of sentences Γ is satisfied by I iff ΣI ∪ Γ is satisfiable.

Other view: database instance I as finite relational structure

(finite universe of discourse; considered later)

Relational Query Languages

Computational Logic 15

Database Queries: Examples

• “What are the titles of current movies?”

answer title

Shining

Player

Chinatown

Repulsion

• “Which theaters are showing movies directed by Polanski?”

answer theater

Le Champo

Odéon

Relational Query Languages

Computational Logic 16

• “Which theaters are showing movies featuring Nicholson?”

answer theater

Le Champo

Odéon

• “Which directors acted themselves?”

answer director

Polanski

• “Who are the directors whose movies are playing in all theaters?”

answer director

Polanski

• “Which theaters show only movies featuring Nicholson?”

answer theater

. . . but if Le Champo stops showing ’Player’, the answer contains ’Le Champo’.

Relational Query Languages

Computational Logic 17

How Ask a Query over a Relational Database?

• Query languages

Commercial: SQL

Theoretical: Relational Algebra, Relational Calculus, datalog etc.

• Query results: Relations constructed from relations in the database

Relational Query Languages

Computational Logic 18

Declarative vs Procedural

• In our queries, we ask what we want to see in the output . . .

• . . . but we do not say how we want to get this output.

• Thus, query languages are declarative: they specify what is needed in the

output, but do not say how to get it.

• A query engine figures out how to get the result,

and gives it to the user.

• A query engine operates internally with an algebra that takes into account how

data is stored.

• Finally, queries in that algebra are translated into a procedural language.

Relational Query Languages

Computational Logic 19

Declarative vs Procedural: Example

Declarative:

{ title | (title, director, actor) ∈ Movie }

Procedural:

for each tuple T=(t,d,a) in relation Movie do

output t

end

Relational Query Languages

Computational Logic 20

Conjunctive Queries

• Conjunctive queries are a simple form of declarative, rule-based queries

• A rule says when certain elements belong to the answer.

• Example: “What are the titles of current movies?”

As a conjunctive query:

answer(tl) :– Movie(tl, dir, act)

That is, while (tl, dir, act) ranges over relation Movies, output tl (the title attribute)

Relational Query Languages

Computational Logic 21

Conjunctive Queries: One More Example

“Which theaters are showing movies directed by Polanski?”

As a conjunctive query:

answer(th) :– Movie(tl, ’Polanski’, act), Schedule(th, tl)

While (tl, dir, act) range over tuples in Movie

if dir is ’Polanski’

look at all tuples (th, tl) in Schedule

corresponding to the title tl of the tuple in the relation Movie

and output th.

Relational Query Languages

Computational Logic 22

Conjunctive Queries: Another Example

“Which theaters are showing movies featuring Nicholson?”

Very similar to the previous example:

answer(th) :– Movie(tl, dir, ’Nicholson’), Schedule(th, tl)

Conjunctive queries are probably the most common type of queries

and are building blocks for all other queries over relational databases.

Relational Query Languages

Computational Logic 23

Conjunctive Queries: Still One More . . .

“Which directors acted in one of their own movies?”:

answer(dir) :– Movie(tl, dir, act), dir=act

While (tl, dir, act) ranges over tuples in movie,

check if dir is the same as act,

and output it if that is the case.

Alternative formulation:

answer(dir) :– Movie(tl, dir, dir)

Relational Query Languages

Computational Logic 24

Conjunctive Queries: Definition

A rule-based conjunctive query with (in)equalities is an expression of form

answer(�x) :– R1(�x1), . . . , Rn(�xn), (1)

where n ≥ 0 and

• “answer” is a relation name not in R ∪ {=, �= }

• R1, . . . , Rn are relation names from R ∪ {=, �= }

• �x is a tuple of distinct variables with length = arity(answer)

• �x1, . . . , �xn are tuples of variables and constants of suitable (?!) length

• each variable occurring somewhere in the query must also occur in some atom

Ri(�xi) where Ri ∈ R

Note: Equality “=” can be eliminated if we change the definition slightly

How?

Relational Query Languages

Computational Logic 25

Conjunctive Queries: Semantics

Let q be a conjunctive query of the form (1) and let I be a database instance.

• A valuation ν over var(q) is a mapping

ν : var(q) ∪ dom → dom

that is the identity on dom.

• The result (aka image) of q on I is

q(I) = {ν(�x) | ν is a valuation over var(q), and

ν(�xi) ∈ I(Ri), for all 1 ≤ i ≤ n}

Example: q: answer(dir) :– Movie(tl, dir, act), dir=act

For I from above, we obtain

q(I) = { 〈Polanski〉 }

Relational Query Languages

Computational Logic 26

Elementary Properties of Conjunctive Queries

Proposition. Let q be a conjunctive query of form (1). Then:

• the result q(I) is finite, for any database instance I;

• q is monotonic,

i.e., I ⊆ J implies q(I) ⊆ q(J), for all database instances I and J;

• if q contains neither “=” nor “�=”, then q is satisfiable,

i.e., there exists some I such that q(I) �= ∅

Relational Query Languages

Computational Logic 27

Beyond Conjunctive Queries?

“Who are the directors whose movies are playing in all theaters?”

• Recall the notation from mathematical logic:

∀ means‘for all’, ∃ means ‘exists’, “∧” is conjunction (logical ‘and’)

• We write the query above as

{ dir | ∀ th (∃ tl’ (Schedule(th,tl’)→

∃ tl, act (Movie(tl,dir,act) ∧ Schedule(th, tl)}

• That is, to see if director dir is in the answer, for each theater name th, check

that there exists a tuple (tl, dir, act) in Movie, and a tuple (th, tl) in Schedule

Is there something missing?

Can we formulate this as a conjunctive query?

Relational Query Languages

Computational Logic 28

Structured Query Language: SQL

• De-facto standard for all relational RDBMs

• Latest versions: SQL:1999 (also called SQL3), SQL:2003 (supports XML),

SQL:2006 (more XML support), SQL:2008

Each standard covers well over 1,000 pages

”The nice thing about standards is that you have so many to choose from.”

– Andrew S. Tanenbaum.

• Query structure:

SELECT Ri1 .Aj1 , . . . , Rik .Ajk
(attribute list)

FROM R1, . . . , Rn

WHERE C (condition)

In the simplest case, C is a conjunction of equalities/inequalities

Relational Query Languages

Computational Logic 29

SQL Examples

• “Which theaters are showing movies directed by Polanski?”:

SELECT Schedule.Theater

FROM Schedule, Movie

WHERE Movie.Title = Schedule.Title AND

Movie.Director = ’Polanski’

• “Which theaters are playing the movies of which directors?”

SELECT Movie.Director, Schedule.Theater

FROM Movie, Schedule

WHERE Movie.Title = Schedule.Title

Relational Query Languages

Computational Logic 30

Relational Algebra (Named Perspective)

• We start with a subset of relational algebra that suffices to capture queries

defined by

simple rules,

SQL SELECT-FROM-WHERE statements

• The subset has three operations:

Projection π

Selection σ

Cartesian Product ×

• This fragment of Relational Algebra is called SPC Algebra

• Sometimes we also use renaming of attributes, denoted as ρ

Relational Query Languages

Computational Logic 31

Projection

• Restricts tuples of a relation R to a subset of sort(R)

• πA1,...,An
(R) returns a new relation with sort {A1, . . . , An }

• Example:

πtitle,director

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

title director actor

Shining Kubrick Nicholson

Player Altman Robbins

Chinatown Polanski Nicholson

Chinatown Polanski Polanski

Repulsion Polanski Deneuve

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

title director

Shining Kubrick

Player Altman

Chinatown Polanski

Repulsion Polanski

• Creates a view of the original data hat hides some attributes

Relational Query Languages

Computational Logic 32

Selection

• Chooses tuples of R that satisfy some condition C

• σC(R) returns a new relation with the same sort as R,

and with the tuples t of R for which C(t) is true

• Conditions are conjunctions of elementary conditions of the form

R.A = R.A′ (equality between attributes)

R.A = constant (equality between an attribute and a constant)

same as above but with �= instead of =

• Examples:

Movie.Actor = Movie.Director

Movie.Actor = Movie.Director ∧ Movie.Actor �= ’Nicholson’

• Creates a view of data by hiding tuples that do not satisfy the condition

Relational Query Languages

Computational Logic 33

Selection: Example

σactor=director∧director=′Polanski′

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

title director actor

Shining Kubrick Nicholson

Player Altman Robbins

Chinatown Polanski Nicholson

Chinatown Polanski Polanski

Repulsion Polanski Deneuve

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
title director actor

Chinatown Polanski Polanski

Relational Query Languages

Computational Logic 34

Cartesian Product

• R1 × R2 is a relation with sort(R1 × R2) = sort(R1) ∪ sort(R2) and the

tuples are all possible combinations (t1, t2) of t1 in R1 and t2 in R2

• Example:

R1 A B

a1 b1

a2 b2

×

R2 A C

a1 c1

a2 c2

a3 c3 =

R1.A R1.B R2.A R2.C

a1 b1 a1 c1

a1 b1 a2 c2

a1 b1 a3 c3

a2 b2 a1 c1

a2 b2 a2 c2

a2 b2 a3 c3

• We assume that the cartesian product operator automatically renames attributes

so as to include the name of the relation: in the resulting table, all attributes must

have different names.

Relational Query Languages

Computational Logic 35

Cartesian Product: Example

“Which theaters are playing movies directed by Polanski?”

answer(th) :– Movie(tl,dir,act), Schedule(th,tl), dir=’Polanski’

• Step 1: Let R1 = Movie× Schedule

We don’t need all tuples, only those in which titles are the same, so:

• Step 2: Let R2 = σC(R1) where C is “Movie.title = Schedule.title”

We are only interested in movies directed by Polanski, so

• Step 3: R3 = σdirector=′Polanski′(R2)

In the output, we only want theaters, so finally

• Step 4: Answer = πtheater(R3)

Relational Query Languages

Computational Logic 36

• Summing up, the answer is

πtheater(σdirector=′Polanski′(σMovie.title=Schedule.title(Movie× Schedule)))

• Merging selections, this is equivalent to

πtheater(σdirector=′Polanski′∧Movie.title=Schedule.title(Movie× Schedule)))

Relational Query Languages

Computational Logic 37

Renaming

• Let R be a relation that has attribute A but does not have attribute B.

• ρB←A(R) is the “same” relation as R except that A is renamed to be B.

Example:

ρparent←father

⎛
⎜⎜⎜⎜⎜⎝

father child

George Elizabeth

Philip Charles

Charles William

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

parent child

George Elizabeth

Philip Charles

Charles William

⎞
⎟⎟⎟⎟⎟⎠

• Simultaneous renaming ρA1,...,Am←B1,...,Bm , for distinct A1, . . . , Am resp.

B1, . . . , Bm can be defined from it.

• Prefixing the relation name to rename attributes is convenient (used in practice)

• Not all problems are solved by this (e.g., Cartesian Product R × R)

Relational Query Languages

Computational Logic 38

Relational Algebra in the Unnamed Perspective

• The same as before, except for Renaming, which becomes immaterial Why?

• Example (again): “Which theaters are playing movies directed by Polanski?”

Recall Movie: title, director, actor

Schedule: theater, title

π4(σ2=′Polanski′∧1=5(Movie× Schedule)))

• SPC Algebra is often assumed to be based in the unnamed setting

• Other operations of Relational Algebra can only be defined for named

perspective (e.g., natural join, to be seen later)

Relational Query Languages

Computational Logic 39

SQL and Relational Algebra

For execution, declarative queries are translated into algebra expressions

• Idea: SELECT is projection π

FROM is Cartesian product×

WHERE is selection σ

• A simple case (only one relation in FROM):

SELECT A, B, . . .

FROM R

WHERE C

is translated into πA,B,...

(
σC(R)

)

Relational Query Languages

Computational Logic 40

Translating Declarative Queries into Relational Algebra

We use rules as intermediate format

Example: “Which are the titles of movies?”

• SELECT Title

FROM Movie

• answer(tl) :– Movie(tl,dir,act)

• πtitle(Movie)

. . . this was simply projection

Relational Query Languages

Computational Logic 41

A More Elaborate Translation Example

“Which theaters are showing movies directed by Polanski?”

• SELECT Schedule.Theater

FROM Schedule, Movie

WHERE Movie.Title = Schedule.Title AND

Movie.Director=’Polanski’

• First, translate into a rule:

answer(th) :– Schedule(th,tl), Movie(tl,’Polanski’,act)

• Second, change the rule such that:

constants appear only in conditions

no variable occurs twice

• This gives us:

answer(th) :– Schedule(th,tl), Movie(tl’,dir,act), dir = ’Polanski’, tl=tl’

Relational Query Languages

Computational Logic 42

A More Elaborate Translation Example (cntd)

answer(th) :– Schedule(th,tl), Movie(tl’,dir,act), dir = ’Polanski’, tl=tl’

Two relations =⇒ Cartesian product

Conditions =⇒ selection

Subset of attributes in the answer=⇒ projection

• Step 1: R1 = Schedule× Movie

• Step 2: Make sure we talk about the same movie:

R2 = σSchedule.title=Movie.title(R1)

• Step 3: We are only interested in Polanski’s movies:

R3 = σMovie.director=Polanski(R2)

• Step 4: We need only theaters in the output

answer = πSchedule.theater(R3)

Relational Query Languages

Computational Logic 43

A More Elaborate Translation Example (cntd)

Summing up, the answer is:

πSchedule.theater(σMovie.director=Polanski(σSchedule.title=Movie.title(Schedule×Movie)))

or, using the rule σC1
(σC2

(R)) = σC1∧C2
(R):

πSchedule.theater(σMovie.director=Polanski ∧ Schedule.title=Movie.title(Schedule×Movie))

Relational Query Languages

Computational Logic 44

Formal Translation: SQL to Rules

SELECT attribute list 〈Ri.Aj〉

FROM R1, . . . , Rn

WHERE condition C

is translated into:

answer(〈Ri.Aj〉) :- R1(<attributes>),

. . . ,

Rn(<attributes>),

C

Note: Attributes become variables of rules

Relational Query Languages

Computational Logic 45

Rules to Relational Algebra

• Consider the rule

answer(�x) :-R1(�x1), . . . , Rn(�xn) (2)

where, wlog (= “without loss of generality”),

R1, . . . Rk ∈ R, k ≤ n,

Rk+1, . . . , Rn ∈ {=, �=}.

Let conditions := Rk+1(�xk+1), . . ., Rn(�xn)

• First transformation: Ensure that each variable occurs at most once

in R1(�x1), . . ., Rk(�xk):

If there are Ri(. . . , x, . . .) and Rj(. . . , x, . . .),

rewrite them as Ri(. . . , x
′, . . .) and Rj(. . . , x

′′, . . .), and

add x′ = x′′ to the conditions and, if x occurs elsewhere, also x = x′

Relational Query Languages

Computational Logic 46

Example:

answer(th,dir) :- movie(tl,dir,act), schedule(th,tl)

is rewritten to

answer(th,dir) :- movie(tl’,dir,act), schedule(th,tl”), tl’=tl”

• Next step: each occurrence of a constant a in a relational atom Ri(..., a, ...),

Ri ∈ R, is replaced by some variable x and add x = a to the conditions

• Finally: after the rule (2) is rewritten, it is translated into

πb�x
(σ

̂conditions
(R1 × · · · × Rn))

where ·̂ maps

– a variable x occurring in some Ri(..., x, ...), Ri ∈ R,

to the corresponding attribute x̂ in sort(Ri);

– an expression α to the expression α̂ where every x is replaced by x̂

Relational Query Languages

Computational Logic 47

Putting it Together: SQL to Relational Algebra

Combine the two translation steps:

SQL �→ rule-based queries

rule-based queries �→ relational algebra.

This yields the following translation from SQL to relational algebra:

SELECT attribute list 〈Ri.Aj〉

FROM R1, . . . , Rn

WHERE condition C

becomes

π〈Ri.Aj〉(σC(R1 × . . . × Rn))

Relational Query Languages

Computational Logic 48

Another Example

“Which theaters show movies featuring Nicholson?”

SELECT Schedule.Theater

FROM Schedule, Movie

WHERE Movie.Title = Schedule.Title

AND Movie.Actor=’Nicholson’

• Translate into a rule:

answer(th) :– movie(tl, dir, ’Nicholson’), schedule(th, tl)

• Modify the rule:

answer(th) :– movie(tl, dir, act), schedule(th, tl’), tl=tl’, act=’Nicholson’

Relational Query Languages

Computational Logic 49

answer(th) :– movie(tl, dir, act), schedule(th, tl’), tl=tl’, act=’Nicholson’

• Step 1: R1 = Schedule× Movie

• Step 2: Make sure we talk about the same movie:

R2 = σSchedule.title=Movie.title(R1)

• Step 3: We are only interested in movies with Nicholson:

R3 = σMovie.actor=Nicholson(R2)

• Step 4: we need only theaters in the output

answer = πschedule.theater(R3)

Summing up:

πschedule.theater(σMovie.actor=Nicholson ∧ Schedule.title=Movie.title(Schedule× Movie))

Relational Query Languages

Computational Logic 50

SPC Algebra into SQL

Should be easy, but is it?

Where’s the difficulty?

• Direct proof in two steps:

Show that for SPC queries there are normal forms

πA1,...,An
(σc(R1 × · · · × Rm)),

called “simple SPC queries” (proof idea?)

Then map normal forms to SQL

• Indirect proof:

SPC is equivalent to conjunctive queries

Conjunctive queries are equivalent to single block SQL queries

Relational Query Languages

Computational Logic 51

Extension: Natural Join

• Combine all pairs of tuples t1 and t2 in relations R1 resp. R2

that agree on common attributes

• The resulting relation R = R1 � R2 is the natural join of R and S,

defined on the set of attributes in R1 and R2.

Example: Schedule � Movie

title director actor

Shining Kubrick Nicholson

Player Altman Robbins

Chinatown Polanski Nicholson

Chinatown Polanski Polanski

Repulsion Polanski Deneuve

�

theater title

Le Champo Shining

Le Champo Chinatown

Le Champo Player

Odéon Chinatown

Odéon Repulsion

=

title director actor theater

Shining Kubrick Nicholson Le Champo

Player Altman Robbins Le Champo

Chinatown Polanski Nicholson Le Champo

Chinatown Polanski Nicholson Odéon

Chinatown Polanski Polanski Le Champo

Chinatown Polanski Polanski Odéon

Repulsion Polanski Deneuve Odéon

Relational Query Languages

Computational Logic 52

Natural Join cont’d

Natural join is not a new operation of relational algebra

• It is definable with π, σ,× (and renaming!?)

• Suppose

– R is a relation with attributes A1, . . . , An, B1, . . . , Bk

– S is a relation with attributes A1, . . . , An, C1, . . . , Cm

=⇒ R � S has attributes A1, . . . , An, B1, . . . , Bk, C1, . . . , Cm

• Then

R � S =

πA1,...,An,B1,...,Bk,C1,...,Cm(σR.A1=S.A1∧...∧R.An=S.An(R × S))

Could a natural join be defined in the unnamed perspective?

Relational Query Languages

Computational Logic 53

Select Project Join Queries (SPJ Queries)

Queries of the form

πA1,...,An(σc(R1 � · · · � Rm))

are called Select-project-join queries.

• These are probably the most common queries

(over databases with foreign keys).

Example: “Which theaters show movies directed by Polanski?”

• answer(th) :– schedule(th,tl), movie(tl,’Polanski’,act)

• As SPJ query:

πtheater(σdirector=′Polanski′(Movie � Schedule))

• Why has the query become simpler compared to the earlier version

πschedule.theater(σMovie.director=′Polanski′ ∧ Schedule.title=Movie.title(Schedule×Movie))?

Relational Query Languages

Computational Logic 54

SPJ Queries cont’d

“Which theaters show movies featuring Nicholson?”

• As rule-based conjunctive query

answer(th) :– movie(tl, dir, ’Nicholson’), schedule(th, tl)

• As SPJ query:

πtheater(σactor=′Nicholson′(Movie � Schedule))

Relational Query Languages

Computational Logic 55

Translating SPJ Queries to Rules and Single Block SQL

• SPJ Query

Q = πA1,...,An
(σC(R � S))

• Equivalent SQL statement (B1, . . . , Bm = common attributes in R and S):

SELECT A1, . . . , An

FROM R, S

WHERE C ANDR.B1 = S.B1 AND . . . AND R.Bm = S.Bm

• Equivalent rule query (R resp. S has attributes: C1, . . . , Ck resp. D1, . . . ,Dl)

answer(A1, . . . , An) :– R(C1, . . . , Ck), S(D1, . . . ,Dl),

R.B1 = S.B1, . . . , R.Bm = S.Bm, C

Relational Query Languages

Computational Logic 56

SPJ to SQL: Example

“Who are the directors of currently playing movies that feature Ford?”

• In SPJ:

πdirector(σactor=′Ford′(Movie � Schedule))

• In SQL:

SELECT Movie.director

FROM Movie, Schedule

WHERE Movie.title = Schedule.title AND

Movie.actor = ’Ford’

Relational Query Languages

Computational Logic 57

What We’ve Seen So Far

• Queries defined by SQL SELECT-FROM-WHERE statements (single block

queries)

• These are the same as the queries definable by rules

• They are also the same as the queries definable by π, σ,× (and renaming) in

relational algebra, i.e., the same as SPC queries

• Question: What about SPJ?

SPJ queries are not a normal form for the σ, π,×-fragment

� To prevent unwanted joins, we need renaming

• SPJR Algebra = σ, π, �, ρ — fragment of Relational Algebra

Relational Query Languages

Computational Logic 58

Equivalence of SPC and SPJR Algebras

Proposition. The SPC Algebra and the SPJR Algebra are equivalent.

Note:

• Cartesian Product can be easily emulated using renaming

• BTW, also SQL provides a renaming construct

New attribute names can be introduced in SELECT using keyword AS.

SELECT Father AS Parent, Child

FROM R

Relational Query Languages

Computational Logic 59

Nested SQL Queries: Simple Example

• So far in the WHERE clause we used comparisons between attributes

• In general, a WHERE clause can contain another query, and test some

relationship between an attribute or a constant and the result of that query

• We call such queries with subqueries nested queries

Example: “Which theaters are showing Polanski’s movies?”

SELECT Schedule.theater

FROM Schedule

WHERE Schedule.title IN

(SELECT Movie.title

FROM Movie

WHERE Movie.director = ’Polanski’)

Relational Query Languages

Computational Logic 60

Nested vs Unnested Queries

SELECT S.theater SELECT S.theater

FROM Schedule S FROM Schedule S, Movie M

WHERE S.title IN WHERE S.title = M.title AND

(SELECT M.title M.director = ’Polanski’

FROM Movie M

WHERE M.director = ’Polanski’)

• Both queries capture the same question . . .

• . . . and return the same results over all instances (. . . or do they?)

• Queries nested with IN can be flattened . . .

• . . . but others can’t (which?)

Relational Query Languages

Computational Logic 61

Equivalence Theorem

Theorem. The following languages define the same (?!) sets of queries:

• SPJR Queries

• SPC Queries

• simple SPC queries

• (rule-based) conjunctive queries

• SQL SELECT-FROM-WHERE

• SQL SELECT-FROM-WHERE with IN-nesting

Relational Query Languages

Computational Logic 62

Disjunction in Queries

“Which actors played in movies directed by Kubrick OR Polanski”

• SELECT Actor

FROM Movie

WHERE director = ’Kubrick’ OR director = ’Polanski’

• Can this be defined by a single rule?

• How do you prove your answer?

(Hint: What can you say about the constants in the query and in the database?)

Relational Query Languages

Computational Logic 63

Union in SQL

• The way out: Disjunction can be represented using more than one rule

answer(act) :– movie(tl,dir,act), dir=’Kubrick’

answer(act) :– movie(tl,dir,act), dir=’Polanski’

• Semantics: compute answers to each of the rules, and then take their union

(union of conjunctive queries)

• SQL has its own syntax (distinguishing between UNION and UNION ALL):

SELECT Actor

FROM Movie

WHERE director = ’Kubrick’

UNION

SELECT Actor

FROM Movie

WHERE director = ’Polanski’

Relational Query Languages

Computational Logic 64

Disjunction in Relational Algebra

How can we translate a query with disjunction into relational algebra?

• answer(act) :– movie(tl,dir,act), dir=’Kubrick’

is translated into

Q1 = πactor(σdirector=Kubrick(Movie))

• answer(act) :– movie(tl,dir,act), dir=’Polanski’

is translated into

Q2 = πactor(σdirector=Polanski(Movie))

• The whole query is translated into Q1 ∪ Q2, i.e.,

πactor(σdirector=Kubrick(Movie)) ∪ πactor(σdirector=Polanski(Movie))

Relational Query Languages

Computational Logic 65

Union in Relational Algebra

• Union is another operation of relational algebra

R ∪ S is the union of relations R and S

R and S must have the same set of attributes (be “union-compatible”).

• We now have four relational algebra operations:

π, σ,×,∪

(and of course �, which is definable from π, σ,×)

• This fragment is called the SPCU-Algebra, or positive relational algebra.

Would an intersection operator add something new?

And what about set difference?

Relational Query Languages

Computational Logic 66

Identities Among Relational Algebra Operators

• πA1,...,An
(R ∪ S) = πA1,...,An

(R) ∪ πA1,...,An
(S)

• σC(R ∪ S) = σC(R) ∪ σC(S)

• (R ∪ S) × T = R × T ∪ S × T

• T × (R ∪ S) = T × R ∪ T × S

Relational Query Languages

Computational Logic 67

Normal Form of SPCU Queries

Theorem. Every SPCU query is equivalent to a union of SPC queries

Proof: propagate the union operation.

Example:

πA(σc((R×(S ∪ T)) ∪ W))

= πA(σc((R × S) ∪ (R × T) ∪ W))

= πA(σc(R × S) ∪ σc(R × T) ∪ σc(W))

= πA(σc(R × S)) ∪ πA(σc(R × T)) ∪ πA(σc(W)

Relational Query Languages

Computational Logic 68

Another Equivalence Theorem

Theorem. The following languages define the same sets of queries

• Positive relational algebra (SPCU queries)

• unions of SPC queries

• queries defined by multiple rules

• unions of conjunctive queries

• SQL SELECT-FROM-WHERE-UNION

• SQL SELECT-FROM-WHERE-UNION with IN-nesting

• SPJRU queries (σ, π,�, ρ,∪)

Would intersection add anything new?

Relational Query Languages

