
Deciding Equivalences among Conjunctive Aggregate

Queries

SARA COHEN

Technion—Israel Institute of Technology, Haifa, Israel

WERNER NUTT

Free University of Bozen-Bolzano, Bozen, Italy

AND

YEHOSHUA SAGIV

Hebrew University, Jerusalem, Israel

Abstract. Equivalence of aggregate queries is investigated for the class of conjunctive queries with
comparisons and the aggregate operators count, count-distinct, min, max, and sum. Essentially, this
class contains unnested SQL queries with the above aggregate operators, with a where clause con-
sisting of a conjunction of comparisons, and without a having clause. The comparisons are either
interpreted over a domain with a dense order (like the rationals) or with a discrete order (like the
integers). Characterizations of equivalence differ for the two cases. For queries with either max or
min, equivalence is characterized in terms of dominance mappings, which can be viewed as a gener-
alization of containment mappings. For queries with the count-distinct operator, a sufficient condition
for equivalence is given in terms of equivalence of conjunctive queries under set semantics. For
some special cases, it is shown that this condition is also necessary. For conjunctive queries with
comparisons but without aggregation, equivalence under bag-set semantics is characterized in terms
of isomorphism. This characterization essentially remains the same also for queries with the count
operator. Moreover, this characterization also applies to queries with the sum operator if the queries
have either constants or comparisons, but not both. In the general case (i.e., both comparisons and

S. Cohen was partially supported by the Israel Science Foundation (Grant No. 1032/05).
W. Nutt was partially supported by EPSRC (Grant No. GR/SS44839/01 MAGIK-I).
Y. Sagiv was partially supported by the Israel Science Foundation (Grant No. 893/05).
Authors’ Addresses: S. Cohen, Faculty of Industrial Engineering and Management, Technion—Israel
Institute of Technology, Technion City, Haifa 32000, Israel, e-mail: sarac@ie.technion.ac.il; W. Nutt,
Faculty of Computer Science, Free University of Bozen-Bolzano, Dominikanerplatz 3, I-39100 Bozen,
Italy, e-mail: nutt@inf.unibz.it; Y. Sagiv, The Selim and Rachel Benin School of Engineering and
Computer Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904,
Israel, e-mail: sagiv@cs.huji.ac.il.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 0004-5411/2007/04-ART5 $5.00 DOI 10.1145/1219092.1219093 http://doi.acm.org/
10.1145/1219092.1219093

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

2 S. COHEN ET AL.

constants), the characterization of the equivalence of queries with the sum operator is more elaborate.
All the characterizations given in the paper are decidable in polynomial space.

Categories and Subject Descriptors: F.4.3 [Mathematical Logic and Formal Languages]: Formal
Languages—Decision problems; H.2.3 [Database Management]: Languages—Query languages;
H.2.4 [Database Management]: Systems—Query processing; relational databases

General Terms: Languages, Theory

Additional Key Words and Phrases: Aggregation, query equivalence, Datalog, bag-set semantics

ACM Reference Format:

Cohen, S., Nutt, W., and Sagiv, Y. 2007. Deciding equivalences among conjunctive aggregate
queries. J. ACM 54, 2, Article 5 (April 2007), 50 pages. DOI = 10.1145/1219092.1219093
http://doi.acm.org/10.1145/1219092.1219093

1. Introduction

It is now common for databases to contain many gigabytes, or even many terabytes,
of data. Scientific experiments in areas such as high energy physics produce data sets
of enormous size, while in the business sector the emergence of decision-support
systems and data warehouses has led organizations to build up gigantic collections
of data. Aggregate queries allow one to retrieve concise information from such
a database, since they can cover many data items while returning a small result.
OLAP queries, used extensively in data warehousing, are based almost entirely on
aggregation [Chaudhuri and Dayal 1997; Gupta and Mumick 1999].

Aggregate queries have been studied in a variety of settings. Recently there has
been much interest in querying and analyzing stream data. Such analysis often
requires aggregate queries, in order to store running statistics on the data. The
problem of processing aggregate queries over streams was considered in Dobra
et al. [2002]. For networks of sensors, which produce streams of measurements,
aggregate queries were studied as a data-reduction tool. Data reduction is important
in sensor networks, since the cost of communication is often high [Madden et al.
2002]. Aggregation has also been studied in constraint databases [Benedikt and
Libkin 1999]. Relational algebra and calculus extended by aggregation functions
were considered in Klug [1982] and Özsoyoğlu et al. [1987].

Since aggregate queries are a popular means to query many types of database
systems, it is essential to develop algorithms for two major problems. One is opti-
mizing aggregate queries. The other is using materialized views in the evaluation
of those queries. It is widely accepted that the ability to determine containment
or equivalence between queries is a key to solving both problems. Containment
of nonaggregate queries over relational databases has been studied extensively
for conjunctive queries [Chandra and Merlin 1977; Aho et al. 1979; Johnson and
Klug 1983; Sagiv and Saraiya 1992; Chekuri and Rajaraman 2000], for conjunc-
tive queries with comparisons [van der Meyden 1992; Levy and Sagiv 1995], for
queries with union and difference [Sagiv and Yannakakis 1981], and for conjunc-
tive queries defined by Datalog programs [Levy and Sagiv 1995; Levy et al. 1993;
2001; Calvanese 2003].Containment of queries over semistructured data has also
been studied [Popa and Tannen 1999; Calvanese 2000; 2001; Miklau and Suciu
2002].

Considerable work has been done on efficiently computing aggregate queries
(e.g., Chaudhuri et al. [1995], Gupta et al. [1995], and Srivastava et al. [1996].
However, without a coherent understanding of the underlying principles, it is not

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 3

possible to present algorithms and techniques that are complete. Hence, most of the
previously presented algorithms were based on sufficient conditions, and complete
characterizations were presented in these papers only for very restricted cases.

A better understanding of these problems requires a complete characterization
of equivalences among aggregate queries. In Nutt et al. [1998], we provided, for
the first time, characterizations for deciding equivalence that apply to a large and
significant class of aggregate queries. These characterizations were extended in
Cohen et al. [1999] for aggregate queries with disjunctions and in Cohen et al.
[2001; 2005] for aggregate queries with negation. In Cohen et al. [2003], we showed
how to reduce containment of aggregate queries to equivalence for a wide class of
aggregation functions. Characterizations of equivalences among queries with the
aggregate operator average were presented in Grumbach et al. [1999].

Concepts seemingly similar to those considered in this article have been investi-
gated in Hella et al. [1999], Benedikt and Keisler [1997], Etessami and Immerman
[2000], which study the expressivity of logics that extend first-order logic by some
form of aggregation. In particular, Hella et al. [1999] considers aggregation defin-
able in terms of commutative monoids, and shows that formulas in this extended
logic are Hanf-local and Gaifman-local. Intuitively, this means that whether or not a
formula is true for a tuple d̄ in a structure, depends only on that part of the structure
that is “close” to d̄. A class of formulas that is Hanf- or Gaifman-local need not
be decidable. In Benedikt and Keisler [1997] and Etessami and Immerman [2000],
first-order logic is extended by a counting operator. Both of these papers discuss
expressivity bounds of the derived language. Benedikt and Keisler [1997] show that
a count operator over elements does not express counting over terms and Etessami
and Immerman [2000] show that tree isomorphism is not expressible in first-order
logic with transitive closure and count.

This article is a significantly extended version of Nutt et al. [1998]. The results
reported in Cohen et al. [1999; 2001; 2005; 2003] rely heavily on the characteriza-
tions presented in Nutt et al. [1998]. That paper, however, did not provide proofs.
The proofs, which appear in this article, are based on novel techniques that high-
light the structural differences between equivalences among aggregate queries as
opposed to nonaggregate queries. Aggregate queries are evaluated in two phases:
first a nonaggregate query retrieves data, which then are amalgamated by an aggre-
gation function. This gives rise to two complications, which make the aggregate
case considerably more difficult, and which characterizations for equivalence have
to take into account: (1) different sets of data may result in the same aggregate
value, and (2) the multiplicity by which data are retrieved has an influence on the
aggregate result for functions like count and sum.

The class of queries that we investigate in this article consists of conjunctive
queries with comparisons and aggregations. Essentially, this class contains unnested
SQL queries with aggregations, with a where clause consisting of a conjunction
of comparisons, and without a having clause. For the comparisons, we separately
consider whether they are interpreted over a domain with a dense order (like the
rationals) or with a discrete order (like the integers). Generally, our characterizations
differ for the two cases and different techniques are needed to establish them. Our
queries have the aggregation operators max, min, sum, count, and cntd (where
“cntd” means “count-distinct”).

This article is organized as follows: In Section 2, we introduce nonaggregate con-
junctive queries, review their basic properties, and discuss set and bag-set semantics.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

4 S. COHEN ET AL.

Traditionally, equivalence of conjunctive queries (without aggregation) has mostly
been investigated under set semantics, which means that both the operands of a
given query and the result are sets. Equivalence of this type is called set equiva-
lence. However, for a general treatment of aggregate operators, it is necessary to
consider bag-set semantics. Under that semantics, the operands of a query are sets,
but the result is a bag.

The syntax and semantics of aggregate queries is presented in Section 3. We also
show that for the purpose of deciding equivalence, a given query can be decomposed
into several queries, such that each query has a single aggregation. Therefore,
we deal separately with each aggregate operator, and we name types of queries
according to that operator, for example, max-query.

In Section 4, we develop a normal form for sets of comparisons, called reduced
sets of comparisons, and a similar normal form for queries with comparisons, called
reduced queries. These normal forms are used in some of our characterizations and
proofs. In Section 5, we briefly survey the equivalence characterizations and com-
plexity results proven in this article. Thus, this section serves as a gentle introduction
and a road-map to the equivalence results presented in this article.

In Section 6, we characterize equivalence of max-queries and min-queries in
terms of dominance mappings, which can be viewed as a generalization of con-
tainment mappings. For queries with the count-distinct operator, we provide, in
Section 7, a sufficient condition for equivalence in terms of equivalence of con-
junctive queries under set semantics (i.e., set equivalence). For some special cases,
we show that this condition is also necessary.

Equivalence of count-queries is essentially the same as equivalence of conjunc-
tive queries with bag-set semantics. In Chaudhuri and Vardi [1993], equivalence of
conjunctive queries (with neither comparisons nor constants) under bag-set seman-
tics, called bag-set equivalence, was characterized in terms of isomorphisms. That
result also applies to count-queries, since equivalence of count-queries is essentially
the same as bag-set equivalence of nonaggregate queries. We provide a proof of
this result that also allows for constants in the query. Moreover, we generalize the
characterization to conjunctive queries with comparisons, using a different proof
technique. These results are presented in Section 8.

Sum-queries are considered in Section 9. For sum-queries, bag-set equivalence
is a sufficient condition for equivalence. However, a complete characterization of
the equivalence of sum-queries is more elaborate than bag-set equivalence, and we
break it into several subcases. For sum-queries without constants (but with com-
parisons involving only variables), equivalence can be characterized in terms of
bag-set equivalence. Furthermore, the proof technique for this case also applies in
the presence of integrity constraints. For the general case of sum-queries (i.e., both
constants and comparisons), a more elaborate characterization is needed, which
requires its own proof technique. As a special corollary, a simplified characteriza-
tion, in terms of bag-set equivalence, is obtained for sum-queries with constants,
but without comparisons.

2. Preliminaries

In this section, we introduce conjunctive queries and review their basic
properties.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 5

2.1. CONJUNCTIVE QUERIES. We assume that there is an infinite set of predi-
cates (denoted as p, q, r). Each predicate has an arity. A schema � is a finite set of
predicate symbols � = {p1, . . . , pn}.

An ordered domain is a nonempty set with a linear order. In this article, we are
only interested in the ordered domains of integers and rational numbers. We denote
domains by the letter I. We do not distinguish between the elements of an ordered
domain and the symbols denoting them and call both constants. A database D for
the schema � contains for each predicate p of arity k in � a finite k-ary relation
pD over constants.1 Each relation contains a set of tuples. The set of constants that
occur in a tuple of one of the relations pD

i is called the carrier of D and is denoted
as |D|.

We assume that there is an infinite set of variables (denoted as w , x , y, z). A term
is either a variable or a constant. We denote terms as s, t . A relational atom has the
form p(s1, . . . , sk), where p is a predicate of arity k. The ordering predicates are <,
≤, >, and ≥. We will use the equality s = t as an abbreviation for the conjunction
s ≤ t ∧ t ≤ s. Ordering predicates are interpreted over the domain underlying
the database. An ordering atom or comparison has the form s1 ρ s2, where ρ is an
ordering predicate. The comparisons s1 < s2 and s1 > s2 are strict, while s1 ≤ s2
and s1 ≥ s2 are nonstrict.

For relational atoms, we also use the notation p(s̄), where s̄ stands for a tuple
of terms. Similarly, x̄ stands for a tuple of variables. We will often identify a tuple
s̄ with the set of terms {s1, . . . , sk} occurring in the tuple. It is often convenient
to view a database as a set of finitely many ground relational atoms p(d̄), that is,
atoms with only constants.

An atom is a relational atom or a comparison. We denote atoms as a, b. We write
a(x1, . . . , xm) or a(x̄) to indicate that x1, . . . , xm or the variables in x̄ , respectively,
are the variables occurring in a. A condition is a conjunction a1 ∧· · ·∧an of atoms.
A condition is safe if every variable that occurs in a comparison also occurs in a
relational atom.

A conjunctive query is an expression of the form

q(s1, . . . , sk) ← a1(w̄1) ∧ · · · ∧ an(w̄n), (1)

where s1, . . . , sk are terms, each variable among the si occurs in one of the atoms
a1, . . . , an , and the condition a1 ∧ · · · ∧ an is safe. We emphasize that we generally
use the term conjunctive query to refer to a nonaggregate query, as in Eq. (1), unless
it is clearly otherwise from the context.

The atom q(s1, . . . , sk) is called the head of the query, and the condition a1 ∧
· · ·∧an is called the body of the query. The terms in the head are called output terms
and variables in the head are called output variables. Variables that occur in the
body, but don’t occur in the head are called existential variables. The atoms in the
body can be relational atoms or comparisons, and the arguments can be variables as
well as constants. If the body contains no comparisons, then the query is relational.

1 We consider databases over ordered domains because our queries may contain comparisons. To
simplify the exposition, we restrict ourselves to integers and rationals, which are prototypical for
domains with strict and dense order. All results can easily be generalized to databases where the
attributes of relations have several types.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

6 S. COHEN ET AL.

We abbreviate a query as

q(s̄) ← B(w̄),

where B(w̄) stands for the body of the query and w̄ for the variables occurring in
the body. If the variables are not important, we simply write q(s̄) ← B. By abuse
of notation, we will often refer to a query by its head q(s̄) or simply by the predicate
of its head q.

2.2. SEMANTICS OF CONJUNCTIVE QUERIES. An assignment γ for the query
q(s̄) ← B(w̄) over the ordered domain I is a mapping γ : w̄ → I from the set of
variables occurring in q to elements of the domain I. For a constant d we define
γ (d) := d. For s̄ = (s1, . . . , sk) we let γ (s̄) denote the tuple (γ (s1), . . . , γ (sk)).
Assignments are extended to other syntactic objects in the obvious way.

An assignment γ satisfies the comparison s1 ρ s2 over I if γ (s1) ρ γ (s2) holds
over I, and γ satisfies the relational atom a over the database D if γ (a) ∈ D.
Satisfaction of conjunctions of atoms is defined as one would expect. The domain
I and the database D are not mentioned if they are clear from the context.

2.2.1. Set Semantics. Under set semantics, a conjunctive query q(s̄) ← B(w̄)
defines a new relation qD over the carrier of a database D as follows:

qD := {γ (s̄) | γ satisfies B(w̄)}.
This means, we obtain qD by restricting the assignments satisfying the body of the
query to the tuple of variables appearing in the head.

2.2.2. Bag-Set-Semantics. Bag-set semantics has been introduced by
Chaudhuri and Vardi [1993] to semantically model query execution by SQL-based
database systems. There, the database contains relations, that is, sets of tuples,
while a query returns a bag of tuples, that is, a multiset, where a tuple can occur
more than once. This differs from bag semantics, for example, Albert [1991] and
Ioannidis and Ramakrishnan [1995], in which the database is a multiset of tuples.

Under bag-set semantics, a conjunctive query q(s̄) ← B(w̄) defines a multiset
{{ q }}D of tuples over the carrier of a database D. The bag {{ q }}D contains the same
tuples as the relation qD, but each tuple γ (s̄) occurs as many times as there are
assignments γ ′ that satisfy B(w̄) and agree with γ on s̄. Letting {{ · }} denote a
multiset, we formally define {{ q }}D in analogy to qD as:

{{ q }}D := {{ γ (s̄) | γ satisfies B(w̄) }}.
2.2.3. Equivalence and Containment. A query q is contained in a query q ′

under set-semantics if over every database the set of results returned by q is a
subset of the results returned by q ′. Formally, q is contained in q ′ if qD ⊆ q ′D for
all databases D.

Two queries q and q ′ are equivalent under set-semantics, or set-equivalent, if
over every database they return the same sets of results. Obviously, two queries are
set-equivalent if and only if they contain each other.

Similarly, q and q ′ are equivalent under bag-set-semantics, or bag-set-equivalent,
if over every database they return the same results with the same multiplicities, that
is, {{ q }}D = {{ q ′ }}D for all databases D.

2.3. CONTAINMENT AND QUERY HOMOMORPHISMS. Containment and equiva-
lence of conjunctive queries can be characterized in terms of query homomorphisms

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 7

(see Chandra and Merlin [1977]). Also, the characterizations for the equivalence
of aggregate queries in this paper will be formulated in terms of homomorphisms
and isomorphisms.

For a conjunctive query with comparisons, we distinguish between the relational
part of the body and the comparisons. We write such a query as

q(s̄) ← R(w̄) ∧ C(z̄),

where R(w̄) is the conjunction of all relational atoms in the body and C(z̄) is
the conjunction of all comparisons. The notation R(w̄) and C(z̄) indicates that
only variables in the tuples w̄ or z̄ occur in the relational part or the comparisons,
respectively. We often omit the tuples.

If C and C ′ are conjunctions of comparisons and I is an ordered domain, we
write C |=I C ′ if C ′ is a consequence of C over I. Note, that for different domains
the consequences of C may be different. For instance, x > 0 |=Z x ≥ 1 holds over
the integers, but does not hold over the rationals. If the domain is clear from the
context, we write “|=” instead of “|=I”.

Let q(s̄) ← R∧C and q ′(s̄ ′) ← R′∧C ′ be conjunctive queries with comparisons,
ranging over the domain I. A homomorphism from q ′ to q is a substitution θ of the
variables in q ′ by terms in q such that

(1) θ s̄ ′ = s̄;
(2) θa′ is in R for every relational atom a′ of R′;
(3) C |=I θ (s ′) ρ θ (t ′) for every comparison s ′ ρ t ′ in C ′.

In a loose notation, we write the last two conditions as (2) θ R′ ⊆ R and (3)
C |=I θC ′. A substitution θ is a relational homomorphism from q ′ to q if it is a
homomor phism from q̃ ′(s̄) ← R′ to q̃(s̄ ′) ← R, that is, if it satisfies Conditions (1)
and (2) in the definition of homomorphism. The set of all homomorphisms from q ′
to q is denoted as Hom(q ′, q).

The following classical theorem, which is due to Chandra and Merlin [1977],
relates homomorphisms and containment.

THEOREM 2.1 (HOMOMORPHISMS AND CONTAINMENT). Let q and q ′ be con-
junctive queries.

—If there is homomorphism from q ′ to q, then q is contained in q ′;
—If q and q ′ are relational queries, and q is contained in q ′, then there exists a

homomorphism from q ′ to q.

Because of Theorem 2.1, homomorphisms between queries are also called con-
tainment mappings. Note that the theorem completely characterizes containment
between relational queries, but only provides a sufficient criterion for the contain-
ment of queries with comparisons. Checking containment of conjunctive queries
with comparisons is more complicated and described in Section 2.4. Set-equivalence
of relational conjunctive queries q and q ′ can be decided by checking whether there
are homomorphisms from q ′ to q and from q ′ to q. Note that even if such homo-
morphisms exist, the queries q and q ′ may not necessarily be isomorphic. Deciding
whether there exists a homomorphism from one relational query to the other is
NP-complete.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

8 S. COHEN ET AL.

A homomorphism is injective if it maps different variables in q ′ to different
variables in q.2 It is surjective if every variable in q is the image of a variable in q ′.
It is bijective if it is injective and surjective. If it is bijective, then it has an inverse,
which is a mapping from the variables in q to the variables in q ′. Note that the
inverse need not be a homomorphism. A homomorphism is an isomorphism if it
is bijective and if its inverse is also a homomorphism. Thus, a bijective homomor-
phism θ from q ′ to q is an isomorphism if for every atom a in the body of q there
is an atom in the body of q ′ such that a = θa′. The queries q ′ and q are isomorphic
if there is an isomorphism from q ′ to q.3 Thus isomorphic queries are identical up
to a renaming of the existential variables and up to the multiplicity of atoms.

2.4. CONTAINMENT OF QUERIES WITH COMPARISONS. For queries with com-
parisons, the existence of a homomorphism is only a sufficient, but not a necessary
condition for containment. A classical example illustrating this fact consists of the
two queries4

q ← r (x, y) ∧ r (y, x)
q ′ ← r (x, y) ∧ x ≤ y.

One readily checks that q is contained in q ′, but that there is no homomorphism
from q ′ to q. This is because the body of q contains no information about the
relationship between x and y. There are three mutually exclusive ways in which
the terms occurring in q can be linearly ordered:

x < y, x = y, y < x .

If we add these three linear orderings to q, we obtain the three queries

q1 ← r (x, y) ∧ r (y, x) ∧ x < y
q2 ← r (x, y) ∧ r (y, x) ∧ x = y
q3 ← r (x, y) ∧ r (y, x) ∧ y < x .

If now we define θ1 := θ2 := {x �→ x, y �→ y} and θ3 := {x �→ y, y �→ x}, then
each θi is a homomorphism from q ′ to qi for i ∈ 1, . . . , 3.

In the preceding example, we have rewritten q as a disjoint union of queries qi ,
each of which is contained in q ′. Hence, q is contained in q ′. To turn this idea into
a formal characterization of containment, we define linearizations of sets of terms,
linearizations of queries, and linear expansions of queries. These definitions will
also be used later on to characterize containment of max, count, and sum-queries.

Let I be an ordered domain, D be a set of constants from I, W be a set of
variables, and let T := D ∪ W denote their union. A linearization of T over I is a
set of comparisons L over the terms in T such that for any s, t ∈ T exactly one of

2 Observe that we require an injective homomorphism to map variables to variables, and not just to
terms. Actually, if we consider a homomorphism not only as a mapping on variables, but on terms,
then it is evident that in order to be injective it has to map variables to variables, since it maps every
constant to itself.
3 Note that our definition of isomorphism of queries does not depend on the multiplicity with which
an atom occurs in a query.
4 A query with no terms in the head returns the empty tuple if there is an assignment that satisfies the
body.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 9

the following holds:

—L |=I s < t
—L |=I s = t
—L |=I s > t .

Thus, a linearization partitions the terms into classes such that the terms in each
class are equal and the classes are arranged in a strict linear order. In each class
of L , there is at most one constant. Otherwise, L would be unsatisfiable and entail
any consequence. Note that the domain is crucial for determining whether L is a
linearization or not. For instance,

L := {1 < x, x < 2}
is a linearization of {1, 2, x} over rational numbers, but not over the integers because
over the integers, L is unsatisfiable. A linearization L of T over I is compatible
with a set of comparisons C if L ∪ C is satisfiable over I.

For technical reasons, when checking containment of two queries, we have to
consider linearizations that contains the constants of both queries. Therefore, we
define linearizations with respect to a set of constants. Let

q(s̄) ← R ∧ C

be a query with comparisons ranging over I, W be the set of variables occurring
in q, and D be a set of constants from I that comprise the constants of q. Then, we
denote with LD(q) the set of all linearizations of D ∪ W that are compatible with
the comparisons C of q.

Now, let L be a linearization of T = D ∪ W that is compatible with C . As
pointed out before, L defines an equivalence relation on T , where each equivalence
class contains at most one constant. A substitution φ is canonical for L if it maps
all elements in an equivalence class of L to one term of that class, and, if a class
contains a constant, then it maps the class to that constant.

By means of a canonical substitution φ for L , we transform the query q into a
more special query qL . The query qL has the form

qL (φ(s̄)) ← φR ∧ φL ,

that is, it is obtained from q by first replacing C with L and then eliminating all
equalities by applying a canonical substitution φ. We call qL a linearization of q
with respect to L . There may be more than one linearization of q with respect to L ,
but all linearizations are isomorphic. Note that φ is a homomorphism from q to qL .

A linear expansion of q over D is a family of queries (qL)L∈LD(q), where each
qL is a linearization of q with respect to L . If q and D are clear from the context,
or do not matter, we write simply (qL)L . Let (qL)L and (q ′

M)M be linear expansions
of q and q ′ over D, respectively. We say that (qL)L and (q ′

M)M are isomorphic if
there is a bijection μ:LD(q) → LD(q ′) such that qL and q ′

μ(L) are isomorphic for
all L ∈ LD(q).

We demonstrate the notions introduced in this section with the following example.

Example 2.2. Consider the queries q and q ′

q ← r (x, y) ∧ r (y, x)
q ′ ← r (x, y) ∧ x ≤ y.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

10 S. COHEN ET AL.

A linear expansion of q is the family of queries

q1 ← r (x, y) ∧ r (y, x) ∧ x < y
q2 ← r (x, x)
q3 ← r (x, y) ∧ r (y, x) ∧ y < x .

Note that q2 is derived by considering the linearization x = y of the terms of q,
and choosing the canonical substitution φ in which y is substituted with x . A linear
expansion of q ′ is the family of queries

q ′
1 ← r (x, y) ∧ r (y, x) ∧ x < y

q ′
2 ← r (x, x).

Note that the linear expansion of q ′ contains only two queries since there are only
two linearizations of the terms in q ′ that are compatible with the comparisons of q ′.

For every query in the linear expansion of q, there is an isomorphic query in
the linear expansion of q ′, and vice versa. However, these linear expansions are
not isomorphic since they contain a different number of queries, and hence, the
required bijection μ cannot exist.

For a given query q, there is no unique linear expansion over a set of constants D,
because the canonical substitutions that produce the linearizations qL are in gen-
eral not uniquely determined. However, it is easy to see that any two such linear
expansions are isomorphic.

The following is a reformulation and extension of a theorem by Klug [Klug
1988].

THEOREM 2.3 (CONTAINMENT WITH COMPARISONS). Let q, q ′ be two con-
junctive queries with comparisons, D be the set of constants occurring in q and q ′,
and (qL)L be the linear expansion of q over D. Then the following are equivalent:

—q is contained in q ′;
—for every qL there is a homomorphism from q ′ to qL.

Clearly, in the above theorem, linear expansions and homomorphisms have to be
taken with respect to the ordered domain over which the queries range.

Note that for queries with comparisons the characterization of containment is
more complex than for relational queries, since there have to exist as many homo-
morphisms as there are queries in a linear expansion of q. In fact, it has been
shown by van der Meyden [1992] that containment of conjunctive queries with
comparisons is �P

2-complete.

3. Aggregate Queries

We give an abstract account of aggregate queries as they are definable in SQL
without nesting and without using the having construct.

3.1. SYNTAX OF AGGREGATE QUERIES. We consider the aggregation functions
min, max, count, cntd, sum. The function cntd is read as “count distinct.” Aggre-
gation functions are abstractly denoted as α. An aggregate term has one of the
forms

min(y), max(y), cntd(y), count, sum(y).

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 11

Observe that count does not take an argument. Aggregate terms are abstractly
denoted as α(y).

An aggregate query has the form

q(x1, . . . , xk, α1(y1), . . . , αl(yl)) ← B(w̄), (2)

where

—x1, . . . , xk are distinct variables;
—the sets of variables {x1, . . . , xk} and {y1, . . . , yl} are disjoint;
—each of the variables xi and y j occurs in the body B(w̄) of the query.

We call {x1, . . . , xk} the grouping variables and {y1, . . . , yl} the aggregation
variables of the query. Similarly as for conjunctive queries, we distinguish be-
tween relational aggregate queries and arbitrary aggregate queries, which may
contain comparisons in the body. Instead of (2), we use as a shorthand the
notation

q(x̄, ᾱ(ȳ)) ← B(w̄).

Note that, to simplify our presentation, our aggregate queries do not have con-
stants in their heads. Standard conjunctive (nonaggregate) queries can have con-
stants in their heads (see Eq. (1)). We will never directly consider linearizations of
an aggregate query, since linearizations may introduce constants into the head of
a query. Instead, we will consider linearizations of the cores of aggregate queries.
Essentially, the core of an aggregate query is a conjunctive query derived by strip-
ping off the aggregate functions in the query. This notion will be defined formally
later on.

3.2. SEMANTICS OF AGGREGATE QUERIES. Consider the aggregate query
q(x̄, ᾱ(ȳ)) ← B(w̄). For a database D, the query yields a new relation qD. To
define the relation qD, we proceed in two steps.

First, we partition the set of assignments satisfying the body B(w̄) of the
query into equivalence classes. Two assignments γ1, γ2 are equivalent, γ1 ∼q γ2,
if they agree on x̄ , that is, γ1(x̄) = γ2(x̄). We denote the equivalence class
of γ under this relation as [γ]q . Obviously, the class [γ]q is uniquely deter-
mined by the tuple d̄ := γ (x̄). If q is clear from the context, we drop the
subscript.

For each such d̄ the group [γ]q gives rise to the multiset of values assigned to
the variables ȳ by assignments in that group,

{{ γ (ȳ) | γ (x̄) = d̄ and γ satisfies the body of q }}.
We will refer to this multiset as the group of ȳ-values for d̄ w.r.t. q, or simply, if no
misunderstanding can arise, as the group of d̄.

Next, we define how to evaluate an aggregate term α(y) on a class of assignments
[γ], written α(y).[γ]:

max(y).[γ] := max
γ ′∈[γ]

γ ′(y)

min(y).[γ] := min
γ ′∈[γ]

γ ′(y)

cntd(y).[γ] := |{γ ′(y) | γ ′ ∈ [γ]}|

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

12 S. COHEN ET AL.

count.[γ] := |[γ]|
sum(y).[γ] :=

∑
γ ′∈[γ]

γ ′(y).

In order for these definitions to make sense in a general setting, assignments have to
be suitably typed so that maxima and minima are taken over an ordered set of values
and sums are taken over numbers. Obviously, well-typedness of assignments can
be guaranteed if database relations and queries are well-typed. Since it is obvious
how to define and test such well-typedness, we do not dwell on this issue in this
paper. Note that the function cntd(y) returns the number of distinct values to which
y is bound.

A tuple of aggregate terms is evaluated on an assignment class by evaluating each
component. That is, if ᾱ(ȳ) = (α1(y1), . . . , αl(yl)) is a tuple of aggregate terms,
then ᾱ(ȳ).[γ] is defined as the tuple (α1(y1).[γ], . . . , αl(yl).[γ]).

Finally, the query q(x̄, ᾱ(ȳ)) ← B(w̄) is evaluated on D by first partitioning the
assignments satisfying the body into equivalence classes and then, for each class
[γ]q , concatenating the characteristic tuple of values γ (x̄) with the evaluation of
ᾱ(ȳ) on [γ]q . Formally,

qD := {(γ (x̄), ᾱ(ȳ).[γ]q)|γ satisfies B(w̄)},
where (γ (x̄), ᾱ(ȳ).[γ]q) denotes the concatenation of the tuplesγ (x̄) and ᾱ(ȳ).[γ]q .

The class of aggregate queries considered in this paper corresponds to unnested
SQL queries with aggregations, in which (1) the where clause consists of a con-
junction of comparisons, (2) all attributes in the group by clause also appear in
the select clause, and (3) there is no having clause. SQL queries, satisfying the
above description, can be translated into our notation similarly to the way that SQL
queries without aggregation are translated into conjunctive queries. We demonstrate
this translation with an example.

Example 3.1. Let R(X, Y) and S(U, V, W) be relations. Consider the following
SQL query.

select R.X, count, sum(S.V), avg(S.W)
from R, S

where R.Y = S.U AND S.V < 10
group by R.X

This query is written in our notation as

q(x, count, sum(v), avg(w)) ← r (x, y) ∧ s(u, v, w) ∧ y = u ∧ v < 10 .

3.3. EQUIVALENCE OF AGGREGATE QUERIES. Consider two aggregate queries

q(x̄, ᾱ(ȳ)) ← B(w̄)
q ′(x̄ ′, ᾱ′(ȳ′)) ← B ′(w̄ ′).

We say that q and q ′ are equivalent if for every database D the two queries define
the same relation, that is, qD = q ′D.

There are cases where two queries are equivalent, even if they contain different
aggregation functions, and the tuples of grouping variables have different length.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 13

As an example consider the following two queries:

q(x, y, max(z)) ← r (x, y, z) ∧ x = y ∧ y = z
q ′(x, sum(y), min(z)) ← r (x, y, z) ∧ x = y ∧ y = z.

To exclude such pathological cases, we restrict ourselves to comparable queries.
We say that two aggregate queries q(x̄, ᾱ(ȳ)) and q ′(x̄ ′, ᾱ′(ȳ′)) are comparable if the
tuples of grouping variables are the same, that is, x̄ = x̄ ′, the tuples of aggregate
terms ᾱ(ȳ) and ᾱ′(ȳ′) have the same length, say l, and corresponding aggregate
terms have the same aggregation function, that is, α j = α′

j for j = 1, . . . , l.
In the following, we will show that in order to study the equivalence of aggregate

queries, we can concentrate on queries with a single aggregate term. The intuitive
reason is that the values of the aggregate terms in a query result are functionally
dependent on the values of the grouping variables. Thus, we can treat each aggregate
term in a query separately.

Let q(x̄, ᾱ(ȳ)) ← B(w̄) be an aggregate query. For each aggregate term α j (y j)
appearing in the head of q we define a new query q j , the j th kernel of q, by

q j (x̄, α j (y j)) ← B(w̄).

Essentially, q j is obtained from q by projecting out all aggregate terms different
from α j (y j). The next proposition reduces the equivalence problem for arbitrary
aggregate queries to the equivalence problem of their kernels.

PROPOSITION 3.2 (REDUCTION TO KERNELS). Let q and q ′ be two comparable
aggregate queries. Then q and q ′ are equivalent if and only if the kernels q j and
q ′

j are equivalent for all j .

PROOF. Obviously, if q and q ′ are equivalent, then so are q j and q ′
j , since the

relations they define are projections of those defined by q and q ′. For the converse
claim, it suffices to show that q is contained in q ′. The containment of q ′ follows
by a symmetric argument.

Suppose that q and q ′ are defined as q(x̄, ᾱ(ȳ)) ← B(w̄) and q ′(x̄, ᾱ(ȳ′)) ←
B ′(w̄ ′), respectively. LetD be a database and γ be an assignment that satisfies B(w̄).
Then, qD contains the tuple (γ (x̄), ᾱ(ȳ).[γ]q), and qD

1 , the set of answers returned
by the first kernel of q, contains the tuple (γ (x̄), α1(y1).[γ]q1). Since q1 and q ′

1 are
equivalent, they return the same answers over D. Thus, there is an assignment γ ′
such that γ ′ satisfies B ′(w̄ ′) and (γ (x̄), α1(y1).[γ]q1) = (γ ′(x̄), α1(y′

1).[γ ′]q ′
1
).

To prove our claim, it suffices to show that

α j (y j).[γ]q = α j (y′
j).[γ

′]q ′ (3)

for all j . To see this, first observe that for all j we have

[γ]q = [γ]q j and [γ ′]q ′ = [γ ′]q ′
j
, (4)

since a query and its kernels have the same body and the same grouping variables.
Now, because γ (x̄) = γ ′(x̄), the equivalence of the kernels of q and q ′ implies that

α j (y j).[γ]q j = α j (y′
j).[γ

′]q ′
j

(5)

for all j , which, together with (4), yields (3).

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

14 S. COHEN ET AL.

In the proof, we have only used that fact that two comparable queries have the
same tuple of grouping variables. That corresponding aggregate terms have the
same aggregation function was not important.

Proposition 3.2 shows us that in order to study the equivalence of aggregate
queries we can concentrate on queries with a single aggregate term. We call such a
query, which has the form q(x̄, α(y)), a simple aggregate query.

Our technique for studying the equivalence of such queries will be to associate
to every simple aggregate query a conjunctive query and to reduce the equivalence
of simple aggregate queries to syntactic properties of the associated queries.

If q(x̄, α(y)) ← B(w̄) is an aggregate query with the aggregation function max,
min, cntd, or sum, then the core of q is the conjunctive query

q̆(x̄, y) ← B(w̄).

The core of a query q(x̄, count) ← B(w̄) is the conjunctive query

q̆(x̄) ← B(w̄).

Observe that for aggregation functions with an argument, the argument appears in
the head of the core, and that for count, which does not have an argument, the head
of the core contains only the grouping variables.

4. Reduced Queries

In this section, we introduce a normal form for conjunctive queries with com-
parisons, called reduced queries, which we will need for our characterizations in
later sections. We show that the normal form can be computed in polynomial time.
Reduced queries are motivated by the following technical considerations.

In a relational query, it is always the case that, over a suitable database, a variable
can be bound to more than one data element, and different variables can be bound
to distinct constants. However, comparisons may entail that a variable is equal to
a constant, or that two variables are equal. Moreover, comparisons may render a
query unsatisfiable. For our technical arguments later on to be valid we have to
exclude such queries. In this section, we show how to deal with this problem.

4.1. CONJUNCTIVE QUERIES. A set of comparisons C is reduced over a domain
I if it is satisfiable, and

(1) for every two distinct variables y, z occurring in C , it holds that C �|=I y = z,
that is, there is an assignment γ satisfying C such that γ (y) �= γ (z);

(2) for every variable y occurring in C and every constant d ∈ I, it holds that
C �|=I y = d, that is, there is an assignment γ satisfying C such that γ (y) �= d.

In other words, a set of comparisons is reduced if it does not imply equality of
distinct terms. A conjunctive query q(x̄) ← R ∧ C is reduced if C is a reduced set
of comparisons.

In Guo et al. [1996a; 1996b], the problems of determining satisfiability and im-
plication of comparisons over both the rationals and the integers, were considered.
The comparisons considered in Guo et al. [1996b] were of exactly the same type
as those considered here. These results can immediately be applied to find reduced

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 15

queries. Before stating the relevant results of Guo et al. [1996b], we present some
necessary definitions.

Let C be a set of comparisons. We are interested in two properties of C (which will
be used in conjunction with the two requirements of reduced sets of comparisons).

—Equivalence Relation among Variables. As pointed out earlier, the comparisons
C naturally imply an equivalence relation over the variables in C . Formally, we
will say that x and y are in the same equivalence class according to C over the
domain I, denoted x ≡C,I y if C |=I x = y. If the domain is clear from the
context, we omit I from the subscript.

—Lower and Upper Bounds. We associate each variable y appearing in C with two
values gllC (y) and lulC (y), defined as follows

gllC (y) = inf {γ (y) | γ satisfies C}
lulC (y) = sup {γ (y) | γ satisfies C}.

Note that by definition gllC (y) = −∞ if y is not bounded from below, and
lulC (y) = ∞ if y is not bounded from above. Note also that if C is satisfiable
and gllC (y) = lulC (y), then C |= y = gllC (y).

For example, consider the set of comparisons

C = {5 < x, x ≤ y, y ≤ x, x < z}.
Over both the integers and the rationals, we have that x ≡C y. Over the integers,
gllC (x) = 6, lulC (x) = ∞, (and therefore gllC (y) = 6 and lulC (y) = ∞), and
gllC (z) = 7, lulC (z) = ∞. Over the rationals, gllC (x) = gllC (y) = gllC (z) = 5 and
lulC (x) = lulC (y) = lulC (z) = ∞.

The following result is from Guo et al. [1996b].

THEOREM 4.1 (PROPERTIES OF COMPARISONS). Let C be a set of comparisons
ranging over the rationals or the integers.

(1) It is possible to determine if C is satisfiable in time O(|C |).
(2) It is possible to compute the equivalence relation ≡C in time O(|C |).
(3) It is possible to compute gllC (y) and lulC (y), for all variables y in C, in time

O(|C |).
(4) Suppose that C ranges over the integers. Then there exist assignments γ ↓ and

γ ↑ satisfying C such that
—γ ↓(y) = gllC (y), whenever gllC (y) �= −∞
—γ ↑(y) = lulC (y), whenever lulC (y) �= ∞.

(5) Let s ρ t be a comparison. Then, it is possible to determine whether C |= s ρ t
in time O(|C |2).

Using Theorem 4.1 we can show that it is possible to compute a reduced version
of a query efficiently.

PROPOSITION 4.2. For every satisfiable conjunctive query one can compute in
polynomial time an equivalent reduced conjunctive query.

PROOF. Let q(s̄) ← R ∧ C be a conjunctive query. We compute the equivalence
relation ≡C and the values gllC (y) and lulC (y), for all variables y in C . This can
be accomplished in linear time by Theorem 4.1. For each y, if gllC (y) = lulC (y),

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

16 S. COHEN ET AL.

then we replace y, and all the other variables y′ such that y ≡C y′, with the value
gllC (y). We loop over all remaining variables (in an arbitrary order) and check, for
each variable z, whether there is another variable z′ such that z ≡C z′. If so, we
replace all such variables z′ with z.

Let q ′ be the query resulting from the process described above. It is easy to see
that q ′ is both equivalent to q and is reduced.

As a result of Theorem 4.1 and Proposition 4.2, we will often assume that a given
query is reduced. This assumption is without loss of generality, since it is possible
to check if a query is satisfiable in linear time (Theorem 4.1), and to compute an
equivalent reduced version in polynomial time (Proposition 4.2).

It is often convenient to consider reduced queries, since they have certain useful
properties. We discuss such a property now. A constant occurring in a query is a
relational constant if it occurs in a relational atom. We want to show that equivalent
reduced conjunctive queries have the same relational constants. For this purpose,
we need the following lemma.

LEMMA 4.3 (AVOIDING A CONSTANT). Let C be a reduced set of comparisons
and d be a constant. Then there is a satisfying assignment γ of C such that γ (y) �= d
for all variables y occurring in C.

PROOF. First, we consider the case that C ranges over the rationals. Since C
is reduced, there exists a satisfying assignment γ . If γ (y) �= d for all variables y
occurring in C , then we are done.

Suppose therefore that γ (y) = d for some variable y. Let Y be the set of all
variables y such that γ (y) = d. We will change γ for the variables in Y . However,
we cannot do so uniformly, but have to distinguish between those variables to which
we may assign a smaller value and those to which we cannot do so.

Let Y − be the subset of Y consisting of variables y such that C |= y ≤ d, and
let Y + := Y \ Y −. Now, define d− and d+ by

d− := max ({d ′ | d ′ is a constant in C and d ′ < d} ∪ {γ (z) | γ (z) < d})
d+ := min ({d ′ | d ′ is a constant in C and d ′ > d} ∪ {γ (z) | γ (z) > d}) .

We define a new assignment γ ′ by γ ′(y) := (d− + d)/2 for y ∈ Y −, γ ′(y) := (d +
d+)/2 for y ∈ Y +, and γ ′(y) := γ (y) otherwise. Then γ ′ satisfies all comparisons
between variables in C , and, since C is reduced, it satisfies as well all comparisons
between variables and constants.

Next, we consider the case that C ranges over the integers. Let γ ↓ be a limit
assignment, as introduced in Theorem 4.1. If γ ↓(y) �= d for all y, then we are done.
Otherwise, we change γ ↓ into an assignment γ ′ that will do the job.

If gllC (y) = −∞, then we define γ ′(z) := γ ↓(z)−1 for all z with γ ↓(z) ≤ γ ↓(y),
and γ ′(z) := γ ↓(z) otherwise. Note that this definition implies γ ′(y) = d − 1. It
is easy to see that γ ′ satisfies C , because γ ′ continues to satisfy all comparisons
between variables. It also satisfies all comparisons between variables and constants,
because gllC (z) = −∞ for all variables z for which we have changed the values.

If gllC (y) is finite, then we define γ ′(z) := γ ↓(z) for all z with γ ↓(z) < γ ↓(y),
and γ ′(z) := γ ↓(z) + 1 otherwise. Note that this definition implies γ ′(y) = d + 1.
Then γ ′ satisfies all comparisons between variables. It also satisfies all comparisons
between variables and constants, because gllC (z) < lulC (z) implies that γ ↓ + 1 =
gllC (z) + 1 ≤ lulC (z). Hence, γ ′ satisfies C .

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 17

PROPOSITION 4.4 (RELATIONAL CONSTANTS AND CONTAINMENT). Let q and
q ′ be two reduced conjunctive queries. If q is contained in q ′, then every relational
constant of q ′ is also a relational constant of q.

PROOF. Assume that q is contained in q ′ and that there is a constant d ′ that
occurs in a relational atom of q ′, but does not occur in a relational atom of q.

Let q be defined as q(s̄ ′) ← R ∧C , and q ′ as q ′(s̄ ′) ← R′ ∧C ′. Obviously, since
the queries are reduced, then every relational constant appearing in the head of q ′
must also appear in the head of q. In addition, since q is reduced, by Lemma 4.3,
there is an assignment γ to the variables in q such that γ satisfies C and γ (y) �= d ′
for all variables y of q. We define a database D by D := γ R, that is, D consists of
the relational atoms of q instantiated by γ . Obviously, γ is an assignment over D
that satisfies the body of q, and therefore q returns the answer γ (s̄).

However, there is no assignment over D that satisfies the body of q ′. To see this,
suppose that γ ′ is such an assignment. Then γ ′ R′ ⊆ γ R. This implies that there is
an atom a of R such that γ a contains the constant d ′. But this is impossible, since
no atom in R contains d ′, and γ does not introduce d ′.

COROLLARY 4.5 (RELATIONAL CONSTANTS AND SET-EQUIVALENCE). Re-
duced conjunctive queries that are equivalent under set semantics have the same
relational constants.

4.2. LINEAR EXPANSIONS. We now focus on ensuring that the linear expansion
of a conjunctive query will be in normal form, that is, reduced. Intuitively, the
problem that must be addressed is that a linearization of a query contains additional
comparisons (not in the original query), which may imply equality between a vari-
able and a constant not previously considered. Such newly introduced constants are
called virtual constants and are considered below. We note that virtual constants are
only needed for our characterization of equivalence among sum-queries (Section 9).

Let q(s̄) ← R ∧ C be a query, W be the set of variables of q, and D be a set
of constants containing the constants of q. Let L be a linearization of D ∪ W ,
and qL (φ(s̄)) ← φR ∧ φL be a linearization of q with respect to L , where φ is a
canonical substitution for L . Over the rationals, each such linearization is reduced.

Over the integers, however, this need not be the case. If, for instance, q ← R
contains the constants 0, 3, and the variables z1, z2, then L = {0 < z1 < z2 < 3} is
a linearization that is compatible with the comparisons of q (since there are none).
Thus, qL ← R ∧ L is a linearization of q. However, qL is not reduced, because
every satisfying assignment maps z1 to 1 and z2 to 2.

If we transform the query into reduced normal form, we introduce new constants,
1 and 2 in our example. The question arises whether, right from the beginning, we
can choose the constants in the linearized comparisons in such a way that the reduced
normal form of a linearized query does not contain any additional constants.

In the following, we assume that all comparisons range over the integers and that
all constants are integers. Let C be a set of comparisons, W be the set of variables
of C , and D be a set of constants comprising the constants of C . We say that d is a
virtual constant of C with respect to D if there is a linearization L of D ∪ W , such
that L is consistent with C and L |= s = d for some term s ∈ D ∪ W . We denote
the set of virtual constants of C with respect to D as vcC (D).

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

18 S. COHEN ET AL.

The following lemma shows that virtual constants are located between two ele-
ments d−, d+ of D if the space between d− and d+ can consistently be filled with
a strict chain of variables of C .

LEMMA 4.6 (FILLING UP SPACES). Let C be a set of comparisons and D be a
set of constants comprising the constants of C. Then d is a virtual constant of C with
respect to D if and only if d ∈ D, or there are d−, d+ ∈ D and k := d+ − d− − 1
variables w1, . . . , wk ∈ W such that

—d− < d < d+, and
—{d− < w1, w1 < w2, . . . , wk < d+} ∪ C is satisfiable.

PROOF
“⇒” Let d be a virtual constant of C with respect to D. Then there is a lineariza-

tion L of D ∪ W , such that L is consistent with C , and L |= s = d for some term
s ∈ D ∪ W .

If s is a constant, then d = s ∈ D.
If s is a variable, say s = y, such that γ (y) = d for all assignments γ satisfying L ,

then d = gllL (y) = lulL (y). By the definition of gllL and lulL , the L implies d ≤ y
and y ≤ d. If d ∈ D then we are finished. Assume otherwise.

We show that there is a constant d− ∈ D such that L implies d < w1, w1 <
w2, . . . , w j−1 < w j , w j < y for j = d − d− − 1 and some variables w1, . . . , w j .
Let d− be the greatest constant appearing in L that is less than d. There must
be such a constant since y is bounded from below. Let w1, . . . , w j be all the
variables in L such that L implies d− < wi and wi < y. (If there are several
such variables that are equated by L , we only take one representative for each
equivalence class of variables.) These variables are strictly ordered in L . Assume,
without loss of generality, that w1 < w2 < · · · < w j . If j = d −d−−1, then we are
finished.

The comparisons d− < w1 < · · · < w j < y imply that d− + j + 1 ≤ y.
Therefore, if j > d − d− − 1, then d < y, in contradiction to the fact that
lulL (y) = d. If j < d − d− − 1, then clearly gllL (y) < d in contradiction to the
given. Therefore, j = d − d− − 1 as required.

In a similar fashion, one can show that there is a constant d+ ∈ D such that the
L implies y < w1, w1 < w2, . . . , w j−1 < w j , w j < d+ for j = d+ − d − 1 and
some variables w1, . . . , w j .

This means, there are variables w1, . . . , wi−1, wi+1, . . . , wk ∈ W , where i =
d − d−, such that {d− < w1, . . . , wi−1 < y, y < wi−1, . . . , wk < d+} ⊆ L .
Since L is consistent with C , it follows that {d− < w1, . . . , wi−1 < y, y <
wi−1, . . . , wk < d+} ∪ C is satisfiable.

“⇐” We show that the above conditions are sufficient. Obviously, if d ∈ D,
then it is a virtual constant.

Suppose that there are d−, d+ ∈ D as in the statement of the lemma. Let γ
be an assignment that satisfies {d− < w1 < · · · < wk < d+} ∪ C . Then, d =
γ (wi) for some i ∈ 1, . . . , k. Moreover, γ determines a linearization L that is
obtained by first grouping terms into equivalence classes if γ maps them to the
same number, and then ordering the classes according to their values under γ . All
assignments satisfying L map wi to d. Thus, d is a virtual constant of C with respect
to D.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 19

One may wonder, whether and when the process of adding virtual constants to a
set D terminates. The following lemma shows that we just have to add them once,
and after that no new virtual constants come into existence.

LEMMA 4.7 (ADDING VIRTUAL CONSTANTS IS A CLOSURE OPERATION). Let
C be a set of comparisons and D be a set of constants comprising the constants of
C. Then we have

(1) D ⊆ vcC (D)
(2) vcC (D) = vcC (vcC (D)).

PROOF.

(1) This has already been stated in Lemma 4.6.
(2) The inclusion “⊆” follows from Part (1) of the lemma. To show the inclusion

“⊇”, let d1 < d2 < · · · < dn be the constants in D. Then, by Lemma 4.6,
vcC (D) is obtained from D, by filling up spaces between some pairs di , di+1 of
adjacent elements of D. Similarly, vcC (vcC (D)) is obtained by filling up spaces
between some pairs of adjacent elements of vcC (D).

Suppose d ∈ vcC (vcC (D)). Then, there are d−, d+ ∈ vcC (D) such that d− ≤
d ≤ d+, and it is consistent with C to completely fill the space between d− and d+
by a strict chain of variables.

Since d−, d+ ∈ vcC (D), there are elements di , di+1 and d j , d j+1 ∈ D, where
1 ≤ i ≤ j ≤ n, such that di ≤ d− ≤ di+1 and d j ≤ d+ ≤ d j+1. In addition to d−
and d+, all elements between di and di+1, and all elements between d j and d j+1
are elements of vcC (D), because vcC (D) is obtained by filling up spaces between
pairs of adjacent elements of D.

In order to show that d ∈ vcC (D), we distinguish between three cases. If d ≤ di+1,
then di ≤ d− ≤ d ≤ di+1, and hence d ∈ vcC (D), since d is between di and di+1.
If d j ≤ d, we conclude in a similar way that d ∈ vcC (D), It remains to consider
the case that di+1 < d < d j . Since d ∈ vcC (vcC (D)), there is a strict chain from
d− to d+ that has length d+ − d− − 1, that involves variables in C , and that is
consistent with C (see the proof of Lemma 4.6). If this chain is shortened at both
ends, it yields a strict chain from di+1 to d j of length di+1 − d j + 1, that involves
variables in C and is consistent with C . Hence, d ∈ vcC (D).

Computing the virtual constants of two sets of comparisons can be done by
computing the virtual constants independently for each set.

LEMMA 4.8 (TWO SETS OF COMPARISONS). Let C, C ′ be two sets of compar-
isons and D be a set of constants comprising the constants of C and C ′. Then we
have

(1) vcC (vcC ′(D)) = vcC ′(vcC (D)) = vcC (D) ∪ vcC ′(D)
(2) vcC (vcC (D) ∪ vcC ′(D)) = vcC ′(vcC (D) ∪ vcC ′(D)) = vcC (D) ∪ vcC ′(D).

PROOF. By Lemma 4.6, both vcC (D) and vcC ′(D) are obtained from D by filling
up the spaces between certain pairs of adjacent elements of D. Similarly, as in the
proof of Lemma 4.7, one can show that the fact that certain spaces are filled does
not facilitate the filling of other spaces.

Therefore, it does not matter in which order vcC and vcC ′ are applied. In either
order, both operators fill the spaces that they would fill if they were applied alone.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

20 S. COHEN ET AL.

Therefore, the result of their combined application is the same as the union of the
results of their single applications. This yields Part (1).

For the same reason, applying either operator to vcC (D) ∪ vcC ′(D), does not
result in filling up additional spaces. This yields Part (2).

We now arrive at the main conclusion of this section. Let q(s̄) ← R ∧ C be
a conjunctive query. We say that the linear expansion (qL)L∈LD(q) of q over D is
reduced if every query qL is reduced. A sufficient criterion for a linear expansion
to be reduced is that it be taken over a set of constants that contains all virtual
constants of the comparisons of q.

THEOREM 4.9 (REDUCED LINEAR EXPANSIONS). Let q(s̄) be a conjunctive
query, D be a set of constants that contains the constants of q, and (qL)L∈LD(q)
be the linear expansion of q over D. If D contains all virtual constants of C with
respect to D, that is, if vcC (D) = D, then every query qL is reduced.

PROOF. A query qL (φL (s̄)) ← φL R ∧ φL L is reduced if the set of comparisons
φL L is reduced. The set φL L is reduced if for any terms s, t , the fact that φL L |=
s = t entails that s and t are syntactically equal.

The set φL L does not entail the equality of syntactically distinct variables, be-
cause for any two such variables a strict inequality holds. If φL L |= s = d, then
L |= s = d as well, hence, d is a virtual constant of C with respect to D. However,
D is closed under vcC , thus d ∈ D, and s and d are syntactically equal, because L
is a linearization over D.

5. Survey of Results

In this section, we briefly survey the results of this article. We discuss, for each
aggregation function, the general technique used to determine equivalence, and the
complexity bounds derived. Throughout this section, we refer to the sections and
theorems in which the results are discussed in detail. Thus, this section serves as
a gentle introduction and a road-map to the equivalence results presented in this
article.

5.1. EQUIVALENCE CHARACTERIZATIONS.

Max-Queries. We consider equivalence of max-queries in Section 6. We char-
acterize equivalence in terms of dominance mappings between the cores of max-
queries. Intuitively, a dominance mapping from q ′(s̄ ′, t ′) to q(s̄, t) is a type of
homomorphism from q ′ to q, which has the restriction that t must be mapped to
a term at least as large as t ′. For relational max-queries, we show that dominance
is containment, i.e., there is a dominance mapping from q ′ to q if and only if q is
contained in q ′ (Proposition 6.2). For max-queries with comparisons, our charac-
terization of equivalence is more intricate, and requires the existence of dominance
mappings for each linearization in the linear expansions of each of the queries
(Theorem 6.4).

Count-Distinct-Queries. Equivalence of cntd-queries is considered in Sec-
tion 7. Clearly, given two cntd-queries q and q ′, set-equivalence of the cores of
q and q ′ is a sufficient condition for equivalence of cntd-queries, since two queries

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 21

that return the same results must also return the same number of results. We show that
set-equivalence of the cores is a complete characterization of equivalence for rela-
tional cntd-queries (Corollary 7.4) and for an additional special case (Theorem 7.3).
We note that for general cntd-queries, which may contain arbitrary comparisons,
determining equivalence is an open problem. In Section 7, we discuss further the
reasons that seem to make this problem elusive.

Count-Queries. In Section 8, we characterize equivalence of count-queries.
This is essentially the same problem as determining equivalences among conjunc-
tive queries under bag-set semantics. We show that relational count-queries are
equivalent if and only if they are isomorphic (Theorem 8.5). The proof is based
on an analysis of counting functions that count how often a particular tuple is re-
turned over a parameterized family of databases. We show that count-queries with
comparisons are equivalent if and only if their linear expansions are isomorphic
(Theorems 8.7 and 8.8).

Sum-Queries. We characterize equivalence among sum-queries in Section 9.
We first consider the special case in which the sum-queries do not contain constants.
For such queries we show that equivalence can be reduced to bag-set-equivalence
of the cores (Theorem 9.5). As discussed above, bag-set-equivalence was charac-
terized in Section 8.

It is possible for sum-queries with constants to be equivalent even if their cores
are not bag-set-equivalent. Intuitively, this holds since sums of different constants
may add up to the same value. Therefore, for this case, our characterization is
much more intricate and appears in Theorems 9.8 and 9.13. Interestingly, for
the special case of sum-queries with constants, but without comparisons, equiv-
alence can once again be characterized in terms of bag-set-equivalence of the
cores.

5.2. LINEAR AGGREGATE QUERIES. In this article, we develop a theory of equiv-
alence for general aggregate queries. For those queries, we show that equivalence is
at least as difficult as deciding graph isomorphism, a task for which no polynomial
time algorithm is known, and for which it is considered highly implausible that
one exists. In fact, for count and sum-queries equivalence, we show that checking
equivalence amounts to checking whether two queries are isomorphic, a problem
at least as difficult as graph isomorphism. Moreover, for max-queries, we show that
equivalence is even �P

2-hard.
We briefly consider here a special class of aggregate queries for which equiva-

lence can be checked in polynomial time. An aggregate query is linear if does not
contain two relational atoms with the same predicate, that is, if it does not have any
self-joins. In practice, linear queries occur frequently.

In Cohen et al. [2005], the notion of a singleton-determining aggregation func-
tions was introduced. Formally, a singleton bag is a bag that contains a single
constant. An aggregation function α is singleton-determining if, for any two sin-
gleton bags B and B ′ it holds that α(B) = α(B ′) if and only if B = B ′. Cohen
et al. [2005] showed that linear aggregate queries with singleton-determining ag-
gregation functions are equivalent if and only if they are isomorphic. It immediately

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

22 S. COHEN ET AL.

follows that linear aggregate queries with the aggregation functions max, count and
sum are equivalent if and only if they are isomorphic.5

In Theorem 7.3, we show that for a special class of cntd-queries, equivalence can
be reduced to set-equivalence of the cores. This holds, in particular, for relational
cntd-queries. Thus, for linear relational cntd-queries, (or, more generally, for linear
cntd-queries in the class of Theorem 7.3), equivalence is isomorphism.

5.3. COMPLEXITY. In this section, we summarize the results on the complexity
of aggregate queries that we obtain in this paper. We consider three cases: the
general case of arbitrary aggregate queries, which may contain comparisons, and
the two special cases of queries without comparisons (called relational queries) and
of linear queries, which again may contain comparisons. The complexity results
are shown in Table I.

TABLE I. SUMMARY OF COMPLEXITY RESULTS

Aggregation Queries with Relational Linear
Function Comparisons Queries Queries

max �P
2-complete NP-complete PTIME

cntd not known NP-complete PTIME (for relational queries)
count GI-hard,6 in PSPACE GI-complete PTIME
sum GI-hard, in PSPACE GI-complete PTIME

For queries with the function max, the first two entries in the row follow from
Theorem 6.6. The results for max-queries hold as well for min-queries.

For count-queries without comparisons, equivalence amounts to isomorphism
(see Theorem 8.5). It is easy to show that the problem of query isomorphism and
the graph isomorphism problem are many-one reducible to each other. Hence, query
isomorphism is complete for the problem class GI, consisting of decision problems
that are many-one-reducible to the graph isomorphism problem. This gives the
second entry in the row for count and also GI-hardness for the general case. The
PSPACE upper bound is shown in Theorem 8.9.

For equivalence of general sum-queries, PSPACE is an upper bound by
Theorem 9.15. As for count-queries, equivalence of sum-queries without com-
parisons amounts to isomorphism (see Theorem 9.14), which gives us the second
entry and the lower bound in the first entry.

All entries in the last column follow from the discussion in Section 5.2, since
isomorphism of linear queries can be determined in polynomial time.

6. Max-Queries

In this section, we consider aggregate queries that contain an aggregate term with
the function max. All the results for max can easily be translated into results for

5 Technically, count is singleton-determining since the only constant in the bags to which it is applied
is the empty tuple.
6 We denote as GI the class of problems that are many-one-reducible to the graph isomorphism
problem.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 23

min. A max-query is a simple aggregate query of the form

q(x̄, max(y)) ← B(w̄).

We will reduce the equivalence of max-queries to syntactic properties of their cores

q̆(x̄, y) ← B(w̄).

6.1. DOMINANCE OF CONJUNCTIVE QUERIES. Let q(s̄, t) and q ′(s̄ ′, t ′) be two
conjunctive queries. We say that q is dominated by q ′ if for every database, whenever
q returns a tuple (d̄, d), then q ′ returns a tuple (d̄, d ′) with d ′ ≥ d. We say that
q and q ′ dominate each other if q is dominated by q ′ and q ′ is dominated by q.
Actually, in order to be precise, one has to define dominance with respect to an
ordered domain, as we did in the case of containment and equivalence. However, to
simplify the exposition, we do not mention the domain if it is clear from the context
or not important.

Note that we define dominance for queries that have arbitrary terms in their
head, although the aggregate queries for which we investigate containment have
only head variables. The reason is that we will have to consider dominance also for
queries that belong to linear expansions and therefore may have head constants.

PROPOSITION 6.1 (EQUIVALENCE AND DOMINANCE). Two max-queries are
equivalent if and only if their cores dominate each other.

PROOF
“⇒” Suppose that q(x̄, max(y)) and q ′(x̄, max(y)) are equivalent. It suffices to

show that q̆ is dominated by q̆ ′. Consider a fixed database and suppose that q̆ returns
the tuple (d̄, d) over this database. Let d ′ be the maximal y-value in the group of d̄
with respect to q. Then, q̆ returns the tuple (d̄, d ′), too. The equivalence of q and
q ′ implies that d ′ is also the maximal y-value in the group of d̄ with respect to q ′.
Thus, q̆ ′ returns (d̄, d ′) and d ≤ d ′.

“⇐” Suppose q̆ and q̆ ′ dominate each other. Consider a fixed database and
suppose that q returns the tuple (d̄, dmax) over this database, that is, dmax is the
maximal y-value in the group of d̄ with respect to q. Obviously, also q̆ returns this
tuple. Since q̆ is dominated by q̆ ′, there is a tuple (d̄, d ′) with d ′ ≥ dmax that is
returned by q̆ ′. Thus, d ′ is in the group of d̄ with respect to q ′. Let d ′

max be the
maximal element in that group. Then q̆ ′ as well as q ′ return the tuple (d̄, d ′

max).
Moreover, d ′

max ≥ d ′ ≥ dmax, hence d ′
max ≥ dmax. Reversing the roles of q and q ′,

we can show that dmax ≥ d ′
max and thus dmax = d ′

max. Hence, also q ′ returns the
tuple (d̄, dmax).

This shows that q is contained in q ′. By a symmetric argument, it follows that
also q ′ is contained in q, and thus q and q ′ are equivalent.

Obviously, if a conjunctive query q is contained in another conjunctive query q ′,
then q is dominated by q ′. If the queries are the cores of relational max-queries,
then also the converse holds.

PROPOSITION 6.2 (DOMINANCE AND CONTAINMENT). Let q(x̄, y) and q ′(x̄, y)
be relational conjunctive queries. Then, q is dominated by q ′ if and only if q is
contained in q ′.

PROOF. It suffices to show that dominance implies containment. Suppose that
q is dominated by q ′. We will construct a database D from q, and then exploit the

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

24 S. COHEN ET AL.

fact that q is dominated by q ′ over D to construct a containment mapping from q ′
to q.

Suppose q and q ′ are defined by q(x̄, y) ← R(w̄) and q ′(x̄, y) ← R′(w̄ ′). Let δ
be an injective mapping from w̄ , the variables in the body of q, to constants in an
ordered domain such that δ(y) is greater than any constant occurring in the body of
q and such that δ(y) ≥ δ(w) for all w ∈ w̄ .

Now, define D as

D := {δr (ū) | r (ū) is an atom in R(w̄)}.
In other words, each relation rD consists of the tuples δ(ū) for all conjuncts r (ū) in
the body of q. Note that δ(y) is the maximal constant occurring in D.

Clearly, δ is an assignment that satisfies q over D, hence, q returns the tuple
(δ(x̄), δ(y)) over D. Since q is dominated by q ′, there is an assignment δ′ that
satisfies q ′ over D such that δ(x̄) = δ′(x̄) and δ′(y) ≥ δ(y). The constant δ(y) is
maximal in |D|, which implies that δ(y) = δ′(y).

Next, we define a substitution θ for the variables in q ′ by θ z := δ−1δ′(z), which
is well-defined because δ is injective. Obviously, θ x̄ = x̄ and θy = y. Moreover,
for every relational atom r (z̄) in the body of q ′, we have θr (z̄) = δ−1δ′r (z̄) ∈
R(w̄), since δ′r (z̄) ∈ D and D is defined as δR(w̄). Hence, θ is a containment
mapping.

Note that the above proposition only holds because no constants can occur in the
heads of the queries. It is easy to check, however, that arbitrary relational queries
are equivalent if they dominate each other.

It is not true that dominance implies containment if queries may contain com-
parisons.

Example 6.3. Consider the queries

q(y) ← p(y) ∧ p(z1) ∧ p(z2) ∧ z1 < z2

q ′(y) ← p(y) ∧ p(z) ∧ z < y.

Both queries return answers if there are at least two elements in p. If this is the
case, then q returns all elements of p, while q ′ returns all elements but the least.
Thus, the two queries dominate each other. However, they are not set-equivalent,
since q contains q ′, but q ′ does not contain q.

6.2. DECIDING DOMINANCE. Since for queries with comparisons, dominance is
more general than containment, we have to come up for dominance checking with
a more general technique than finding homomorphisms. We therefore generalize
homomorphisms to dominance mappings.

Let q(s̄, t) ← R ∧ C and q ′(s̄ ′, t ′) ← R′ ∧ C ′ be conjunctive queries with
comparisons, ranging over the domain I. A dominance mapping from q ′ to q is a
substitution θ of the variables in q ′ by terms in q such that

(1) θ s̄ ′ = s̄;
(2) θ R′ ⊆ R;
(3) C |=I θC ′;
(4) C |=I θ t ′ ≥ t .

THEOREM 6.4 (DOMINANCE WITH COMPARISONS). Let q and q ′ be two con-
junctive queries with comparisons, and let (qL)L be a linearization of q. Then, q

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 25

is dominated by q ′ if and only if for every qL in (qL)L there exists a dominance
mapping from q ′ to qL .

PROOF. Suppose that q and q ′ are queries over I, defined as q(s̄, t) ← R ∧ C
and q ′(s̄ ′, t ′) ← R′ ∧ C ′, respectively.

“⇒” Suppose that q is dominated by q ′, and let qL (φs̄, φt) ← φR ∧ φL be a
linearization of q. We show that there exists a dominance mapping from q ′ to qL .

To do so, we construct a database D from qL . Since L is satisfiable over I, so
is φL . Let δ be an assignment for qL that satisfies φL . Since qL is a linearization
of q, the assignment δ is injective, that is δ(z1) �= δ(z2) for any two distinct variables
z1, z2 in qL , and hence the inverse mapping δ−1 is well defined. Moreover, we have
that δ(z1) < δ(z2) if and only if φL |=I z1 < z2.

Now, define D as

D := {δφr (ū) | r (ū) is a relational atom of q}.
In other words, each relation rD consists of the tuples δφ(ū) for all conjuncts r (ū)
in the body of q.

By construction of D, the mapping δφ is an assignment that satisfies the body of
q , and thus q returns the tuple (δφ(s̄), δφ(t)) over D. Since q ′ dominates q, there
is an assignment δ′ over D that satisfies the body of q ′ such that

δ′(s̄ ′) = δφ(s̄) and δ′(t ′) ≥ δφ(t). (6)

We define a substitution θ for the variables w ′ in q ′ by

θw ′ :=
{
δ−1δ′(w ′) if δ′(w ′) is a constant introduced by δ
δ′(w ′) if δ′(w ′) is a constant in the body of qL .

The definition makes sense because, first, every constant in D is by construction
the image δ(v) of a term v in qL and, second, all the values of δ′ appear in D, since
q ′ is safe. We show that θ is a dominance mapping.

(1) We have θ s̄ ′ = φs̄ because of Eq. (6).
(2) Let r (v̄) be a relational atom of q ′. Then, δ′r (v̄) ∈ D, and therefore θr (v̄) ∈ φR

by definition of θ .
(3) Let v1 ≤ v2 be a comparison of q ′. Since δ′ satisfies the comparisons in q ′,

we have δ′(v1) ≤ δ′(v2). If δ′(v1) = δ′(v2), then θv1 = θv2, and φL |=I
θv1 ≤ θv2 holds trivially. If δ′(v1) < δ′(v2), then δθv1 < δθv2 by definition
of θ , and hence φL |=I θv1 ≤ θv2. With similar arguments, we can show that
φL |=I θv1 ρ θv2 for other comparison v1 ρ v2 of q ′. Thus, we conclude that
φL |=I θC ′

(4) Because of Eq. (6) and by definition of θ we have δθ t ′ = δ′(t ′) ≥ δφ(t), which
yields φL |=I θ t ′ ≥ φ(t).

Thus, θ fulfills all the conditions of a dominance mapping.

“⇐” Suppose that for every linearization qL of (qL)L there exists a dominance
mapping from q ′ to qL .

Let D be a database and γ be an assignment that satisfies the body of q. To prove
dominance of q by q ′, we show that there is an assignment γ ′ that satisfies the body
of q ′ such that γ ′(s̄ ′) = γ (s̄) and γ ′(t ′) ≥ γ (t).

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

26 S. COHEN ET AL.

The assignment γ induces a linearization L on the terms of q where u1 ρ u2 ∈ L
if and only if γ (u1) ρ γ (u2) holds. Since γ satisfies C , it follows that L is compatible
with C . Let qL (φs, φt) ← φR ∧ φL be the linearized version of q in (qL)L that
corresponds to L . There is a unique assignment γL for qL such that γ = γLφ.

Let θ be a dominance mapping from q ′ to qL . Then, γLθ is an assignment that
satisfies each relational atom r (v̄) in the body of q ′, which can be seen as follows:
θr (v̄) = φr (ū) for some atom r (ū) in R, hence γLθr (v̄) = γLφr (ū) = γ r (ū) ∈ D.

Moreover, γLθ satisfies the comparisons C ′ of q ′: we have L |=I θC ′ and γL
satisfies φL , which implies that γL satisfies L , hence γL satisfies θC ′, and therefore
γLθ satisfies C ′. In addition, γLθ s̄ ′ = γLφ(s̄) = γ (s̄), since θ s̄ ′ = φ(s̄). Finally,
since φL |=I θ t ′ ≥ φ(t), we have γLθ t ′ ≥ γLφ(t) = γ (t). Thus, γ ′ := γ θ is the
desired assignment.

Next, we are interested in the complexity of determining dominance. The state-
ment of the theorem holds for queries over the rationals as well as over the integers.

THEOREM 6.5 (COMPLEXITY OF DOMINANCE).

(1) Dominance of conjunctive queries is �P
2-complete.

(2) Dominance of relational conjunctive queries is NP-complete.

PROOF
(1) We first show that non-dominance is in �P

2 . We note that the existence of a
dominance mapping from one query to another can be decided in nondeterministic
polynomial time. Let q, q ′ be conjunctive queries, possibly with comparisons. In
order to prove that q is not dominated by q ′, we guess a linearized version qL of q
and call an NP-oracle to verify that there is no dominance mapping from q ′ to qL .
This shows that dominance is in �P

2.
We show �P

2-hardness by a reduction of the containment problem for arbitrary
conjunctive queries (which may contain comparisons), which has been proven
in van der Meyden [1992] to be �P

2-complete.
Let q0(s̄) ← B(w̄) and q ′

0(s̄ ′) ← B ′(w̄ ′) be two conjunctive queries, possibly
with comparisons. Let r be a unary predicate neither occurring in q0 nor in q ′

0. Define
the queries q and q ′ by q(s̄, y) ← B(w̄)∧r (y) and q ′(s̄ ′, y) ← B ′(w̄ ′)∧r (y). Note
that y is not involved in any comparison in q and q ′.

Let L be a linearization of the terms in q, and let qL (φs̄, φy) ← B(φw̄)∧r (φy) be
the corresponding linearized version of q. By construction of q and q ′, a dominance
mapping from q ′ to qL has to map y to φy.

Now, for every dominance mapping θ from q ′ to qL , the restriction of θ to the
variables of q ′

0 is a containment mapping from q ′
0 to q0 M , where M is the restriction

of L to the terms of q0. Since every linearization of the terms of q0 is a restriction
of a linearization of the terms of q, this shows that dominance of q by q ′ implies
containment of q0 in q ′

0.
To see the converse, let again M be the restriction of L to the terms of q0. Any

containment mapping from q ′
0 to q0 M can be extended to a dominance mapping

from q ′ to qL by mapping y to φy, since y does not occur in any comparison in q ′.
Since L was arbitrary, this shows that containment of q0 in q ′

0 implies dominance
of q by q ′.

Thus, we have reduced containment to dominance of conjunctive queries, which
proves the �P

2-completeness of the latter.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 27

(2) The second claim is obvious, since by Proposition 6.2, dominance is equiv-
alent to containment for relational conjunctive queries.

We can also state precisely the complexity of equivalence, which turns out to be
the same as that of dominance. Again, the theorem below holds for both queries
over the rationals and over the integers.

THEOREM 6.6 (COMPLEXITY OF EQUIVALENCE).

(1) Equivalence of max-queries is �P
2-complete.

(2) Equivalence of relational max-queries is NP-complete.

PROOF. We first prove the upper bounds. To show that two max-queries, say
q and q ′, are not equivalent it suffices to show that the core of one, say q̆, is not
dominated by the core of the other, that is q̆ ′. This is the case, by Theorem 6.4, if
there exists a linearization q̆L of q̆ such that there is no dominance mapping from
q̆ ′ to q̆L . Thus, existence of a dominance mapping can be decided by an NP-oracle.
Since a linearization q̆L can be guessed in polynomial time, nonequivalence of
max-queries is in �P

2 and equivalence is in �P
2.

For any two max-queries q, q ′, equivalence amounts to mutual dominance of the
cores by Proposition 6.1, which by Proposition 6.2 amounts to mutual containment
if the two queries are relational. Hence, two relational max-queries are equivalent
if and only if their cores are equivalent. Since equivalence of relational conjunctive
queries is known to be NP-complete, this proves that equivalence is in NP for
relational max-queries.

We prove the lower bounds by reducing equivalence of conjunctive queries to
equivalence of max-queries. The reduction is similar to the one in the proof of the
preceding theorem. Let q0(x̄) ← B(w̄) and q ′

0(x̄) ← B ′(w̄ ′) be two conjunctive
queries, r be a unary predicate neither occurring in q0 nor in q ′

0, and let y be a new
variable. We define two max-queries q and q ′ by q(x̄, max(y)) ← B(w̄) ∧ r (y) and
q ′(x̄, max(y)) ← B ′(w̄ ′) ∧ r (y).

We want to prove that q0 and q ′
0 are equivalent if and only if q and q ′ are

equivalent. Let D be a database. Since the variable y does not occur in B, the query
q returns a tuple (d̄, d) over D if and only if d̄ ∈ qD

0 and d is the maximal element
in rD. An analogous statement holds for q ′. This proves that the max-queries q and
q ′ are equivalent if and only if the conjunctive queries q0 and q ′

0 are equivalent.
Note that q, q ′ are relational if q0 and q ′

0 are relational.
Now, the upper bound for the general case follows from the fact that equivalence

of conjunctive queries with comparisons is �P
2-complete [van der Meyden 1992]

while for the case of relational queries, equivalence is NP-complete.

7. Count-Distinct-Queries

In this section, we show that for queries with the aggregation function cntd, equiv-
alence of the cores under set-semantics is a sufficient condition for equivalence and
we give criteria for when it is also a necessary condition.

A count-distinct-query (also written cntd-query) is a simple aggregate query of
the form

q(x̄, cntd(y)) ← B(w̄).

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

28 S. COHEN ET AL.

Its core is the query

q̆(x̄, y) ← B(w̄).

If the cores of two cntd-queries are equivalent under set-semantics, then they
return the same values for corresponding groups. Thus, in particular, they return
they same number of distinct values. This gives us a sufficient condition for the
equivalence of cntd-queries.

PROPOSITION 7.1 (SUFFICIENCY OF SET-EQUIVALENCE). Two cntd-queries
are equivalent if their cores are equivalent under set-semantics.

The converse of Proposition 7.1 holds for relational queries (see Corollary 7.4),
but not in the general case. In the remainder of this section, we identify a situation
in which the converse of Proposition 7.1 holds even for queries with comparisons.
First, we note in passing that there is no known complete characterization for equiv-
alence of cntd-queries with comparisons. For the other types of queries considered
in this article (max-queries, count-queries, sum-queries), we completely character-
ize equivalence by considering separately each linearization of each of the queries.
Unfortunately, this approach cannot be applied to determine equivalence of cntd-
queries since the result of a cntd-query cannot be evaluated from the results of
each of its linearizations. It seems that this makes the problem of characterizing
equivalence of cntd-queries more elusive.

The following example demonstrates that equivalence under set-semantics is not
a necessary condition for queries that contain comparisons.

Example 7.2. Consider the queries

q(cntd(y)) ← p(y) ∧ p(z) ∧ y < z
q ′(cntd(y′)) ← p(y′) ∧ p(z′) ∧ z′ < y′.

Both queries give a result if there are at least two elements in p. The core of q returns
all elements of p but the greatest, while the core of q ′ returns all but the least. Thus,
both cores return the same number of elements, but they are not set-equivalent.

We present some definitions necessary to identify cases where set-equivalence
of the cores is a necessary condition. Let q and q ′ be queries with comparisons C
and C ′, respectively. Let w and w ′ be variables appearing in q and q ′, respectively.
We say that the variable w ′ is a possible preimage of w if

—there are relational atoms p(s1, . . . , sn) and p(s ′
1, . . . , s ′

n) in the bodies of q and
q ′, respectively (i.e., relational atoms with the same predicate) and

—there is an index j ≤ n

such that C |= w = s j and C ′ |= w ′ = s ′
j . In other words, w and w ′ are equal

to terms in the same positions in relational atoms with the same predicates. As a
special case, we say that w ′ in q ′ is a direct possible preimage of w in q if w and
w ′ are distinguished variables and appear in the same places, respectively, in the
heads of q and q ′.

In Example 7.2, observe that the variables y′ and z′ in q ′ are both possible
preimages of the aggregation variable y in q. Observe also that y′ and z′ are involved
in a comparison. In the following theorem, we show that when such cases are
ruled out (i.e., possible preimages of the aggregation variables are not involved

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 29

in comparisons), then query equivalence can be reduced to set equivalence of the
query cores.

THEOREM 7.3 (REDUCTION TO SET-SEMANTICS). Suppose that q(x̄, cntd(y))
and q ′(x̄, cntd(y′)) are cntd-queries. Suppose also that there is no variable in q ′
that is both a possible preimage of y in q and involved in any comparison. Similarly,
suppose that there is no variable in q that is both a possible preimage of y′ in q ′
and involved in any comparison. Then q and q ′ are equivalent if and only if their
cores are set-equivalent.

PROOF. By Proposition 7.1, q and q ′ are equivalent if their cores are set-
equivalent. Assume therefore, that the cores q̆ and q̆ ′ are not equivalent under
set semantics. Without loss of generality, assume that q̆ is not contained in q̆ ′. We
will show that q is not equivalent to q ′.

Let D be the set of constants appearing in q or q ′. By Theorem 2.3, there is a
linearization q̆L in the linear expansion of q̆ over D such that there is no homomor-
phism from q̆ ′ to q̆L . We construct two databases D and D′ from q̆L such that for
some tuple d̄, the query q ′ counts the same number of distinct values in the group
of d̄ over both databases, while q does not.

Let W be the set of variables occurring in q. Suppose that the variables in q range
over the domain I and that D are constants in I. Since L is satisfiable with respect
to I and q, there is an embedding δ from W ∪ D into I. We define D as

D := {δr (t̄) | r (t̄) is a relational atom of q},
that is, each relation rD consist of the tuples δ(t̄) for all conjuncts r (t̄) in the body
of q.

Let d̄ := δ(x̄) and d := δ(y). By construction of D, the mapping δ, if restricted
to W , is an assignment that satisfies the body of q, and thus d is an element of
the group of d̄ with respect to q. However, d is not an element of the group of d̄
with respect to q ′. Otherwise, there would be an assignment γ satisfying the body
of q ′ such that γ (x̄, y) = (d̄, d). From such an assignment one could construct a
homomorphism θ from q̆ ′ to q̆L by choosing for every non-distinguished variable
z of q̆ ′ a term s in q̆L with δ(s) = γ (z) and by defining θ (z) := s.

We now construct the database D′ by adding some atoms to D. Let d ′ be an
arbitrary number not appearing in D or D. Let δ′ be identical with δ, except that
δ′(y) = d ′. Then, for every atom a in q, we add the atom δ′a to D, thus obtaining
D′. (New atoms are actually added only if a contains y. Otherwise, δ′a = δa and
is already in D.) Formally,

D′ := D ∪ {δ′r (t̄) | r (t̄) is a relational atom of q}.
By construction, δ′ is an assignment that satisfies the relational atoms of q.

Clearly, δ′ also satisfies the comparisons of q, since it differs from δ only on the
value for y, and y does not participate in any comparisons (by the assumption of
the theorem). Thus, d ′ is an element of the group of d̄ with respect to q over D′, in
addition to those that were already in the group of d̄ over D.

We show that there are no new elements in the group of d̄ over D′ with respect to
the query q ′. To see this, assume that γ ′ is an assignment overD′ with γ ′(x̄) = d̄ that
satisfies the body of q ′. Let γ be obtained from γ ′ by defining γ (z) := d, whenever
γ ′(z) = d ′, and γ (z) := γ ′(z) otherwise. Then γ satisfies every relational atom in
q ′.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

30 S. COHEN ET AL.

We show that γ also satisfies all comparisons in q ′. Let s1 ρ s2 be a comparison
in q ′. By the assumptions of the theorem, no possible preimage of y is involved in
a comparison in q ′. Therefore, it must be that γ ′(s1) �= d ′ and γ ′(s2) �= d ′. Hence,
γ (s1) = γ ′(s1) ρ γ ′(s2) = γ (s2) as required.

As a consequence, if γ ′(y) = d ′, then γ (y) = d, and γ satisfies the body of q ′.
Hence, d is in the group of d̄ with respect to q ′ over D, which contradicts our initial
assumption. If γ ′(y) = e �= d ′, then we also have γ (y) = e, and e is already in the
group of d̄ over D.

That q returns different counts for the group of d̄ over D and D′, while q ′ does
not, contradicts the fact that q and q ′ are equivalent. Thus, the assumption the q̆
and q̆ ′ are not equivalent under set-semantics is wrong.

Observe that the conditions of Theorem 7.3 imply that y and y′ are not equal to
constants (since they are not involved in any comparisons). It is easy to show that if
y is equal to a constant, and y′ is not, then q(x̄, cntd(y)) and q ′(x̄, cntd(y)) are not
equivalent. Similarly, it is easy to show that if both y and y′ are equal to (possibly
different) constants, then q and q ′ are equivalent if and only if the conjunctive
queries p(x̄) and p(x̄) derived by stripping off cntd(y) and cntd(y′), are equivalent
under set semantics.

We can simplify the conditions in Theorem 7.3 if the queries are relational.

COROLLARY 7.4 (RELATIONAL CNTD-QUERIES). Suppose that q(x̄, cntd(y))
and q ′(x̄, cntd(y′)) are relational cntd-queries. Then, q and q ′ are equivalent if
and only if their cores are equivalent under set-semantics.

We immediately derive the following complexity bound for relational cntd-
queries.

COROLLARY 7.5 (COMPLEXITY OF EQUIVALENCE). The problem of determin-
ing equivalence of relational cntd-queries is NP-complete.

8. Count-Queries and Bag-Set-Equivalence

In this section, we consider aggregate queries that contain aggregate terms with
the function count. We show that the equivalence problem for count-queries can be
rephrased as the problem to decide bag-set-equivalence.

For relational queries, we prove that two such queries are bag-set-equivalent
if and only if they are isomorphic. This result has already been stated before by
Chaudhuri and Vardi [1993], but they did not supply a proof. For queries with
comparisons, we prove that they are bag-set-equivalent if and only if they have
isomorphic linear expansions.

8.1. COUNT-QUERIES. A count-query is a simple aggregate query of the form

q(x̄, count) ← B(w̄).

We recall that the core of such a count-query is the query

q̆(x̄) ← B(w̄).

According to the semantics of count-queries, the query q(x̄, count) returns a
tuple (d̄, d) if and only if d ≥ 1 and there are d assignments γ with γ (x̄) = d̄ that

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 31

satisfy the body of q. This yields an immediate characterization of the equivalence
of count-queries.

PROPOSITION 8.1. Two count-queries are equivalent if and only if their cores
are bag-set-equivalent.

It is easy to see that isomorphism of conjunctive queries is a sufficient condition
for bag-set-equivalence.

PROPOSITION 8.2 (ISOMORPHISM IMPLIES BAG-SET-EQUIVALENCE). Isomor-
phic conjunctive queries are bag-set-equivalent.

PROOF. Let θ be an isomorphism from q ′ to q. Then for all assignments γ and
γ ′ we have that γ satisfies the body of q if and only if γ θ satisfies the body of
q ′, and γ ′ satisfies the body of q ′ if and only if γ ′θ−1 satisfies the body of q. This
establishes a one-to-one correspondence between the answers to q and the answers
to q ′.

8.2. BAG-SET-EQUIVALENCE OF RELATIONAL QUERIES. We now prove the
converse of Proposition 8.2 for relational conjunctive queries. The result will also
follow from Theorem 8.8 in the next subsection, which characterizes arbitrary con-
junctive queries. However, for the relational case, we can apply a different proof
technique that is interesting by itself.

Without loss of generality, we can assume that bag-set equivalent queries have
heads that have the form q(x̄), q ′(x̄): if queries are bag-set equivalent, then they are
equivalent, and hence their heads are isomorphic.

Let q(x̄) ← R and q ′(x̄) ← R′ be relational conjunctive queries. To show
that bag-set-equivalence of q and q ′ implies isomorphism, we prove that bag-set-
equivalence implies the existence of a surjective homomorphism from q ′ to q. Then,
by symmetry, there is also a surjective homomorphism from q to q ′. From this, we
can conclude isomorphism, also for arbitrary conjunctive queries.

LEMMA 8.3. Let q and q ′ be relational conjunctive queries such that there are
surjective homomorphisms θ from q ′ to q and θ ′ from q to q ′. Then, q and q ′ are
isomorphic.

We will now show that if q(x̄), q ′(x̄) are relational conjunctive queries such that
there is no surjective homomorphism from q ′ to q, then there is a database where
they return some tuple with different multiplicities. To this end we construct from
the query q a family of databases (DN̄)N̄∈Nl , where l is the number of existential
variables in q, and study how many times each of the queries returns a certain tuple
d̄ over these databases. More precisely, we consider the functions
 and
′ that
count how often d̄ is returned over DN̄ by q and q ′, respectively, and show that they
have the following properties:

(1)
 and
′ are polynomials over Nl ;
(2)
 contains a monomial c1,...,1 N 1

1 · · · N 1
l ;

(3)
′ contains only monomials ce1,...,el N
e1
1 · · · N el

l , where ei = 0 for some expo-
nent ei .

This implies that
 and
′ are different functions and therefore q and q ′ return d̄
with different multiplicities over some database DN̄ .

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

32 S. COHEN ET AL.

The idea behind this proof is as follows. The databases DN̄ will be constructed
in such a way that each assignment over DN̄ that satisfies q or q ′ corresponds to a
unique homomorphism from q to q, or from q ′ to q, respectively. Each homomor-
phism contributes to the entire counting function a sum of monomials that counts
the assignments corresponding to that homomorphism. The monomials for a homo-
morphism θ contain a variable Ni if and only if the i-th existential variable yi of q
occurs in the range of θ . Then, Property (2) reflects the fact that there is a surjective
homomorphism from q to q, namely the identity, and Property (3) reflects the fact
that there is no surjective homomorphism from q ′ to q.

We now construct the databases DN̄ . Let Dq be the set of constants occurring
in q, and let D = {d1, . . . , dk} be a set with as many constants as there are output
variables. Let d̄ denote the tuple (d1, . . . , dk). For every tuple of natural numbers
N̄ ∈ Nl , N̄ = (N1, . . . , Nl), let

DN̄ =
{

d (j)
i | i ∈ 1, . . . , l, j ∈ 1, . . . , Ni

}

be a set consisting of N1 + · · · + Nl distinct constants. Intuitively, there are Ni
copies d (j)

i for every existential variable yi of q. We assume that Dq , D, and DN̄
are mutually disjoint. The set Dq ∪ D ∪ DN̄ will be the carrier of DN̄ . We say that
an assignment γ : (x̄, ȳ) → Dq ∪ D ∪ DN̄ is nice if γ (x̄) = d̄ and γ (yi) = d (j)

i for
some j ∈ 1, . . . , Ni . Now, DN̄ consists of all images of the body of q under nice
assignments, i.e.,

DN̄ := {γ a | γ is a nice assignment, and a is an atom in the body of q}.
Intuitively, DN̄ has been constructed by “blowing up” the query q.

We now introduce a collapsing function π from the constants in the database DN̄
to the terms in q that maps each constant in the database back to its corresponding
variable or constant in the query. The function π is defined by

π (d) := d for c ∈ C
π (di) := xi for i ∈ 1, . . . , k

π (d (j)
i) := yi for i ∈ 1, . . . , k and j ∈ 1, . . . , Ni .

Due to the construction of DN̄ , the collapsing function behaves like a surjective
homomorphism. In fact, for every predicate p of arity m and every m-tuple d̄ ′ of
constants in DN̄ , we have that π (p(d̄ ′)) is an atom of the body of q if and only if
p(d̄ ′) is an atom in DN̄ . As a consequence, for every assignment γ : (x̄, ȳ) → |DN̄ |
with γ (x̄) = d̄, if γ satisfies q, then πγ is a homomorphism from q to q. Similarly,
for assignments γ ′: (x̄, z̄) → |DN̄ | with γ ′(x̄) = d̄, if γ ′ satisfies q ′, then πγ ′ is a
homomorphism from q ′ to q.

Next, we want to count how many times d̄ is returned over DN̄ by q and q ′,
respectively. To this end we define the counting functions
 and
′ as

(N̄) := |{γ : (x̄, ȳ) → |DN̄ ||γ (x̄) = d̄, and γ satisfies q}|

′(N̄) := |{γ ′: (x̄, z̄) → |DN̄ ||γ ′(x̄) = d̄, and γ ′ satisfies q ′}|,

where ȳ = (y1, . . . , yl) consists of the existential variables of q and z̄ = (z1, . . . , zl)
consists of the existential variables of q ′.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 33

LEMMA 8.4 (PROPERTIES OF COUNTING FUNCTIONS). Let q(x̄) and q ′(x̄) be
two relational conjunctive queries, and let
 and
′ be the corresponding counting
functions over DN̄ . Then:

(1)
 and
′ are polynomials over Nl , where l is the number of existential variables
in q;

(2)
 contains a monomial c1,...,1 N 1
1 · · · N 1

l ;
(3) if there is no surjective homomorphism from q ′ to q, then
′ contains only

monomials ce1,...,en N e1
1 · · · N el

l , where ei = 0 for some exponent ei .

PROOF.
(1) We show the first claim for
. For
′ the proof is analogous. For every

homomorphism θ from q to q, let

θ (N̄) := |{γ : (x̄, ȳ) → |DN̄ ||γ (x̄) = d̄, γ satisfies q, and πγ = θ}|,
that is,
θ counts the satisfying assignments γ that are collapsed by π to θ . Obvi-
ously,

(N̄) =
∑

θ∈Hom(q,q)

θ (N̄).

If we show that each
θ is a polynomial, then it follows that
 is a polynomial.
We classify the assignments γ with πγ = θ according to which variables yi are

mapped to the same constant in DN̄ . Let V be the set of existential variables of q.
Each γ induces a partition Pγ of V that groups variables into the same class if γ
maps them to the same constant in the database DN̄ . We say that the partition Pγ

is the pattern of γ . We also say that a partition P is a pattern if P = Pγ for some
satisfying assignment γ . For every homomorphism θ and pattern P we define

θ,P (N̄) := |{γ : (x̄, ȳ) → |DN̄ ||γ (x̄) = d̄, γ satisfies q, πγ = θ , and Pγ = P}|,
that is,
θ,P counts the satisfying assignments γ that are collapsed by π to θ and
have the pattern P . Obviously,

θ (N̄) =
∑
P

θ,P (N̄).

If we show that each
θ,P is a polynomial, then it follows that
θ and hence
 is a
polynomial.

Now, we count how many ways there are to construct an assignment γ with
pattern P such that πγ = θ . There is no choice in mapping the output variables,
since πγ (x̄) = θ (x̄) = x̄ enforces that γ (x̄) = d̄. Similarly, if θ maps an existential
variable y to an output variable xi or to a constant c, then there is no other choice
for γ than to map y to di or to c, respectively.

However, there is a choice if γ maps an existential variable to another existential
variable, say y j . For every y j ∈ V , let V θ

j := θ−1(y j) be the set of variables that
θ maps to y j . Evidently, only existential variables are mapped to y j . The set V θ

j is
the disjoint union of m j classes of P , that is,

V θ
j = Pj,1 � · · · � Pj,m j ,

where two variables are in the same class Pj,h if γ maps them to the same con-
stant in the database DN̄ . The above fragment of the pattern P can be realized in

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

34 S. COHEN ET AL.

N j (N j − 1) · · · (N j − m j + 1) ways by an assignment: each variable in V θ
j has to

be mapped to some constant d (j)
i , where i ∈ 1, . . . , N j . However, variables in the

same class Pj,h are mapped to the same d (j)
i . Thus, m j distinct constants out of N j

must be chosen. Since for every j ∈ 1, . . . , l, there are N j constants d (j)
i in DN̄ ,

we have

θ,P (N̄) =
l∏

j=1

N j (N j − 1) · · · (N j − m j + 1). (7)

This shows that
θ,P is a polynomial in N̄ . Hence
 is a polynomial. An analogous
argument shows that
′ is a polynomial. This proves Claim (1).

(2) To verify Claim (2), observe that the identity id is a homomorphism from q
to q. Since id is injective, assignments corresponding to id can only have the pattern
Pid = {{y1}, . . . , {yl}}. Thus,

id(N̄) =
id,Pid (N̄) = N 1
1 · · · N 1

l . (8)

Equation (7) implies that the degree of every polynomial
θ,P is at most l, and that
the coefficient of a monomial of degree l in
θ,P is always positive. Thus, Eq. (8)
implies that there is a monomial c1,...,1 N 1

1 · · · N 1
l in
.

(3) To see Claim (3), note that, by Eq. (7), a variable N j appears in
θ,P if and
only if θ (z) = y j for some existential variable z of q ′. By assumption, there is no
surjective homomorphism from q ′ to q. Hence, for every homomorphism θ from q ′
to q, there is some y j such that θ (z) �= y j for all existential variables of q ′. Hence,
in each
θ,P , one variable N j is missing. As a consequence, all monomials in
′
are of the form ce1,...,en N e1

1 · · · N el
l , where ei = 0 for some exponent ei .

The preceding lemma implies that there exist surjective homomorphisms between
bag-set-equivalent relational conjunctive queries. Otherwise, there would be a tuple
of numbers N̄ such that the counting functions
 and
′ differ for N̄ , that is,

(N̄) �=
′(N̄). This would mean that over the database DN̄ , the queries q and q ′
return the tuple d̄ with different multiplicities.

Thus, together with Lemma 8.3, we can conclude the main result of this subsec-
tion.

THEOREM 8.5 (BAG-SET-EQUIVALENCE IS ISOMORPHISM). Relational con-
junctive queries are bag-set-equivalent if and only if they are isomorphic.

8.3. BAG-SET-EQUIVALENCE OF QUERIES WITH COMPARISONS. If queries have
comparisons, then it is not true that bag-set-equivalence entails isomorphism.

Example 8.6. Consider the queries

q ← p(x) ∧ p(y) ∧ p(z) ∧ x < y ∧ x < z
q ′ ← p(x) ∧ p(y) ∧ p(z) ∧ x < z ∧ y < z

Clearly, they are not isomorphic. However, they are bag-set-equivalent, which can
be seen as follows.

Suppose, d1 < d2 is a pair of two distinct constants in the relation pD in some
database D. Such a pair gives rise to the assignment γ1 = {x �→ d1, y �→ d2, z �→
d2}, which satisfies q. If d1 < d2 < d3 is a triple of distinct constants in pD, it gives
rise to two assignments satisfying q, namely γ2 = {x �→ d1, y �→ d2, z �→ d3},

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 35

and γ3 = {x �→ d1, y �→ d3, z �→ d2}. If pD contains n elements, then there are(n
2

)
pairs and

(n
3

)
triples of distinct elements. Hence, q returns

(n
2

) + 2
(n

3

)
answers

over D. With similar arguments, it can be seen that q ′ returns the same number of
answers over D.

The comparisons in q and q ′ contain only incomplete information about the
relationships between x , y, and z. They can each be completed in three ways to
linearizations of {x, y, z} compatible with those comparisons. In the case of q,
those three linearizations are

x < y = z, x < y < z, x < z < y,

and in the case of q ′, they are

x = y < z, x < y < z, y < x < z.

Based on the linearizations for q, we can construct a linear expansion over the
empty set of constants, consisting of the three queries

q1 ← p(x) ∧ p(y) ∧ x < y
q2 ← p(x) ∧ p(y) ∧ p(z) ∧ x < y ∧ y < z
q3 ← p(x) ∧ p(y) ∧ p(z) ∧ x < z ∧ z < y.

Similarly, for q ′ we can construct the linear expansion

q ′
1 ← p(x) ∧ p(z) ∧ x < z

q ′
2 ← p(x) ∧ p(y) ∧ p(z) ∧ x < y ∧ y < z

q ′
3 ← p(x) ∧ p(y) ∧ p(z) ∧ y < x ∧ x < z.

Although the queries q and q ′ are not isomorphic, one readily checks that the
linearizations qi and q ′

i are pairwise isomorphic.

In the sequel of this subsection, we will show that isomorphism of linear expan-
sions completely characterizes bag-set-equivalence. It is not too difficult to show
that isomorphism of the linear expansions of two queries is a sufficient criterion for
bag-set-equivalence.

THEOREM 8.7 (ISOMORPHISM IMPLIES BAG-SET-EQUIVALENCE). Let q(x̄)
and q ′(x̄) be two conjunctive queries. If q and q ′ have isomorphic linear
expansions, then they are bag-set-equivalent.

PROOF. Let (qL)L and (q ′
M)M be isomorphic linear expansions of q and q ′. Then,

there is a bijection μ:LD(q) → LD(q ′) such that for every linearization L ∈ LD(q)
there is an isomorphism θL from q ′

μ(L) to qL .
Let D be a database. We show that there is a bijection between the assignments

over D that satisfy q and those that satisfy q ′. Moreover, if under this bijection γ ′
corresponds to γ , then γ ′(x̄) = γ (x̄). This implies that both queries return the same
answers with the same multiplicities.

Suppose that γ satisfies q. Then γ satisfies exactly one linearization L ∈ LD(q),
and γ also satisfies the query qL . Let M := μ(L), let θL be the isomorphism from
q ′

M to qL , and let φM be the canonical substitution for M and q ′ that produced q ′
M .

Since θL and φM are homomorphisms, the assignment γ ′ := γ θLφM satisfies q ′.
The association of γ ′ to γ can be inverted. We show that γ = γ ′θ−1

L φL . Observe
that φM is the identity for the variables of q ′

M . Hence, φMθ−1
L = θ−1

L . Now, using the

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

36 S. COHEN ET AL.

definition of γ ′, we obtain γ ′θ−1
L φL = γ θLφMθ−1

L φL = γ θLθ−1
L φL = γφL = γ ,

where the last identity holds because γ satisfies L . This shows that we have indeed
defined a bijection between the assignments satisfying q and those satisfying q ′.

We now check that γ and γ ′ produce the same answers for q and q ′. Let
s̄ := φM (x̄) be the distinguished terms of q ′

M , and t̄ := φL (x̄) be those of qL ,
where φM and φL are the canonical substitutions that produced q ′

M and qL . Since
γ satisfies L , we have γφL (x̄) = γ (x̄). Combining these identities, we obtain
γ ′(x̄) = γ θLφM (x̄) = γ θL (s̄) = γ (t̄) = γφL (x̄) = γ (x̄), which yields the
claim.

For the converse of the preceding theorem, we have to be careful with the set
D over which we construct the linear expansion: it must comprise the constants in
both queries.

THEOREM 8.8 (BAG-SET-EQUIVALENCE IMPLIES ISOMORPHISM). Let q(x̄)
and q ′(x̄) be conjunctive queries and let D be the set of constants occurring in q
or q ′. If q and q ′ are bag-set-equivalent, then their linear expansions over D are
isomorphic.

PROOF. Let (qL)L and (q ′
M)M be linear expansions of q and q ′ over D. We have

to show that there is a bijection μ:LD(q) → LD(q ′) such that qL and q ′
μ(L) are

isomorphic for all L ∈ LD(q).
Let Q be the set of all queries occurring in (qL)L and Q′ be the set of those

occurring in (q ′
M)M . Isomorphism of queries is an equivalence relation on Q and

on Q′. Let Q ⊆ Q and Q′ ⊆ Q′ be equivalence classes of isomorphic queries. We
say that Q and Q′ are partners if there is a qL ∈ Q and a q ′

M ∈ Q′ such that qL and
q ′

M are isomorphic. In this case, all elements of Q are isomorphic to all elements
of Q′. If Q or Q′ does not have a partner, we say that the empty set is its partner.
Let

P := {(Q, Q′) | Q and Q′ are partners}
be the collection of all pairs of classes of isomorphic queries that are partners of
each other.

The theorem follows if we can show that for each pair (Q, Q′) ∈ P , we have
|Q| = |Q′|, that is, two partners have the same cardinality. Because then, we can
define μ locally for each pair (Q, Q′) by mapping their elements bijectively to each
other in an arbitrary manner.

Assume that there is a pair in P whose components have different cardinalities.
We call such pair a counter-example. We show that under this assumption, q and
q ′ are not bag-set-equivalent.

We first choose all counter-examples such that the number of variables in their
queries is minimal. Among those, we choose all counter-examples such that the
number of relational atoms in their queries is minimal. Let (Q, Q′) be such a
counter-example. Without loss of generality, we can assume that |Q| > |Q′|.

Let qL (s̄) ← RL∧L be an element of Q and let δ be an assignment that satisfies L .
We construct a database D out of qL by defining D := δRL , that is, D consists of
the ground atoms obtained by instantiating the atoms of RL by δ.

The query qL returns the answer d̄ := δ(s̄) over D. We show that it returns it
exactly once. The comparisons in L force any satisfying assignment to map the

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 37

variables to values distinct from the constants in D. We call the constants in D that
are not in D fresh constants. The only fresh constants are the values introduced by δ.
Moreover, L enforces a strict linear order on the assigned values, which excludes
any assignment other than δ. Similarly, all queries that are isomorphic to qL return
d̄ exactly once.

For D, as for any database, we have

qD =
⋃

qL∈Q
qD

L and q ′D =
⋃

q ′
M∈Q′

q ′D
M .

The queries in Q contribute the answer d̄ exactly |Q| times to the overall result qD,
and those in Q′ exactly |Q′| times. Since |Q| > |Q′| and q and q ′ are bag-set-
equivalent, this difference has to be compensated. Hence, there is a pair (P, P ′) ∈ P
such that the elements of P and P ′ return the answer d̄, and |P| < |P ′|. The pair
(P, P ′) is a counter-example.

Let q ′
M (t̄) ∈ P ′ and let γ be an assignment over D that satisfies q ′

M and returns d̄.
Our goal is to show that q ′

M and qL are isomorphic by showing that δ−1γ is an
isomorphism from q ′

M to qL . This will imply that (P, P ′) = (Q, Q′), contradicting
the fact that |P| < |P ′|.

We observe that the comparisons in M force γ to map

(1) variables to fresh constants in D, and

(2) distinct variables to distinct constants.

From Observation (1) and (2), we conclude that δ−1γ maps variables to variables
and is injective, because δ maps variables to fresh constants of D and is injective.

From Observation (1) and (2), we conclude also that q ′
M has no more variables

than there are fresh constants in D. Since the fresh constants have been introduced
by δ, we conclude that q ′

M has no more variables than qL . Hence, since (Q, Q′) is
a counter-example with a minimal number of variables, q ′

M and qL have the same
number of variables. This implies that δ−1γ is a bijection between the variables
of q ′

M and qL .
Since γ returns d̄, we have γ (t̄) = d̄ = δ(s̄), and therefore, δ−1γ (t̄) = s̄. Hence,

δ−1γ maps distinguished terms of q ′
M to their counterparts in qL . In addition, γ maps

the relational atoms of q ′
M to the ground atoms in D, which are bijective images

under δ of the relational atoms of qL . Thus, δ−1γ is a relational homomorphism.
Since L is a linearization over D and δ satisfies L , the values δ(y) are related

to each other and to the constants in D in exactly the same way as the variables y
themselves. Since q ′

M has as many variables as there are fresh constants in D, the
same holds for M and γ . Thus, we have L |= δ−1γ M . This yields that δ−1γ is a
homomorphism from q ′

M to qL .
It remains to prove that γ −1δ, the inverse of δ−1γ , is also a homomorphism. In

a similar way as above, we can show that δ−1γ (s̄) = t̄ and that M |= γ −1δL .
Now, the proof is complete if we show that γ −1δ maps each relational atom of qL

to one of q ′
M . To do so, it suffices to show that each relational atom of qL is the

image of a relational atom of q ′
M under δ−1γ . This will follow, if we show that q ′

M
and qL have the same number of relational atoms.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

38 S. COHEN ET AL.

From Observation (2), we conclude, that γ maps distinct relational atoms in q ′
M

to distinct relational atoms in D. This implies that q ′
M has no more relational atoms

thanD, and therefore no more than qL . However, since (Q, Q′) is a counter-example
with a minimal number of relational atoms, q ′

M and qL have the same number of
relational atoms. This yields the claim.

Our characterization of bag-set-equivalence gives us immediately an upper com-
plexity bound.

THEOREM 8.9 (UPPER COMPLEXITY BOUND). Bag-set-equivalence of con-
junctive queries with comparisons can be decided with polynomial space.

PROOF. Let q, q ′ be two conjunctive queries with comparisons. Let (qL)L , (q ′
M)M

be the linear expansions of q and q ′, respectively,Qbe the set of all queries occurring
in (qL)L and Q′ be the set of those occurring in (q ′

M)M .
The two linear expansions are isomorphic if and only if, for every qL ∈ Q, there

are as many isomorphic queries in Q as there are in Q′, and, similarly, for every
q ′

M ∈ Q′, there are as many isomorphic queries in Q′ as there are in Q.
Each of the two conditions can be checked with polynomial space as follows. In

an outer loop, we enumerate all elements of Q. During the enumeration, for each
qL ∈ Q, we enumerate in an inner loop all elements of Q and count how many
are isomorphic to qL . Then, in a subsequent inner loop, we enumerate all elements
of Q′, count those that are isomorphic to qL , and check that there are at least as
many as there are isomorphic ones in Q. In a second outer loop, we check the
analogous condition for elements q ′

M ∈ Q′.
At each stage of the computation, there are at most two nested loops, each of

which needs no more than polynomial space. Thus, the entire algorithm can be
executed with polynomial space.

9. Sum-Queries

In this section, we consider aggregate queries that contain an aggregate term with
the function sum. A sum-query is a simple aggregate query of the form

q(x̄, sum(y)) ← B(w̄).

We recall that the core of the above query is the conjunctive query

q̆(x̄, y) ← B(w̄).

We will give a complete characterization of when two sum-queries are equiv-
alent. We first consider the case of queries without constants. We give a simple
proof showing that such queries are equivalent if and only if their cores are bag-
set-equivalent. For queries with constants, this is not true. We will characterize
equivalence in the general case in Section 9.2.

9.1. SUM-QUERIES WITHOUT CONSTANTS. The main result of this subsection
is that equivalence of sum-queries without constants can be reduced to bag-set-
equivalence of their cores. One half of the reduction is straightforward, and holds,
in fact, for arbitrary sum-queries.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 39

PROPOSITION 9.1 (BAG-SET-EQUIVALENCE IMPLIES SUM-EQUIVALENCE).
Two sum-queries are equivalent if their cores are equivalent under bag-set-
semantics.

PROOF. Consider two sum-queries and a fixed database. If their cores are equiv-
alent under bag-set-semantics, the cores return over the database the same tuples
(d̄, d) with the same multiplicity. In particular, for every d̄, the groups of y-values
for every core contain the same numbers with the same multiplicity. Hence, the
sums over the two groups are the same and thus the sum-queries return the same
result for d̄.

However, from the fact that for two queries the sums over corresponding groups
of y-values are the same over each database, we cannot always deduce that the
y-values are the same and occur with the same multiplicities.

Example 9.2. Consider the two queries

q(sum(y)) ← p(1) ∧ p(2) ∧ p(3) ∧
p(y) ∧ 1 ≤ y ≤ 3

q ′(sum(y)) ← p(1) ∧ p(2) ∧ p(3) ∧
p(y) ∧ 1 ≤ y ≤ 2 ∧
p(z) ∧ 1 ≤ z ≤ 2.

where all variables range over the integers. Then, both queries return a result if
and only if the database contains the atoms p(1), p(2), and p(3). Moreover, both
queries return the number 6, but the first query obtains it as 6 = 1+2+3, while the
second obtains it as 6 = 1 + 2 + 1 + 2. Thus, the two sum-queries are equivalent,
but their cores are not—neither under set- nor under bag-set-semantics.

To enforce in the first query that exactly the numbers 1, 2, and 3 are returned,
we exploit the fact that there are no other integers y with 1 ≤ y ≤ 3. In a similar
vein, we enforce that the second query outputs exactly the numbers 1 and 2, and
that each of them is output exactly twice.

Over databases that contain rational numbers, which have a dense ordering, the
two queries are not equivalent. For example, over the database

{p(1), p(1.5), p(2), p(3)},
the first query returns q(7.5), while the second returns q ′(13.5).

The technique to prove our result consists in transforming queries and databases
by strictly monotonic mappings. A mapping φ: I → I on an ordered domain I
is strictly monotonic if φ(u) < φ(v) for all u, v ∈ I with u < v . If a is an atom
containing variables and constants from I, then φa is the atom where each constant
u is replaced with φ(u). Similarly, for a query q, database D, and a multiset of
atoms A, we define φq, φD, and φ A as the query, the database, and the multiset,
respectively, that are obtained by replacing each occurrence of an atom a with φa.

PROPOSITION 9.3. Let q be a conjunctive query and D be a database over the
ordered domain I. Let φ be a strictly monotonic mapping on I. Then

{{ φq }}φD = φ({{ q }}D).

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

40 S. COHEN ET AL.

PROOF. Since φ is injective, every assignment over φD can be written as φγ for
some assignment γ over D. Therefore, the proposition follows if we show that an
assignment γ over D satisfies the body of q if and only if φγ satisfies the body of
φq .

The mapping φ is injective. Hence, for every relational atom a, we have γ a ∈ D
if and only if φγ a ∈ φD. The mapping φ is strictly monotonic. Hence, γ satisfies
a comparison s ρ t if and only if φγ satisfies φγ (s) ρ φγ (t).

Thus, γ satisfies an atom a in the body of q if and only if φγ satisfies φa in the
body of φq.

COROLLARY 9.4. Let q be a conjunctive query without constants and D be a
database over an ordered domain I. Let φ be a strictly monotonic mapping on I.
Then

{{ q }}φD = φ({{ q }}D).

PROOF. This is an immediate consequence of Proposition 9.3, since φq = q, if
q does not contain constants.

THEOREM 9.5 (EQUIVALENCE OF SUM-QUERIES W/O CONSTANTS). Let q, q ′
be sum-queries without constants. If q and q ′ are equivalent, then their cores q̆
and q̆ ′ are bag-set-equivalent.

PROOF. Assume that q and q ′ are equivalent. LetD be a database over the ordered
domain I. We have to show that

{{ q̆ }}D = {{ q̆ ′ }}D. (9)

This claim is difficult to show for an arbitrary database, because the same sum
of y-values may be produced in different ways, as can be seen in Example 9.2.
We therefore transform D into another database, where the multiplicities of each
y-value in a group with respect to q and q ′ can be read off the sum over the group.

First, we determine an upper bound for the multiplicities of y-values, i.e., for the
number of times that a tuple (d̄, d) can be produced by the queries q̆ and q̆ ′. Such
an upper bound is the number of assignments satisfying the bodies of q̆ and q̆ ′. Let
l be the maximum of the numbers of variables appearing in the bodies of q̆ and q̆ ′,
and let n be the number of constants appearing in D. Then, nl is an upper bound
for the number of assignments over D that satisfy the bodies of q̆ or q̆ ′.

Let u1 < u2 < · · · < un be the constants appearing in D, which are all either
integers or rational numbers. Let M > nl , and let φ be the strictly monotonic
mapping on I defined by φ(ui) := Mi .

To prove Eq. (9), it suffices to show that

{{ q̆ }}φD = {{ q̆ ′ }}φD,

since by Corollary 9.4 this implies that φ({{ q̆ }}D) = φ({{ q̆ ′ }}D), which implies that
{{ q̆ }}D = {{ q̆ ′ }}D, because φ is a bijection between the carriers of D and φD.

Since the sum-queries q and q ′ are equivalent, they have corresponding groups
over φD, that is, if q̆ returns (d̄, d), then q̆ ′ returns (d̄, d ′) for some d ′, and vice
versa.

Now, consider a fixed d̄. Let m1, . . . , mn be the multiplicities of the y-values
M1, . . . , Mn in the group of d̄ with respect to q, and let m ′

1, . . . , m ′
n be their

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 41

multiplicities in the group of d̄ with respect to q ′. Since q and q ′ are equivalent, the
sums over the multisets of y-values in the groups of q and q ′ are the same, that is,

n∑
i=1

mi Mi =
n∑

i=1

m ′
i Mi . (10)

As over D, the number of assignments over φD satisfying the bodies of q and
q ′ is at most nl < M . Thus, mi < M and m ′

i < M for all i . Hence, the sums in
Eq. (10) are M-adic representations of the same number. The coefficients in such
a representation are always uniquely determined, so that mi = m ′

i for all i . Hence,
over φD, each y-value has the same multiplicity in the groups of d̄ with respect to
q and q ′.

Since d̄ was chosen arbitrarily, this shows that {{ q̆ }}φD = {{ q̆ ′ }}φD, which implies
our claim.

As the proof shows, the preceding theorem relies upon the fact that for queries
without constants renaming a database by a monotonic mapping results in the query
returning a renamed set of answer tuples. This property still holds if instead of all
databases we consider a class of databases restricted by functional dependency or
referential integrity constraints. Consequently, the characterization is also true in
these cases and for other integrity constraints with the same property.

9.2. SUM-QUERIES WITH CONSTANTS. We will give a characterization of the
equivalence of sum-queries that resembles the one for count-queries.

Intuitively, this is not surprising, since we can reduce the equivalence problem for
count-queries to the one for sum-queries. Obviously, the queries q(x̄, count) ← B
and q ′(x̄, count) ← B ′ are equivalent, if and only if the queries q0(x̄, sum(y)) ←
B ∧ y = 1 and q ′

0(x̄, sum(y)) ← B ′ ∧ y = 1 are equivalent. The count of the
multiplicity of an answer d̄ in the first queries is returned as the sum of the 1’s in
the last argument of the latter queries. Note, however, that the conditions in q0 and
q ′

0 are not safe according to our definition in Subsection 2.1. Therefore, it will not be
possible to transfer the results for sum-queries to count-queries in a straightforward
manner.

Determining equivalence is more complicated for sum-queries than for count-
queries. The group of y-values for a tuple d̄ may contain several values. As can be
seen from Example 9.2, in two queries, the groups for a given d̄ may differ, but
still result in the same sum. As we will see, this phenomenon can only occur if
the groups contain constants that explicitly appear in the body of the query or, if
the group ranges over the integers, there are variables that are constrained by the
comparisons to some constants.

As for our characterization of bag-set-equivalence in Section 8.3, we consider
linear expansions of queries. In the present case, however, we have to make an
additional effort to control the constants that are explicitly or implicitly present in
the query. We do so by making sure that

—each query in the linear expansion is reduced, and
—all constants that occur in the reduced queries appear already in the underlying

linearization of comparisons.

As discussed in Section 4.2, this is achieved by computing the linear expansions
with respect to the virtual constants of the queries.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

42 S. COHEN ET AL.

9.2.1. Equivalence of Sum-Queries with Constants. We want to check whether
two sum-queries of the form q(x̄, sum(y)) ← R ∧C and q ′(x̄, sum(y)) ← R′ ∧C ′,
possibly containing constants, are equivalent. To this end, we consider reduced
linear expansions (q̆L)L∈LD(q̆) and (q̆ ′

M)M∈LD(q̆ ′) of the cores q̆ and q̆ ′ of q and q ′.
We distinguish between those linearizations whose summation terms are con-

stants and those whose summation terms are variables. We say that a query q̆L (s̄, s)
in (q̆L)L is a variable query if the summation term s is a variable, and we say that
it is a constant query if s is a constant.

Example 9.6. Consider again the queries q, q ′ introduced in Example 9.2. The
query q̆ has three linearizations

q̆(di) ← p(1) ∧ p(2) ∧ p(3), i = 1, 2, 3,

where di = i . The query q̆ ′ has four linearizations

q̆ ′(d ′
ij) ← p(1) ∧ p(2) ∧ p(3), i = 1, 2, j = 1, 2,

where d ′
ij = i .

All linearizations are constant queries. If one of them returns a result over a
database, then the others do so as well. However, the queries are not isomorphic,
because they differ in the summation term.

We capture this relationship with the term of weak isomorphism. A substitution θ
is a weak homomorphism from a query p(s̄, s) ← B to a query p′(t̄, t) ← B ′, if θ
is a homomorphism from p̄(s̄) ← B to p̄′(t̄) ← B ′. Analogously, we define weak
isomorphisms and weak isomorphism of queries. We write p ∼ p′ if p and p′ are
weakly isomorphic. Intuitively, a weak homomorphism from q̆L (s̄, s) to q̆ ′

M (t̄, t)
is a homomorphism that does not pay attention to the summation terms s and t .
We say that p and p′ are weakly set-equivalent if p̄ and p̄′ are equivalent under
set-semantics.

Isomorphism is an equivalence relation on the queries in (q̆L)L and in (q̆ ′
M)M .

We denote the class of queries in (q̆L)L that are isomorphic to q̆L as [q̆L]. Similarly,
[q̆ ′

M] denotes the class of queries in (q̆ ′
M)M that are isomorphic to q̆ ′

M . Let Q be
the set of all classes [q̆L], and Q′ be the set of all classes [q̆ ′

M]. We say that [q̆L] is
weakly isomorphic to [q̆L ′], if q̆L and q̆L ′ are weakly isomorphic. We write in this
case [q̆L] ∼ [q̆L ′]. We partition Q into the sets QV and QC that consist of the classes
of variable queries and constant queries, respectively. There is a similar partition
of Q′.

Two classes of constant queries Q0 ∈ QC and Q′
0 ∈ Q′

C are associated if they are
weakly isomorphic. If for a class in QC or in Q′

C there is no associated class, then
we say it is associated to the empty class. If q̆L is a constant query, then we denote
the summation constant as σ (q̆L). We say that (q̆L)L and (q̆ ′

M)M are in balance if
for every pair Q0, Q′

0 of associated classes of constant queries we have∑
Q∈QC
Q∼Q0

∑
q̆L∈Q

σ (q̆L) =
∑
Q′∈Q′

C
Q′∼Q′

0

∑
q̆ ′

M∈Q

σ (q̆ ′
M).

The definition can be rephrased as follows: For every constant query q̆L , collect all
weakly isomorphic constant queries in (q̆L)L and sum up their summation constants.
Do the same for all constant queries in (q̆ ′

M)M that are weakly isomorphic to q̆L .
The resulting sums must be the same.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 43

Example 9.7. The cores of the queries q, q ′ introduced in Example 9.2 have
linear expansions that are in balance. All their linearizations are given in Exam-
ple 9.6. They are all constant queries and weakly isomorphic to each other. The
sum for q̆ is 6, and the sum for q̆ ′ is also 6.

As another example, consider the queries

p(sum(y)) ← r (y) ∧ r (z) ∧ r (w) ∧ 0 < y ∧ 0 ≤ z ∧ 0 < w
p′(sum(y)) ← r (y) ∧ r (z) ∧ r (w) ∧ 0 ≤ y ∧ 0 ≤ z ∧ 0 < w .

The core of the first query does not have any linearization that is a constant query.
The core of the second has four, namely

p′
1(0) ← r (0) ∧ r (z) ∧ 0 < z

p′
2(0) ← r (0) ∧ r (z) ∧ 0 < z

p′
3(0) ← r (0) ∧ r (z) ∧ r (w) ∧ 0 < z ∧ z < w

p′
4(0) ← r (0) ∧ r (z) ∧ r (w) ∧ 0 < w ∧ w < z.

Query p′
1 is obtained from L1 = {0 = y = w < z}, while p′

2 is obtained from
L2 = {0 = y < z = w}. They form two equivalence classes of isomorphic queries,
{p′

1, p′
2} and {p′

3, p′
4}. Both classes are associated to the empty set. Since the

summation constant is always 0, we obtain in both cases 0 as the sum. This is also
the result that we obtain when summing over the empty set. Thus, the expansions
of q̆ and q̆ ′ are in balance.

Let Lv
D(q̆) consist of those linearizations that do not identify y with a constant.

We say that two linear expansions (q̆L)L , (q̆ ′
M)M are variable isomorphic if there is

a bijection μ:Lv
D(q̆) → Lv

D(q̆ ′) such that q̆L and q̆ ′
μ(L) are isomorphic.

THEOREM 9.8 (SUFFICIENT CONDITION FOR EQUIVALENCE). Let q and q ′ be
sum-queries. Then q and q ′ are equivalent if

—q̆ and q̆ ′ are weakly set-equivalent, and
—q̆ and q̆ ′ have linear expansions that are in balance and variable isomorphic.

PROOF. The proof is analogous to the proof of Theorem 8.7. We therefore just
give an outline. Since q̆ and q̆ ′ are weakly set-equivalent, q̆ returns a group for the
tuple d̄ if and only if q̆ ′ does.

Let (q̆L)L , (q̆ ′
M)M be linear expansions as in the statement of the theorem. The

fact that (q̆L)L , (q̆ ′
M)M are in balance, guarantees that those values in the groups

of d̄ that are equal to constants in the queries sum up to the same results in q and
in q ′. The isomorphism of (q̆L)L∈Lv

D(q̆) and (q̆ ′
M)M∈Lv

D(q̆ ′) guarantees that values in the
groups of d̄ that are distinct from constants are returned with the same multiplicity
by each core. Hence, both queries return the same sums.

Example 9.9. Consider again the queries p and p′ in Example 9.7. As shown
before, the linear expansions of their cores are in balance. It is also easy to check
that the linear expansions are variable isomorphic. Thus, by Theorem 9.8, p and p′
are equivalent.

The condition in Theorem 9.8 does not take into consideration the set of constants
over which the linear expansions are taken. In order to derive a necessary condition,

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

44 S. COHEN ET AL.

care must be taken when choosing the constants for the linear expansions. In par-
ticular, we will always take the linear expansions over the set of virtual constants of
the queries. By Theorem 4.9, this will ensure that the linear expansions are reduced.

We present a series of lemmas that will enable us to prove a necessary condition
for sum-query equivalence.

LEMMA 9.10 (EQUIVALENCE IMPLIES WEAK SET-EQUIVALENCE). Let q, q ′ be
sum-queries. If q and q ′ are equivalent, then q̆ and q̆ ′ are weakly set equivalent.

PROOF. Since q and q ′ are equivalent, q returns a sum for the tuple d̄ if and only
if q ′ does. Hence, q̆ and q̆ ′ are weakly set-equivalent.

LEMMA 9.11 (VARIABLE ISOMORPHISM IMPLIES BALANCE). Let q(x̄, y) ←
R ∧ C, q ′(x̄, y) ← R′ ∧ C ′ be sum-queries, and let D be a set of constants
such that D = vcC (D0) ∪ vcC ′(D0), where D0 comprises the constants of q and q ′.
Suppose that q and q ′ are equivalent and q̆ and q̆ ′ have linear expansions over D
that are variable isomorphic. Then these linear expansions are in balance.

PROOF. This proof is analogous to the proof of Theorem 8.8. We therefore just
give an outline.

Suppose that q and q ′ are equivalent, and let (q̆L)L and (q̆ ′
M)M be linear expansions

of the cores of q and q ′ over D. Note that by the choice of D the linear expansions
are reduced.

We give a proof by contradiction. Thus, assume that the linear expansions are
not in balance. Then there is a pair of associated classes of constant queries Q0, Q′

0
for which ∑

Q∈QC
Q∼Q0

∑
q̆L∈Q

σ (q̆L) �=
∑
Q′∈Q′

C
Q′∼Q′

0

∑
q̆ ′

M∈Q′
σ (q̆ ′

M) .

Let Q̄0 be the set of constant queries q̆L that are weakly isomorphic to the queries
in Q0, that is, queries that are in some class Q such that Q ∼ Q0, and let Q̄′

0 be the
set of constant queries q̆ ′

M that is defined analogously. We can choose the pair of
Q0 and Q′

0 such that the queries in Q̄0 and Q̄′
0 have a minimal number of variables

and relational atoms.
Next, we construct a database D out of one of the queries. Over this database,

Q̄0 and Q̄′
0 return groups that sum up to distinct numbers. Because of the minimality

of Q0 and Q′
0, one can show similarly to the proof of Theorem 8.7, that the difference

cannot be compensated by classes of constant queries that are not associated with
Q and Q′. Thus, the difference can only be compensated by variable queries, which
means that the linearizations of q and q ′ are not variable isomorphic.

LEMMA 9.12 (EQUIVALENCE IMPLIES VARIABLE ISOMORPHISM). Consider
the sum-queries q(x̄, y) ← R ∧ C, q ′(x̄, y) ← R′ ∧ C ′ and let D be a set of
constants such that D = vcC (D0) ∪ vcC ′(D0), where D0 comprises the constants
of q and q ′. If q and q ′ are equivalent, then the linear expansions of q̆ and q̆ ′ over
D are variable isomorphic.

PROOF. Again, we prove the claim by contradiction. Assume that q̆ and q̆ ′ have
linear expansions over D that are not variable isomorphic. We show that q and q ′
are not equivalent.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 45

Let Q = [qL], Q′ = [q ′
M] be two associated classes of isomorphic variable

queries that are not of the same cardinality. Such classes exist since q and q ′ are
not variable isomorphic.

As in the proof of Theorem 8.8, we choose the classes Q, Q′ in such a way
that the number of variables and relational atoms in their queries is minimal. We
construct two databases, D1, D2, from one of the queries, say qL (s̄, y) ∈ Q, using
assignments γ1, γ2 that satisfy L . Moreover, we choose γ1, γ2 such that

—they differ on the summation variable, that is, γ1(y) �= γ2(y) and
—they agree on every other variable.

It is possible to choose such assignments since qL is reduced and is not a constant
query.

Note all queries in Q are isomorphic to qL (s̄, y). Therefore, one can show with
the same argument as in the proof of Theorem 8.8 that each query in Q is satisfied
by exactly one assignment over Di and that the summation variable y is always
mapped to γi (y) by those assignments.

We denote by σ1(Q) the total sum of values returned by the queries in class Q
for the group γ1(s̄) over D1. Analogously, we define σ2(Q) as the sum of values
returned by Q for the group γ2(s̄) over D2. Thus, for i = 1, 2, we have

σi (Q) = |Q| ∗ γi (y) ,

where |Q| denotes the cardinality of class Q. We define σi (Q′) in a similar way. It
is not difficult to see that

σ1(Q) − σ1(Q′) �= σ2(Q) − σ2(Q′) , (11)

since |Q| �= |Q′| and γ1(y) �= γ2(y).
We show that for all other pairs of associated classes of isomorphic queries in

the linear expansions, the differences of the corresponding sums are the same, that
is, for all other classes R, R′, we have

σ1(R) − σ1(R′) = σ2(R) − σ2(R′) . (12)

Let R, R′ be associated classes of isomorphic variable queries different from Q
and Q′. Suppose that qK ∈ R and q ′

N ∈ R′. Assume first that R and R′ are classes
of variable queries. We consider three cases.

Case 1. The query qK has fewer variables than qL or as many variables but fewer
relational atoms. We chose Q and Q′ to be minimal counter-examples. Therefore
R and R′ are of the same size and contribute equal amounts to the summations.
Thus, for i = 1, 2, we have

σi (R) = σi (R′) .

Case 2. The query qK has more variables than qL or as many variables but
more relational atoms. Then no query in R or R′ can return any values at all when
evaluated over D1 and D2, and hence, σi (R) = σi (R′) = 0.

Case 3. The query qK (s̄ ′, y′) has as many variables and as many atoms as qL . Let
γ ′

1 be a satisfying assignment over D1 that maps s̄ ′ to γ1(s̄). Note that there can be
at most one such assignment because D1 has been constructed from qL , the query
qK has as many variables as qL , and both K and L are linearizations that constrain
variables to values distinct from the constants in q. (If no such assignment exists,

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

46 S. COHEN ET AL.

then qK does not return any summation value for the group γ1(s̄) at all.) Similarly,
let γ ′

2 be a satisfying assignment over D2 that maps s̄ ′ to γ2(s̄).
We prove that γ ′

1(y′) �= γ1(y). Assume instead that γ1(y) = γ ′
1(y′). We show

that in this case the composition γ −1
1 ◦ γ ′

1 is an isomorphism from qK to qL . The
composition is a bijection because both, γ1 and γ ′

1 are injective and map the variables
of qL and qK to the same set of constants. It is a homomorphism in both directions
due to the construction of D1 and because γ1(s̄) = γ ′

1(s̄ ′) and γ1(y) = γ ′
1(y′).

However, the isomorphism of qK and ql implies that R = Q, in contradiction to
our assumption about the class R.

We now prove that Eq. (12) holds in the present case as well. Recall that the
assignments γ1 and γ2, from which D1 and D2 have been constructed, differ only
in their values for the summation variable y. Thus, if γ ′

1(y′) �= γ1(y), then γ ′
2(y′) �=

γ2(y) as well, and γ ′
1(y′) = γ ′

2(y′). Hence, σ1(R) = σ2(R) and σ1(R′) = σ2(R′),
which implies that the differences of the corresponding sums are the same.

We have shown the correctness of Eq. (12) for associated classes of variable
queries. Now, suppose that R and R′ are associated classes of constant queries.
The linear expansions were taken over all the virtual constants. Therefore, by The-
orem 4.9, the queries in the linear expansions are reduced. Hence, the constants in
the summation terms of R and R′ are different from γ1(y) and from γ2(y). There-
fore, as in Case 3 above, σ1(R) = σ2(R) and σ1(R′) = σ2(R′). Hence, Eq. (12)
holds for classes of constant queries as well.

Let σ1(q) be the summation value that q returns for γ1(s̄) over D1 and let σ1(q ′)
be the value that q ′ returns. Let σ2(q) and σ2(q ′) be the summation values returned
by q and q ′ over D2. From Eqs. (11) and (12), we conclude that

σ1(q) − σ1(q ′) �= σ2(q ′) − σ2(q ′) .

Therefore, even if the queries q, q ′ return the same sums over one of the databases
D1, D2, they return different sums over the other database. Therefore, q is not
equivalent to q ′, as required.

THEOREM 9.13 (NECESSARY CONDITION FOR EQUIVALENCE). Let q(x̄, y) ←
R ∧ C, q ′(x̄, y) ← R′ ∧ C ′ be sum-queries, and let D be a set of constants such
that D = vcC (D0) ∪ vcC ′(D0), where D0 comprises the constants of q and q ′. If q
and q ′ are equivalent, then

—q̆ and q̆ ′ are weakly set-equivalent,
—q̆ and q̆ ′ have linear expansions over D that are in balance and variable isomor-

phic.

PROOF. The theorem follows from Lemmas 9.10, 9.11, and 9.12.

The two preceding theorems can be specialized for queries without comparisons.

THEOREM 9.14 (SUM-QUERIES WITHOUT COMPARISONS). Let q and q ′ be
sum-queries without comparisons and q̆ and q̆ ′ be their cores. Then, the following
are equivalent:

(1) q and q ′ are equivalent;
(2) q̆ and q̆ ′ are bag-set-equivalent;
(3) q̆ and q̆ ′ are isomorphic.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 47

PROOF. Properties (2) and (3) are equivalent by Theorem 8.5. Property (2)
implies Property (1) by Proposition 9.1. To complete the proof, it suffices to show
that Property (1) implies Property (3).

If q and q ′ are equivalent, then by Theorem 9.13 there are linear expansions
(q̆L)L and (q̆ ′

M)M of q̆ and q̆ ′ that are variable isomorphic.
Let q̆L be a linearization in this expansion such that L does not identify any two

terms. Such a linearization always exists. Then, there is a linearization M such
that q̆L and q̆ ′

M are isomorphic. The linearization M does not identify any terms
of q ′, either. Otherwise, q ′ would have more terms than q, which by Corollary 4.5
implies that q ′ has more variables than q. Hence, if M0 is a linearization that does
not identify terms of q ′, then there is no query in (q̆L)L that is isomorphic to q̆ ′

M0
.

Let θ be an isomorphism from q̆L to q̆ ′
M . In particular, θ is a relational isomor-

phism. Hence, since L and M do not identify terms, θ is an isomorphism from q̆
to q̆ ′.

Theorem 9.5 could as well have been obtained as a corollary to Theorem 9.13.
To see this, note that the cores of queries without constants don’t have virtual
constants and that their linear expansions don’t contain constant queries. Thus, the
condition in the theorem boils down to requiring that the cores of the two queries
have isomorphic linear expansions. By Theorem 8.7, this implies that the cores
are bag-set-equivalent. However, it is not clear how to modify the characterization
of Theorem 9.13 for the case of databases that satisfy integrity constraints. As
mentioned earlier, the proof of Theorem 9.5 is also valid in that case, provided the
constraints are invariant under strictly monotonic mappings.

The conditions in Theorem 9.13 are necessary for the equivalence of sum-queries,
and by Theorem 9.8, they are also sufficient. This gives us an upper complexity
bound for the problem of deciding equivalence of sum-queries.

THEOREM 9.15 (UPPER COMPLEXITY BOUND). Equivalence of sum-queries
can be decided with polynomial space.

PROOF. Let q and q ′ be two sum-queries and D0 be the set of constants occurring
in q and q ′.

We first observe that the set of virtual constants D = vcC (D0) ∪ vcC ′(D0) is of
polynomial size with respect to q and q ′ and can be computed with polynomial
space. This follows from Lemma 4.6 and Item 5 of Theorem 4.1.

Then, we note that weak set-equivalence is in �P
2 , and therefore can be decided

with polynomial space.
Finally, with algorithms similar to the one described in the proof of Theorem 8.9,

one can check that the cores q̆, q̆ ′ of q, q ′, respectively, have linear expansions that
are in balance and variable isomorphic.

10. Conclusion

We have established syntactic characterizations for equivalences among aggregate
queries. Understanding why and how queries can be equivalent is a prerequisite for
designing optimization algorithms and algorithms to rewrite queries using views.
In this way, our work lays foundations for optimizing aggregate queries and for
solving the view rewriting problem. Our main contributions can be summarized as
follows:

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

48 S. COHEN ET AL.

Nonaggregate Queries. We provide a complete characterization for equivalence
under bag-set semantics of conjunctive nonaggregate queries with constants and
comparisons. Such queries are common in SQL, since bag-set semantics is the
default semantics of SQL. Characterizing equivalence under bag-set semantics has
been an open problem since bag-set semantics were first considered in Chaudhuri
and Vardi [1993] and Ioannidis and Ramakrishnan [1995].

Aggregate Queries. We present complete characterizations for equivalences
among max-queries, count-queries and sum-queries. For cntd-queries, we present
a sufficient characterization for equivalence. Our results are unique in that we con-
sider general and common types of queries.

We leave for future research the problem of finding a complete characterization
for equivalence of cntd-queries. Finding tight upper and lower bounds for equiva-
lence is another important open issue.

We have not addressed equivalences among aggregate queries with a having
clause. The work of Ross et al. [1998] on aggregation constraints, which considers
the satisfiability of a conjunction of aggregation constraints, may be relevant for
this problem.

ACKNOWLEDGMENTS. The authors thank the anonymous referees for helpful sug-
gestions and for pointing out important related work.

REFERENCES

AHO, A., SAGIV, Y., AND ULLMAN, J. 1979. Efficient optimization of a class of relational expressions.
ACM Trans. Datab. Syst. 4, 4, 435–454.

ALBERT, J. 1991. Algebraic properties of bag data types. In Proceedings of the 17th International
Conference on Very Large Data Bases (Barcelona, Spain). Morgan-Kaufmann, San Francisco, CA, 211–
219.

BENEDIKT, M., AND KEISLER, H. 1997. Expressive power of unary counters. In Proceedings of the 6th
International Conference on Database Theory (Delphi, Greece). F. Afrati and P. Kolaitis, Eds. Lecture
Notes in Computer Science, vol. 1186. Springer-Verlag, New York, 291–305.

BENEDIKT, M., AND LIBKIN, L. 1999. Exact and approximate aggregation in constraint query lan-
guages. In Proceedings of the 18th Symposium on Principles of Database Systems (Philadelphia, PA).
C. Papadimitriou, Ed. ACM, New York, 102–113.

CALVANESE, D., DE GIACOMO, G., LENZERINI, M., AND VARDI, M. Y. 2000. Containment of conjunctive
regular path queries with inverse. In Proceedings of the 7th International Conference on Principles
of Knowledge Representation and Reasoning (Breckenridge, CO). A. G. Cohn, F. Giunchiglia, and
B. Selman, Eds. Morgan-Kaufmann, San Francisco, CA.

CALVANESE, D., DE GIACOMO, G., LENZERINI, M., AND VARDI, M. Y. 2001. View-based query answering
and query containment over semistructured data. In Proceedings of the 8th International Workshop on
Database Programming Languages (Frascati, Italy). Springer-Verlag, New York, 40–61.

CALVANESE, D., DE GIACOMO, G., AND VARDI, M. Y. 2003. Decidable containment of recursive queries.
In Proceedings of the 9th International Conference on Database Theory (Siena, Italy). Lecture Notes in
Computer Science. Springer-Verlag, New York, 330–345.

CHANDRA, A., AND MERLIN, P. 1977. Optimal implementation of conjunctive queries in relational
databases. In Proceedings of the 9th Annual ACM Symposium on Theory of Computing (Boulder, CO).
ACM, New York, 77–90.

CHAUDHURI, S., AND DAYAL, U. 1997. An overview of data warehousing and OLAP technology. SIG-
MOD Record 26, 1, 65–74.

CHAUDHURI, S., KRISHNAMURTHY, S., POTARNIANOS, S., AND SHIM, K. 1995. Optimizing queries
with materialized views. In Proceedings of the 11th International Conference on Data Engineer-
ing (Taipei, China). P. S. Yu and A. Chen, Eds. IEEE Computer Society Press, Los Alamitos,
CA.

CHAUDHURI, S., AND VARDI, M. 1993. Optimization of real conjunctive queries. In Proceedings of the
12th Symposium on Principles of Database Systems (Washington, DC). ACM, New York.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

Deciding Equivalences among Conjunctive Aggregate Queries 49

CHEKURI, C., AND RAJARAMAN, A. 2000. Conjunctive query containment revisited. Theoret. Comput.
Sci. 239, 2, 211–229.

COHEN, S., NUTT, W., AND SAGIV, Y. 2001. Equivalences among aggregate queries with negation. In
Proceedings of the 20th Symposium on Principles of Database Systems (Santa Barbara, CA). ACM, New
York, 155–166.

COHEN, S., NUTT, W., AND SAGIV, Y. 2003. Containment of aggregate queries. In Proceedings of the
9th International Conference on Database Theory (Siena, Italy). Lecture Notes in Computer Science.
Springer-Verlag, New york.

COHEN, S., NUTT, W., AND SAGIV, Y. 2005. Equivalences among aggregate queries with negation. ACM
Trans. Computat. Logic 6, 2, 328–360.

COHEN, S., NUTT, W., AND SEREBRENIK, A. 1999. Rewriting aggregate queries using views. In Proceed-
ings of the 18th Symposium on Principles of Database Systems (Philadelphia, PA). C. Papadimitriou, Ed.
ACM, New york.

DOBRA, A., GAROFALAKIS, M. N., GEHRKE, J., AND RASTOGI, R. 2002. Processing complex aggregate
queries over data streams. In Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data (Madison, WI). ACM, New york, 61–72.

ETESSAMI, K., AND IMMERMAN, N. 2000. Tree canonization and transitive closure. Inf. Comput. 157, 1-2,
2–24.

GRUMBACH, S., RAFANELLI, M., AND TINININI, L. 1999. Querying aggregate data. In Proceedings of
the 18th Symposium on Principles of Database Systems (Philadelphia, PA). C. Papadimitriou, Ed. ACM,
New York, 174–183.

GUO, S., SUN, W., AND WEISS, M. 1996a. On satisfiability, equivalence, and implication problems in-
volving conjunctive queries in database systems. IEEE Trans. Knowl. Data Eng. 8, 4, 604–616.

GUO, S., SUN, W., AND WEISS, M. 1996b. Solving satisfiability and implication problems in database
systems. ACM Trans. Datab. Syst. 21, 2, 270–293.

GUPTA, A., HARINARAYAN, V., AND QUASS, D. 1995. Aggregate query processing in data warehouses.
In Proceedings of the 21st International Conference on Very Large Data Bases (Zurich, Switzerland).
Morgan-Kaufmann, San Francisco, CA.

GUPTA, A., AND MUMICK, I. S. 1999. Materialized Views: Techniques, Implementations, and Applica-
tions. MIT Press, Cambridge, MA.

HELLA, L., LIBKIN, L., NURMONEN, J., AND WONG, L. 1999. Logics with aggregate operators. In Pro-
ceedings of the 14th IEEE Symposium on Logic in Computer Science (Trento, Italy). IEEE Computer
Society Press, Los Alamitos, CA, 35–44.

IOANNIDIS, Y., AND RAMAKRISHNAN, R. 1995. Beyond relations as sets. ACM Trans. Datab. Syst. 20, 3,
288–324.

JOHNSON, D., AND KLUG, A. 1983. Optimizing conjunctive queries that contain untyped variables. SIAM
J. Comput. 12, 4, 616–640.

KLUG, A. 1982. Equivalence of relational algebra and relational calculus query languages having aggre-
gate functions. J. ACM 29, 3, 699–717.

KLUG, A. 1988. On conjunctive queries containing inequalities. J. ACM 35, 1, 146–160.
LEVY, A., MUMICK, I. S., SAGIV, Y., AND SHMUELI, O. 1993. Equivalence, query-reachability, and

satisfiability in datalog extensions. In Proceedings of the 12th Symposium on Principles of Database
Systems (Washington, DC). ACM, New York, 109–122.

LEVY, A., MUMICK, I. S., SAGIV, Y., AND SHMUELI, O. 2001. Static analysis in datalog extensions. J.
ACM 48, 5, 971–1012.

LEVY, A., AND SAGIV, Y. 1995. Semantic query optimization in datalog programs. In Proceedings of the
14th Symposium on Principles of Database Systems (San Jose, CA). ACM, New York, 163–173.

MADDEN, S., SZEWCZYK, R., FRANKLIN, M. J., AND CULLER, D. 2002. Supporting aggregate queries
over ad-hoc wireless sensor networks. In Proceedings of the 4th IEEE Workshop on Mobile Computing
Systems and Applications (Callicoon, NY). IEEE Computer Society Press, Los Alamitos, CA, 49–
58.

MIKLAU, G., AND SUCIU, D. 2002. Containment and equivalence for an XPath fragment. In Proceedings
of the 21st Symposium on Principles of Database Systems (Madison, WI). ACM, New York, 65–76.

NUTT, W., SAGIV, Y., AND SHURIN, S. 1998. Deciding equivalences among aggregate queries. In Pro-
ceedings of the 17th Symposium on Principles of Database Systems (Seattle, WA). J. Paredaens, Ed.
ACM, New York, 214–223. Long version as Report of Esprit LTR DWQ.

ÖZSOYOĞLU, G., ÖZSOYOĞLU, Z., AND MATOS, V. 1987. Extending relational algebra and relational
calculus with set-valued attributes and aggregate functions. ACM Trans. Datab. Syst. 12, 4, 566–592.

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

50 S. COHEN ET AL.

POPA, L., AND TANNEN, V. 1999. An equational chase for path-conjunctive queries, constraints, and
views. In Proceedings of the 7th International Conference on Database Theory (Jerusalem, Israel).
C. Beeri and P. Buneman, Eds. Lecture Notes in Computer Science, vol. 1540. Springer-Verlag, New
York, 39–57.

ROSS, K., SRIVASTAVA, D., STUCKEY, P., AND SUDARSHAN, S. 1998. Foundations of aggregation con-
straints. Theoret. Comput. Sci. 193, 1-2, 149–179.

SAGIV, Y., AND SARAIYA, Y. 1992. Minimizing restricted-fanout queries. Disc. Appl. Math. 40, 245–264.
SAGIV, Y., AND YANNAKAKIS, M. 1981. Equivalence among relational expressions with the union and

difference operators. J. ACM 27, 4, 633–655.
SRIVASTAVA, D., DAR, S., JAGADISH, H., AND LEVY, A. 1996. Answering queries with aggregation using

views. In Proceedings of the 22nd International Conference on Very Large Data Bases (Bombay, India).
Morgan-Kaufmann, San Francisco, CA.

VAN DER MEYDEN, R. 1992. The complexity of querying indefinite data about linearly ordered domains.
In Proceedings of the 11th Symposium on Principles of Database Systems (San Diego, CA). ACM, New
York, 331–345.

RECEIVED JANUARY 2004; REVISED FEBRUARY 2006; ACCEPTED JANUARY 2007

Journal of the ACM, Vol. 54, No. 2, Article 5, Publication date: April 2007.

	Button1:

