
OPTIMAL IMPLEMENTATION OF CONJUNCTIVE
QUERIES IN RELATIONAL DATA BASES

Ashok K. Chandra and Philip M. Merlin
Computer Sciences Department

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

We define the class of conjunctive queries in relational data bases, and the generalized
join operator on relations. The generalized join plays an important part in answering
conjunctive queries, and it can be implemented using matrix multiplication. It is shown
that while answering conjunctive queries is NP complete (general queries are PSPACE
complete), one can find an implementation that is within a constant of optimal. The main
lemma used to show this is that each conjunctive query has a unique minimal equivalent
query (much like minimal finite automata).

I. Example

Given a relation ReD 2 (as a set of

ordered pairs), [D]=n, consider the

following question "do there exist ele-

ments Xl,X2,X3,X4,X5,X 6 in D such that

R(x 1,x 2)^R(x3,x 2) ̂ R(x5,x 2) AR(x I,x 4)

AR(x3,x 4) AR(x5,X 4) ̂ R(x 1,x 6)^R(x3,x 6)

AR (X5, X6) ?"

This problem may be solved in the obvious

way in time 0(n6). But it can also be

answered in constant time. The answer is

"true" iff R is a nonempty relation, for

if R(a,b) is true, let x1=x3=x5=a and

x2=x4=x6=b. This is an (albeit contrived)

example of the dramatic improvements in

speed possible when answering complex

queries in a data base.

2. Conjunctive Queries

The relational model of data, intro-

duced by Codd [C70] has gained wide popu-

larity of late [C71a, C71b, C71c, H71,

AAFS72, BCKH73, C74, D74, DHP74], and

several data base systems have been imple-

mented based on this approach, including

PRTV[T76], SEQUEL [CB74], ZETA/TORUS

[MST75], INGRES[HSW75], RISS [MM75], RDMS,

Tymshare, Query-by-Example [Z75], etc.

Definition. A relational data base

B = (D, RI, R 2, ..., Rs)

consists of a nonempty finite set D (the

domain) and a finite number of relations

RI,...,R s on D. We will sometimes super-

script a relation to indicate its rank.

Thus RPcD p .
1

Definition. A first order formula

has the usual quantifiers V, 3, logical

connectives v, ^, ~, variables x. (ranging
1

over the domain D), constants a. (taken
1

from a possible infinite set of constants

A) and relational operators R i (equality

is not allowed).

Note: we are using the usual conven-

tion of obfuscating names of relations in

formulas, with those in a corresponding

model (data base). Constants a. stand
i

for themselves in the model - this is a

slight departure from tradition, and

implies that distinct constants stand for

distinct elements in the model.

Definition. A first order qu#r~

is of the form

(x1,x2,...,Xk).~(xl,...,x k)

where # is a first-order formula which has

no free variables other than those in

Xl,...,x k. The rank of such a query is k.

Note: variables cannot be repeated in the

vector (Xl,...,x k) of the query

(x i Xk).~.

Definition. A first order query Q

and a data base B are said to be compatible

if (i) each relation R i in Q is also in the

data base B, and (ii) each constant a. in
1

Q is an element of the domain D of B.

Definition. Given a query

Q=(Xl,...,Xk).~(Xl,...,Xk) compatible

77

with a data base B with domain D, the

result Res(Q,B) of Q in B is the set

{(yl,...,yk) EDkl~(yl,...,yk) is true in B}.

Definition. Two queries QI,Q2 are

said to be equivalent QI~Q2 if for every

data base B compatible w---~-~ both QI' Q2'

Res(QI,B)=Res(Q2,B).

Lemma I. The relation ~ above is

indeed an equivalence relation.

Reflexivity and symmetry are immediate.

For the proof of transitivity see the

appendix.

Definition. A boolean ~uer~ is of

the form

() .~()

having no free variables. Its result is

either "true" (the set containing the empty

vector) or "false" (the empty set).

Definition. We define a conjunctive

query to be a first order query of the

form

(Xl,X2,...,Xk). ~Xk+lXk+2-..Xm.Al̂ A2A...̂ Ar
where each A. is an atomic formula, i.e. it

l
has the form

RP3 (Yl Yp)

where each y is either a variable Xq,q~m,

or a constant a .
q

The following are examples of conjunc-

tive queries:

(i) "List all departments that sell pens

and pencils". Given relation

Sales (Department, Item)

the query is

(x). Sales (x,pen)

^ Sales(x, pencil).

(ii) "Give me all second level and higher

managers in department K10. Given the

following relation for employees:

Emp (Name, Salary, Manager,

Dept.)

the query is

(Xl). ZX2X3X4X5X6X7X 8. Emp(x2,x3,x4,x 5)

^ Emp(x4,x6,xl,x 7)

^ Emp(xl,x8,Xg,K10).

(iii) "Are there machine shops x,y such that

x supplies some part to y and con-

versely". Given relations

Output (Shop name, item)

and Input (Shop name, item)

the query is

(). ~x,y,z,w. Input(x,z)AInput(y,w)

^ Output(x,w) AOutput(y,z).

Conjunctive queries include a large number

of queries actually asked in practice, and

even when a more general first order query

is needed, parts of it are usually conjunc-

tive. For example, if v's are allowed as

well as ^'s in the formula, the query can be

expressed as a union of conjunctive queries

(after converting the formula into disjunc-

tive normal form) which can then be answered

separately. In fact, the language Query-by-

Example [Z75] is based on a core of conjunc-

tive queries, and it is this subpart that

is learnt and used most readily by the

so-called naive user [TG75].

3. Generalized join

Definition. Z = {I,2,...,n}.
n

Codd [C71G] defined a relational

algebra including among others, the

following operations on relations which are

redefined below with some modifications.

(i) Cartesian product. Given vectors

v=(xl,x2,...,x p) and w=(yl,Y2,...,yq),

v.w denotes the concatenation of v,w

v.w = (Xl,...,Xp,Yl,...,yq).
The Cartesian product of relations

P,Q is

P×Q = {v.wlv~P ^ wcQ}.

(ii) Intersection, Given relations P,Q

of the same rank, their intersection is

PnQ = {vlv~P ^ vEQ}.

(iii) Permutation. Given a permutation

78

(iv)

(v)

f on Zp, the permutation of a p-ary

relation P with respect to f is

Permf(P) = { (Xl, Xp) I

(xf(1),...Xf(p))eP}

Pro~ection. The projection of a

relation P of rank p, pal, is

Proj(P) = { (x I Xp_1) [

~Xp. (x I ,Xp)~P}

Join. Given relations PP,Qq and

r~p,q, the join of P,Q is

Jr(P,Q) = {(Xl, Xp_r+q) I

(Xl,...,Xp)~P ^

(Xp-r+1,...,Xp_r+q) eQ}

In the special case that r=0, join is

the same as Cartesian product,

(vi) Restriction. Given r,s, 1~r<s ~ p,

the restriction of a p-ary relation P

is

Restrictr,s(P) ={ (Xl,...,Xs_1,Xs+ I,

.... Xp) I (x I ,Xs_ I ,x r,

Xs+ I ,Xp)~P}.

(vii) Selection. Given r~p, constant acA

(the set of constants) p-ary relation

P, the selection of P is

Selectr,a(P) ={(Xl,...,Xr_1,a,Xr+ I,

...,Xp)~P}.

(viii) Union Given relations P,Q of the

same rank, their union is

PuQ = {vlvEp v v~Q}

(ix) Difference. Given the relations

P,Q of the same rank, the difference

p-Q = {plpcp ^ p/Q}

(x) Division. Given a p-ary relation P,

pal, and domain D (implicit), the

division of P is

Div P = { (x I Xp_1) I ~XpED,

(Xl,...,Xp_1,Xp) EP}

Definition . A relational expression

is built up from the domain D, the given

relations R i and using the relational

operators (i) - (x) above. The compati-

bility of relational expressions and data

bases is as for first order queries. The

result Res(E,B) of a relational expression

E given a compatible data base B is the

value of E where R.'s and D have the inter-
l

pretations as assigned by B. Two expres-

sions (or an expression and a query) are

equivalent (~) if these results are equal

for every compatible data base. As before,

is provably an equivalence relation.

Codd [C71b], using a formalism different

from ours (quantifiers in first order queries

are over vectors, not elements; there is no

domain D; and certain relations such as =,

<, ~ are treated as special) showed that

first order queries are essentially the

same as relational expressions.

Lemma 2. For each relational expres-

sion there is an equivalent first order

query, and vice versa.

For the proof see the appendix.

Lemma 3. For each relational expres-

sion that uses no operation other than

(i)-(vii) above, there is an equivalent

conjunctive query, and vice versa.

The proof is similar to that of

Lemma 2, and is omitted.

We now define a new operation called

generalized join which is a canonical opera-

tion for conjunctive queries in the sense

that expressions using the generalized join

(and selection, restriction) are equivalent

to the conjunctive queries.

Definition. Given relations P,Q

having ranks p,q respectively, integer r,

0~r~p+q, and injective maps f.:z +Z p p+q'

such that Zrcf(Zp) ug(Zq), the g: Zq+Zp+q

generalized join of P,Q with respect to

r,f,g is defined as

79

Jr,f,g(P,Q)={ (Xl Xr) I ~Xr+ I,

Xp+q.

(xf(1),xf(2), Xf(p))Ep

A (Xg(1),Xg(2), Xg(q)) eQ}

The subscripts r,f,g will be deleted when

understood.

The generalized join of two relations

corresponds to taking the join of the two

relations overlapping on specified columns,

followed by the deletion of specified

columns. For example, given p4, Q4, r=3,

f(1)...f(4)=1,2,3,5, and g(1)...g(4)=2,3,4,6,

J(P,Q)={(Xl,X2,Y2) I ~x3,x4,Y 4.

P(Xl,X2,X3,X4) A Q(x2,Y2,x3,Y4) }

(see Fig. I). A good way of computing

this is by first projecting out the fourth

columns of P,Q, and then joining the

results:

p, = { (Xl,X2,X3) I~x4.P(Xl,X2,X3,X4)}

Q, = { (Yl,Y2,Y3) I~IY4.Q(Yl,Y2,Y3,Y 4) }

J(P'Q) = J(P',Q') = { (Xl,X2,Y 2) I

~x3-P' (Xl,X2,X3)AQ' (x2,Y2,X3)}.

It may be noted that for each fixed x2,

J(P,Q) can be obtained as the result of a

matrix multiplication :

Let J(P,Q)x 2 { (xl,Y 2) I (Xl,X2,Y 2)

EJ (P,Q) }

Px2 { (x 1,x 3) I p (x 1,x2,x 3) }

and Qx2 = { (x3'Y2) I Q' (x2,Y2,X 3) }

Then J(P'Q)x2 = P'x2 × Qx2

where × is boolean matrix multiplication

(treating P' Qx2 x2, as boolean matrices).

Techniques as those in [$69, ADKF70, FM71]

may be used for this purpose.

Several authors [T74, R75, G75, NS76]

have considered the problem of efficiently

computing joins. What has perhaps not

been explicitly stated is that techniques

for boolean matrix multiplication can be

used to advantage for computing joins (and

generalized joins). Most of the published

algorithms of which we are aware are similar

to sparse matrix multiplication schemes.

Let M(a,b,c) be the time required for

computing the product of boolean matrices

of size a×b and bxc.

Lemma 4. Given relations PoD p, QcD q,

r, f, g as in the definition of generalized

joins, let n=IDl,

s=I{i I Vj.g(j)~f (i) ~r} I

t=l{i 1 ~j.f (i)=g(j) >r} I

u=l{j I vi. f (i)~g(j) sr} I

v=I{i I ~j.f(i)=g(j) ~r} I

then Jr,f,g(P,Q) can be computed on a random

access machine in time

0(nP+nq+n r) + nV.M(nS,nt,nU).

This lemma provides, in fact, an

application for the multiplication of even

highly nonsquare matrices. It may be noted

that in the special case when s=t=u=v=0

above, the running time can be reduced to

0(I) provided our data structure for rela-

tions is either a set of vectors, or a

boolean array along with a bit to indicate

whether or not it is nonempty.

It is easy to see that relational

operations (i)-(v) above are special cases

of the generalized join. In fact, even

selection would be a special case if we

had allowed the construct {a} (where aeA

is a constant) as an argument to the

generalized join; and restriction would be

a special case if we relaxed the condition

that functions f,g in the definition be

injective.

We extend the definition of a relational

expression to allow generalized joins as

well as operations (i)-(x).

Lemma 5. Every relational expression

containing only generalized joins, restric-

tion and selection is equivalent to some

conjunctive query; and every conjunctive

query is equivalent to some relational

expression containing only generalized

joins, restriction and selection, and in

80

which selection, restriction are never

applied to a subexpression containing a

generalized join.

The proof is omitted. The second part

of the lemma asserts that restriction,

selection operations can be propagated

to the bottom of the "expression-tree".

4. Complexit[Issues

A query may require exponential time

to answer if the desired output is large.

However, even boolean queries are complex.

Theorem 6. For data bases B and

compatible boolean queries Q,

{(Q,B) IResult of Q in B is true}

is logspace complete in polynomial space.

In fact, consider the simple data

base B0=(D,R) where D={0,1}, R={0}. Then

Theorem 6' For the data base B 0 and

compatible boolean queries Q,

{QIResult of Q in Bis true}

is logspace complete, in polynomial space.

Theorems 6,6' follow readily from the

completeness of second order propositional

calculus.

Theorem 7. For data bases B and

compatible conjunctive boolean queries Q,

{ (B,Q) I Result of Q is true in B}

is logspace complete in NP.

Proof. The set is clearly in NP. Its

completeness follows from,-say, the com-

pleteness of the clique problem for graphs.

D

Thus boolean first-order queries are

PSPACE-complete whereas conjunctive queries

are NP-complete. Note that the data base

itself is part of the input. Usually,

however, queries are substantially shorter

than the entire data base. It pays, in

such cases, to optimize the query as much

as possible, even if such optimization

takes a long time with respect to the size

of the query (but independent of the data

base).

5. Quer[minimization

The main theorem utilized for optimi-

zation (Theorem 12) asserts that for every

conjunctive query there is a unique (up to

renaming of variables) minimal equivalent

query, and it is obtained from the original

query by "combining variables" This

result is similar to the existence of

minimal finite automata, which are obtained

by "combining states" unlike the case

for deterministic automata, however, mini-

mizing a conjunctive query is NP-hard.

In fact, even checking if two given queries

are the same except for renaming of vari-

ables, turns out to be logspace equivalent

to graph isomorphism.

We assume in the sequel, without loss

of generality, that in conjunctive queries

atomic formulas cannot be repeated.

Definitions. Let Q=!Xl,...,Xk).

Syl,...,yp.AIA...AAB be a conjunctive

query. We define AQ={al,...,a q} to be

the set of constants appearing in Q,

XQ={Xl,...,Xk} , yQ={yl,...,yp}, we say

~-is trivial if ~QQ=XQ=YQ={ }- The natural

model MQ of Q is the following algebraic

structure: the domain of MQ is

DQ=XQUYQUAQ, and for every relation R r

in Q, r~0, the corresponding relation in

MQ has value {(Zl,...,Zr)~D~IR(Zl,''',Zr)

is an atomic formula in Q}. In addition,

MQ has a finite set of relations taken

from the disjoint sets {$I,S2 ,...},

{SalaeA , the set of constants}, which are

also disjoint from names for relations

in data bases. Si,S a stand for unary rela-

tions, ~4Q contains S i, 1~i~k, having value

{xi} , and also S a for each aeAQ, having

value {a}.

Definition. Given a conjunctive query

Q as above, a homomorphism h:MQ+MQ, and a

subset V, XQUAQCVCDQ, such that for all

zeV, h(z) =z, and for all z, h(z) eV,

then if Q' is a query such that MQ, = h(MQ),

we say that Q' is a foldinq of Q.

81

Definition. If conjunctive queries

QI,Q2 are the same except for renaming

of variables and reordering of the atomic

formulas, and quantified variables, we say

that QI and Q2 are isomorphic.

Note that QI,Q2 are isomorphic iff

and are isomorphic. MQ I MQ 2

Theorem 8. Isomorphism of conjunctive

queries is logspace equivalent to isomor-

phism of undirected graphs.

This result, in a slightly different

form, has also been shown by Kozen [K76].

Proof. Graph isomorphism is trivially

reducible to the isomorphism of boolean

conjunctive queries with a single binary

relation R such that if R(x,y) is an atomic

formula in the query, then so is R(y,x).

For the other direction, we first reduce

isomorphism of conjunctive queries to that

for undirected node-labeled graphs. For

query Q=(Xl,...,Xk).~, the corresponding

labeled graph G is constructed as follows.

The set of vertices of G includes

(i) Xl,...,Xk, labeled 1,...,k respectively,

(ii) each aieA Q labeled a i itself, (iii)

each yieYQ labeled by the symbol y,

(iv) for each atomic formula

Ai=R(Zl,...,z r) in ,~ there are vertices

Ai,j, 0~j~r of which Ai, 0 is labeled R,

and Ai, j is labeled j' for ja1, with Ai, 0

connected to each Ai,i,j~1,~ and Ai, j con-

nected to the node z.. Isomorphism of
3

labeled graphs is easily reduced to iso-

morphism of unlabeled graphs - the proof

is omitted here. D

The next three theorems assert that

foldings are Church-Rosser upto isomor-

phism, that they preserve equivalence of

queries, and that they are hard to find in

general.

Theorem 9. If queries Q1,Q2 are

foldings of Q, then there are isomorphic

queries QI'' Q2' that are foldings of

Q1,Q2 respectively.

This follows from Theorems 10, 12 (whose

proofs do not use this theorem).

Theorem 10. If Q2 is a folding of

QI' then QI~Q2 .

Proof. If QI is trivial, so is the

theorem. Otherwise let h be the homomor-

phism folding Q1=(Xl,...,Xk).~1(Xl,...,Xk)

into Q2=(Xl,...,Xk).~2(Xl,...,Xk) . Since

~i+#2 (logical implication) is immediate

from the construction, it suffices to show

that #2+~i . Let ~i = ~yl,...,yp.AiA...AAr ,

Q2 = ~Yi '''''Yi "AI'A'''^A's" If for any

compatible dataqbase, and any Zl,...,ZkeD,

~2(Zl,...,Zk) is true, there exists a

mapping f:{yil,...,y i }+D for which

AI'A...AA s' i~ true. qBut extending f to

g:{yl,...,yp}~D such that g(y)=f(h(y)), we

see, from the definition of folding, that

#1(Zl,...,Zk) is also true.

Theorem 11. { (QI,Q2) IQ2 is a folding

of QI } is NP complete. This also holds for

boolean conjunctive queries.

Proof. It is clearly in NP. To show

it is complete, we reduce the graph coloring

problem to it. Given a graph G and integer

c, we obtain QI,Q2 such that Q2 is a folding

of QI iff G can be c-colored. There is a

single binary relation R. Let V be the set

of vertices in G, and EcV 2 be the symmetric

relation for the set of edges. Let C be a

set of c variables disjoint from V. We

will also use the elements of V for

variables below:

QI = ()" ~v. ~C. ((u~,v)~ER(U,V)) ^

(uA, wC R(u,v))
u~v

= (). ~C. uAvccR(U,V)- D
Q2

u~v

The main theorem of this section

asserts that for every conjunctive query

there is a minimal equivalent query, unique

up to isomorphism, that can be obtained

from the original query by folding. It

should be noted that folding a query cannot

increase the number of variables or atomic

formulas in a query, and if the number of

82

variables remains unchanged, the new query

is isomorphic to the original.

Theorem 12. For every conjunctive

query Q there is a folding Q0 such that

every Q'~Q has a folding Q'0 isomorphic to

Q0"
We first prove a lemma.

Lemma 13. For conjunctive queries

QI' Q2' QI~Q2 iff there exist homomor-

phisms RI:MQI+MQ2, and h 2-.MQ2+MQI

Proof. If part. suppose hl,h 2 exist.

Then given a compatible data base B with

domain D, let (Zl,...,Zk)¢Res(Qi,B) be any

element in the result of QI" Let the matrix

of QI (the conjunct of atomic formulas) be

satisfied by the mapping f:DQ ÷D which is
I the identity function on AQI, and maps the

i-th variable in XQ into z i. But then,

the matrix of Q2 islals° satisfied by the

mapping g:DQ +D, g=foh2, since h 2 is the

identity function on AQ , and maps the i-th
2 variable in XQ to the l-th variable in

2 XQ (and hence g maps it into zi) , and

IX~ I = IXQ I. Thus (z I Zk) ERes(Q2,B),

andlit foll~ws that Res (QI'B) cRes(Q2'B) .

Similarly Res (Q2,B) cRes (QI'B) , hence

QI~Q2 •

Only-if part. Suppose QI~Q2 . It is

trivial that IXQ I = IXQ I (since the
I 2 matrix of a conjunctive query cannot be

equivalent to "false"), and easy to see

that AQ =AQ , and for all relations R, if
I 2

R appears in QI' it also appears in Q2"

Consider the data base B which is the same

as MQI (without the special relations Si,

Sa). B is compatible with QI' Q2' and

(x I ,Xk)~Res(Qi,B), where QI is of the

form (Xl,...,Xk).¢1. Let Q2 be of the

form (x1',...,Xk).¢ 2. Since QI~Q2 ,

(Xl,...,Xk) eRes(Q2,B), i.e. there is a

mapping h2:D Q ÷DQ (DQ is also the

domain of B) ~hatlis an identity over

AQ , maps x' i into x i for all i, and such

that if R(Zl,...,z r) is an atomic formula

in Q2' (h2(Zl)) ,h2(Zr))eR in the model

B. But h 2 is a homomorphism from MQI to MQ2.

Similarly, h I exists. 0

Definition. For any finite model M,

if h is a homomorphism h:M+M such that for

every homomorpism h':h(M)+h(M),

l h'h(M) I = lh(M) I, we say h(M) is a minimal

submodel of M. Clearly, minimal submodels

exist for all finite models, any homomor-

phism h':h(M)÷h(M) as above is an automor-

phism, and h(M) is isomorphic to the sub-

model induced from M on the domain of h(M).

It follows readily that the submodel induced

from M on the domain of h(M) is itself a

minimal model. We will refer to this as a

standard submodel.

Proof of Theorem 12. Given queries
! Q,Q', let Q0,Q0 be queries such that

MQ ,MQ, are standard submodels of MQ,MQ,

respectively. From the definitions, Q0,Q6

are foldings of Q,Q' If Q~Q' then

= ' by Theorem 10, and by lemma 13, there
Q0-Q0
exist homomorphisms hI:MQD~MQ~, h2:MQ,+M Q ,

0
but since hlOh 2, h2oh I mu~t b~ automorphi~ms

hl,h 2 must be isomorphisms. Then by the

comment after the definition of isomorphism

of queries, Q0,Q~ are isomorphic.

6. Model and optimization

Several optimization concepts have been

considered for data bases. "Low-level"

concepts such as choosing access paths

[eg. CHS76] and deciding when to create a

new index [eg. C75] are the most common.

Several authors have also considered

speeding up the computation of joins [T74,

R75, G75]. Considering the statement of

Theorem 6, however, it seems that "high-

level" optimizations and heuristics could

result in very large speedups for some

queries. [SC75] and [NS76] consider

changing the order of evaluation of a query

represented as an expression using relations

and operators (the latter spe~ifically con-

siders conjunctive queries). These optimi-

rations, however, are usually local, and

the overall "structure" of the query

remains unchanged. In our optimization

we first change the query into a minimal

83

equivalent query, and then choose

(globally) an order of computation. The

result is an implementation within a con-

stant of optimal in our model, but which

we believe would also be good for practical

implementations. Computing such an optimal

implementation takes time exponential in

the size of the query, but is independent

of the data base. One also has the option

of ameliorating a query (along the

suggested lines) for some given period of

time rather than optimizing it completely.

6.1 The Model

Our model of computation is a straight-

line program with variables taking relations

as values. Statements allowed are (X,Y,Z

are variables):

(a) X÷R (R is a given relation)

(b) X÷D (D is the domain)

(c) X÷Permf(Y) (a permutation)

(d) X÷Restrict (Y) (a restriction)
r,s

(e) X÷Selectr,a(Y) ("a" is a constant,

ral)

(f) X÷Jr,f,g(Y,Z) (a generalized join).

The output is the value of a designated

variable, say X0, at the end of the computa-

tion. Further we require that there be no

"type-checking" errors in the program -

thus a variable cannot be used before it is

defined, X 0 must be defined in the program,

and r,s,f,g, in (c)-(f) above must satisfy

the restrictions in the definitions of the

corresponding operations. We say a program

P is equivalent to a conjunctive query Q

(P~Q) if its output (result) equals the

result of the query for every data base.

The running time for the program is

the sum of the running times for the

individual statements. For a data base

with domain D, [Dl=n, the running times are

considered as follows. For statements (a)-

(e) the running time is zero. For the

generalized join operation (f), let

p,q,r,s,t,u,v be as in Lemma 4. Then the

running time is

n p + n q + n r + n s+t+u+v

The total running time of a program P on

a data base B is denoted Time (P,B).

Definition. Given a conjunctive query Q,

a program P is said to be near-optimal

for Q if P~Q and there exists a constant

c such that for every program P'~Q and every

compatible data base B, Time (P,B)~

c.Time(P',B).

Discussion of the Model

Statements (a)-(e) are considered to take

zero time. These can, however, be imple-

mented in time independent of n (the~size

of the domain), by using an array repre-

sentation for arrays, and changing the

access functions when an operator is applied.

One could change the model by specifying

instead, that these operations take con-

stant time, or time n for (b), and n p for

(a), (c), (d), (e), where R,Y have rank

p. Either way, the results below apply

essentially without change. The running

time for the generalized join operation is

simply the sums of the lengths of the

inputs and output, in addition to the time

required for the trivial algorithm for

boolean matrix multiplication. One could

modify the model in the special case when

s=t=u=v=0 (see comment following lemma 4),

but again the results below apply with

little modification.

The model of computation also does not

specifically allow the operations of

cartesian product, intersection or projec-

tion, as these are obtainable from the

generalized join operation.

6.2 Optimization

The running time of any program is a

polynomial in n (the size of the domain)

with natural numbers as coefficients. The

problem of finding a near optimal program

for a given query is of finding one whose

polynomial has minimal degree (the degree

of the polynomial "zero" is -I by definition).

It suffices, therefore, to consider only

expressions using operations (a)-(f)

84

(expressions correspond to programs in which

every program variable is used exactly once

each on the left and on the right hand side

of an assignment, except the output varia-

ble X 0 which is used only once on the left

hand side). Expressions suffice because

for every program there is an equivalent

expression whose running time is a poly-

nomial of no higher degree.

Definition. For a program (or expres-

sion) P, if T(n) is its running time, then

T(n) is a polynomial, and we denote its

degree by Deg(P).

Definition. An expression using

operators (a)-(f) of Sec. 6.1 is said to

have property • if it is of the form

Perm(ExD k)

(where we are using × instead of join for

clarity) in which E is an expression con-

taining no Perm or D, and in which no sub-

expression of a selection or restriction

contains a join.

Lemma I~. For each program P there is an

expression E having property • such that

E~P and Deg(E)~Deg(P).

Outline of proof. Represent the program P

as a directed acyclic graph, expand it out

into an expression (i.e. a tree), delete

those occurrences of the domain D which are

"joined" with any other "column" of a rela-

tion, separate out those occurrences of D

that are preserved to the output, and pro-

pagate restrictions, selections through

joins. D

expression E=Perm(E1×Dk) having For each

property ~ we associate a conjunctive query

Q (we write Q~E) such that Q is equivalent

to E, and is constructed from E as in the

proof of theorem 2 part I (there is a one-

one correspondence between the occurrences

of atomic formulas in Q and relations in

El). We extend the relation ~ such that

if Q1,Q2 are isomorphic and QI~E then also

Q2~E.

Lemma 15. Given conjunctive queries

QI,Q2, and expression E I such that Q2 is

a folding of QI' and QI~EI , then there is

an expression E 2 such that Q2~E2 and for

every compatible data base B,

Time (Q2,B)~Time (QI'B) .

Proof is by constructing E 2 from E I

by deleting those occurrences of relations

in E I that correspond to atomic formulas

in Q1 which do not occur in Q2"

We now outline the algorithm for con-

structing a near optimal program for a given

conjunctive query.

Al~orith ~. Given a conjunctive query Q,

find the minimal query QI~Q; then for all

expressions E, QI~E, choose the one whose

running time is a polynomial of minimal

degree. The output is a program that

implements this expression.

This algorithm runs in time exponential

in the length of the input query (but

independent of the data base).

Theorem 16. The above algorithm computes

a near-optimal program for the given query.

The proof follows from Theorem 12 and

Lemmas 14, 15.

The algorithm can be further speeded up

by observing that the expression E can be

further restricted such that columns of

relations are projected out at the earliest

possible moment, i.e. a column is projected

out in a join unless it subsequently has to

be joined with some other column. This

reduces the second part of the algorithm

to finding the best order of parenthesizing

the matrix of the conjunctive query.

Example. Given query

(x).~ u,v,w,y,z. R(x,v,w) AR(X,Z,W)^S(u,w)

AS(u,v) AS(y,w)AS(y,v)AS(y,z) .

The minimal equivalent query is

(x) .Z u,v,w. R(x,v,W A(s(u,w) AS(u,v))

which can be answered in time 3n3+4n2+n by

computing

x÷{ (v,w) i~u.S (u,w) AS (U,V) }

in time 3n2+n 3, and then the output

X0÷{xI~v,w. R(X,V,W) AT(V,W) }

in time n+n 2+2n3.

85

7. Conclusions

In this paper we introduce the notion

of conjunctive queries and define the

operation of "folding" such a query. It

is shown that every conjunctive query has

a unique (upto isomorphism) minimal

equivalent query which can be determined

by folding. Since foldings are Church-

Rosser, it does not matter in what order

one finds foldings. This allows the

possibility of finding smaller queries

equivalent to a given one without having

to obtain the minimal. The minimal query

can, however, be used to determine a pro-

gram whose running time is within a con-

stant of optimal for every data base (in

the model of computation which allows

algebraic operations on relations).

Acknowledgemen ~

The authors appreciate the excellent

typing assistance of Marcia Bollard.

Appendix

Proof of Lemma I. To show that

equivalence of queries is transitive,

let QI~Q2 and Q2~Q3 . Let B be any data

base with domain D, compatible with QI'

Q3" Let {a I ,a k} and {RI,...,R S} be the

sets of constants and relations in Q2

but not in B. Add these to the data base

B to obtain data base B' as follows. The

domain D' of B' is D u {al,...,ak}. Let

a be any fixed element of D. Extend the

relations in B to B' as follows. If R is

an r-ary relation in B, the corresponding

relation R' in B' is defined as follows:

for any set SeD s, let

E(S) = { (x I 'Xs) I ~ (Yl Ys)ES"

Viss. if Yi=a then xiE{a,al,...,a k}

else xi=Yi}.

Then R'=E(R). Also let RI,...,R s be empty

in B'. For any first order formula

~(x I Xm) with free variables

(Xl, ... ,Xm) , let

B(%) = { (Yl 'Ym)EDmIB~ (Yl 'Ym) }'

and B'(~) = {(Yl 'Ym)cD'mlB'~ ~(Yl '

Ym) }-
We show by induction on formulas, that

B' (~)=E(B(~)) for formulas compatible

with B. It is clearly true for atomic

formulas R(Yl,...,Y r) where each Yi is a

constant or a variable (note: our formulas

have no equality or functions). Likewise,

it is not difficult to check that if this

property holds for ~I' ~2' it also holds

for #i^~2 , ~IV~2 , ~ ~I' Vx ~I' and for

~x #I (note: quantifiers for B range

over D, those for B' range over D'). Hence,

Res(QI,B') = E(Res(QI,B)) , and likewise

for Q3" But B' is compatible with each of

Q1,Q2,Q3 , and hence by hypothesis,

E(Res(QI,B)) = Res(QI,B') = Res(Q2,B') =

Res(Q3,B,) = E(Res(Q3,B)). But the

function E is one-one. Hence Res(QI,B) =

Res(Q3,B) . This completes the proof. D

It may be noted that if equality were

allowed in first order formulas, then

86

would no longer be transitive in our

formalism (where constants in formulas

stand for themselves in the interpretation).

For consider the boolean queries

QI=().v x.x=a. Q2=(). v x.x=a ^ b=b, Q3=().

false. Then QI~Q2~Q3 , but QI/Q3 for they

differ on the data base with the single

element domain D={a}.

This merely points to the pitfalls

• that may be encountered when formalizing

data bases in terms of logic. The alter-

native would be to allow constants to be

mapped into arbitrary elements of the

domain by the data base (as in conventional

logic). However, as it is usual practice

in data base work that constants stand for

themselves, one may preface queries by a

conjunct asserting that all constants

appearing in the query are unequal.

Proof of Lemma 2. Part I. We show

by induction on expressions that for each

relational expression there is an equiva-

lent first order query. For expressions

D, R r, the queries are (x). True,

(Xl,...,Xr).R(Xl,...,Xr) respectively.

For the sequel, let (xl,...,Xp).~p(xl,...,Xp)

and (yl,...,yq).~Q(yl, yq) be queries

equivalent to expressions P,Q. we will

implicitly allow renaming variables where

appropriate.

(i) The query equivalent to P×Q is

(Xl,''',Xp,Yl,''',Yq)" ~pA~Q

(ii), (viii), (ix). For PnQ, PuQ, P-Q,

the queries are, respectively

(Xl,...,Xp). ~p(Xl,...,Xp)A~Q(Xl,...,Xp),

(Xl,...,Xp). ~p(xl,...,Xp)V~Q(Xl,...,Xp),

and

(X I Xp). ~p(X I ,Xp)A~Q(X I Xp).

(iii), (iv) For Permf(P), Proj (P), the

queries are

(X I Xp). ~p(Xf(1) Xf(p)),

and

(x I Xp_1). 3Xp.~p(X I ,Xp)

(v), (vi), (vii), (X). These follow

likewise from their definitions.

Part 2. We show by induction on formulas

that for every first order query, there is

an equivalent relational expression. Let

the query Q be (Xl,...,Xq). ~ and let

{Xl,...,Xq,...,x s} be the set of free and

bound variables used in ~ (after renaming

all bound variables such that they are all

distinct, and distinct from Xl,...,Xq) •

For a subformula ~' of ~, we construct an

expression equivalent to (x~ ,x~ ,...).~',
~I ±~

where x i ,x i ,... are the variabIes not

bound in1~'. 2 The construction is sketched

below.

(i) Let R(y I ,yr) be an atomic formula

(where each Yi is a variable xj or a con-

stant) with t (not necessarily distinct)

constants and u distinct variables. One

can construct an expression by the applica-

tion of t selections, r-t-u restrictions,

and one permutation to RxD s-u, that is

equivalent to (Xl,...,Xs).R(Y I ,Yr).

(ii) Let EI,E 2 be the expressions for

~1,~2, one can construct the expressions

for ~1^~2 , ~iv~2 , ~ ~I by permutations

and projections on EI,E 2 followed by inter-

section, union, and difference (from D k)

respectively. Likewise the expressions

for ~x ~I' Vx~1 are obtained from E I by

permutation, and projection, division

respectively. D

87

References

[AAFS72] M. M. Aastrahan, E. B. Altman,

P. L. Fehder and M. F. Senko, "Concepts

of a data independent accessing model",

Proc. 1972 ACM-SIGFIDET Conference,

Denver (Nov. 1972~I.

[ADKF70] V. L. Arlazarov, E. A. Denic,

M. A. Kronrad and I. A. Faradzev, "On

economical construction of the transi-

tive closure of a directed graph",

Dokl. Akad. Nauk SSSR 194 (1970)

487-488. English translation in

Soviet Math. Dokl. I_!1 , 5, 1209-1210.

[BCKH73] R. F. Boyce,, D. D. Chamberlin,

W. F. King and M. M. Hammer,

"Specifying queries as relational

expressions", Proc. of ACM SIGPLAN/

SIGIR Interface Meeting on Programming

Languages and Information Retrieval,

Gaithersburg (Nov. 73).

[C70] E. F. Codd, "A relational model of

data for large shared data banks",

CACM 13, 6 (June 1970) 377-387.

[C71a] E. F. Codd, "Further normalization

of the data base relational model",

Courant CS Symposia, 6, Data Base

Systems, Prentice--Hall (May 1971).

[C71b] E. F. Codd, "Relational complete-

ness of data base sublanguages",

Courant CS Symposia, 6, Data Base

~stems, Prentice--Hall, (May 1971).

[C71c] E. F. Codd, "A data base sub-

language founded on the relational

calculus", PROC. 1971ACM-SIGFIDET

Workshop on Data Description, Access

and Control, San Diego (Nov. 1971).

[C74] E. F. Codd, "Recent investigations

in relational data base systems",

IFIP74, North Holland, 1974, 1017-1021.

[C75] E. F. Codd, Ed., "Implementation of

relational data base management

systems", Panel Discussion, NCC (AFIPS)

75, Anaheim (May 1975).

[CB74] D. D. Chamberlin and R. F. Boyce,

"SEQUEL" A structured English query

language", IBM Technical Report

RJ1394 (May 1974).

[CHS761 L. Clough, W. D. Haseman and

Y. H. So, "Designing optimal data

structures", AFIPS 76, 45 829-837.

[D74] C. J. Date and E. F. Codd, "The

relational and network approaches:

comparison of the application program-

ming interfaces", Proc. 1974 ACM-

SIGFIDET Workshop on Data Description

Access, and Control, Ann Arbor,

(May 1974).

[DHP74] C. Deheneffe, H. Hennebert,

W. Paulus, "Relational model for a

data base", IFIP 74, North Holland,

1974, 1022-1025.

[FM71] M. J. Fischer and A. R. Meyer,

"Boolean matrix multiplication and

transitive closure," 12th SWAT, IEEE

(1971), 129-131.

[G75] L. R. Gotlieb, "Computing joins of

relations" Proc. ACM SIGMOD Conf

(May 75) 55-63.

[H71] I. J. Heath, "Unacceptable file

operations in relational data base",

Proc. 1971ACM-SIGFIDET Workshop on

Data Description, Access and Control,

San Diego (Nov. 1971).

[HSW75] A. D. Held, M. R. Stonebraker

and E. Wong, "INGRES - A relational

data base system", AFIPS 75, 44

409-416.

[K76] D. Kozen, "Complexity of finitely

presented algebras", Tech. Rep.

Cornell Univ., Comp. Sci., TR76-294.

[MM75] D. McLeod and M. Meldman, "RISS -

A generalized minicomputer relational

data base management system", AFIPS

1975, 44, 397-402.

88

[MST 75] J. Mylopoulos, J. S. Schuster,

D. Tsichritzis, "A multi-level rela-

tional system", AFIPS 1975, 4_~4,

403-408.

[NS76] X. E. Niebuhr and S. E. Smith,

"Initial implementation of Query by

Example", IBM Technical Report

(to appear).

[R75] J. B. Rothnie, Jr., "Evaluating

inter-entry retrieval expressions in

a relational data base management

system", AFIPS 75, 4~4, 417-423.

[$69] V. Strassen, "Gaussian elimination

is not optimal", Numerische Mathematik

13 (1969) 354-356.

[SC75] J. M. Smith and P. Y. Chang,

"Optimizing the performance of a

relational algebra database interface",

CACM ~, 10 (Oct. 1975) 568-579.

[T74] S.J.P. Todd, "Implementation of the

join operator in relational data

bases", IBM U.K. Scientific Centre,

Technical Note 15, Peterlee (1974).

[T76] S.J.P. Todd, "The Peterlee Relational

Test Vehicle - a system overview", IBM

Systems Journal 15, 4, 1976, 285-308.

[TG75] J. C. Thomas and J. D. Gould, "A

psychological study of query by

example", AFIPS 75, 4_~4, 439-445.

[Z75] M. M. Zloof, "Query by Example",

AFIPS 75, 4_~4, 431-438.

89

112131~! I'i 21 3141 Q

r ll 31 !
!
, 2 3 m,

J(P,Q)

Fig. I

90

