

Completeness of Queries over SQL Databases

Werner Nutt and Simon Razniewski

Data Quality research investigates how good data is

Dimensions of Data Quality are:

- Correctness
- Timeliness
- Completeness

Query answering over incomplete data: extensively studied

- Codd: NULL values [1975]
- Imielinski/Lipski: Representation systems [1984]

Query completeness: Little attention

Razniewski/Nutt: Only on missing records [VLDB 2011]

Bolzano is in the Province of South Tyrol

Trilingual province in the north of Italy
Has its own school administration

Incompleteness in the school data

Missing information in the school database:

- no grade for Paul (missing value)
- no entry for Giulia (missing record)

Consequence: Query answers are incorrect

Query Q: "How many pupils have grade A in Music?"

 \rightarrow If data is incomplete, query answers become incorrect.

Use Metadata to guarantee completeness!

... vocational schools use the information system of the province to manage grades

However, we may know

... primary schools took part in a survey of music education

ier parts &

- "The grades from vocational schools are *mplete*"
- "The Music grades from primary schools are complete"
- \rightarrow Idea: Assess completeness of a query using completeness assertions for (parts of) tables

Reasoning about query completeness

Reasoning about query completeness (2)

Running example: Schema

result(name, subject, grade)

pupil(name, schoolName, schoolType)

Formalization: Incomplete database

When talking about incompleteness, we need a complete reference

An incomplete database D is a pair of an ideal database D^i and an available database D^a $D = (D^i, D^a)$

such that

each record in D^a is less informative than some record in D^i

Example: Incomplete database

Formalization: Query completeness

[Motro 1989]

Query Q

"The answer to Q is complete"

Notation: Compl(Q)

Semantics: $(D^i, D^a) \models Compl(Q)$ iff $Q(D^i) = Q(D^a)$

Example: DB completeness

resultⁱ(n,s,g), pupilⁱ(n,sn, Voc) $\rightarrow \exists g' \text{ result}^a(n,s,g')$

holds over the incomplete database (Dⁱ, D^a)

because result(Paul, Music, NULL) is in D^a

The reasoning problem

Assertions about partial completeness

Does C imply Compl(Q)?

Reasoning: The principle

Query: "Pupils at vocational schools that took Music"

Q_{pupils}(x):-result(x, Music, g), pupil(x, sn, Voc)

I.Assume Q_{pupils} returns x' over D^i

2. See which facts must be in Dⁱ

Reasoning: The principle (2)

3. Use table completeness to derive facts in D^a

"All subjects taken by pupils at vocational schools there" resultⁱ(n, s, g), pupilⁱ(n, sn, Voc) → ∃g' result^a(n, s, g')

```
"All pupils there"
pupil<sup>i</sup> (n, sn, st) → pupil<sup>a</sup> (n, sn, st)
```

Reasoning: The principle (3)

4. Query the available database

"Pupils at vocational schools that took Music"

$$Q(D^a) = \{x'\} \rightarrow x' \text{ is also in } Q(D^a)$$

Conclusion: Query Q is complete given the table completeness statements

Reasoning summary

- I. Assume, Q returns a generic an
- 2. See which facts must be in Dⁱ
- 3. Use table completeness to derive facts in D^a
- 4. Evaluate $Q(D^a) \bullet$
- 5. If x' is returned, the query is co

How to evaluate over databases with NULLs?

Is that unique?

Reasoning is NP-complete for DBs without NULLs

[Razniewski/NuttVLDB 2011]

What is the Meaning of NULL?

result(Paul, Pottery, NULL)

- No grades were given in the Pottery course? Non-existing value
- Paul received a grade, but the grade was not recorded? Unknown value
- It is unknown, which of the two is the case? Ambiguous NULL
- \rightarrow NULLs may indicate incomplete information, but need not
- \rightarrow Usage of NULLs is ambiguous

Reasoning over databases w/ NULLs

Q_{pupils}(x):-result(x, Music, A), pupil(x, sn, Voc)

"Pupils at vocational schools with A in Music"

I.Assume Q_{pupils} returns x' over D^i

Challenge 1: How can we adapt the reasoning to NULLs?

- In general, the reasoning has to be done for both cases \rightarrow Reasoning is in Π^{P}_{2}
- If NULLs stand only for unknown values, then no NULLs can appear in Dⁱ and therefore the second case cannot apply
 → Reasoning is NP-complete

Reasoning with NULLs: Complexity

	NULLs mean unknown values	NULLs mean inapplicable values
Queries w/o selfjoins	PTIME	PTIME
Queries w/ selfjoins	NP-complete	In ∏ ^P 2

Challenge 2: How to compute answers of complete queries?

Reasoning with both kinds of NULLs

Result: Reasoning has the same complexity as reasoning with NULLs standing for inapplicable values (in Π^{P}_{2})

Result: If a query is complete, tuples that contain unknown NULLs can be forgotten in the query answer

Make different NULLs explicit

Ambiguity can be resolved by boolean guards

result			
name	subject	grade	grade
Paul		В	В
Giulia		NULL	NULL
Maria		NULL	NULL
Andrea	•••	NULL	NULL -

Allows to count how many pupils received a grade (2-3)

In practice, boolean guards possibly already used where needed

applicable

Outcome

Extended framework

- Partial databases with NULLs
- TC statements with projections
- Reasoning for different meanings of NULL
- Complete queries can be evaluated by standard SQL database engines

• Complexities between PTIME and Π_2^P

Query completeness assessment is practically relevant

Reasoning over SQL databases is possible

Demo at http://magik-demo.inf.unibz.it/

Questions?

