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Abstract—Data quality is a major issue in the devel-
opment of knowledge graphs. Data completeness is a key
factor in data quality that concerns the breadth, depth, and
scope of information contained in knowledge graphs. As for
large-scale knowledge graphs (e.g., DBpedia, Wikidata),
it is conceivable that given the amount of information
contained in there, they may be complete for a wide range
of topics, such as children of Donald Trump, cantons
of Switzerland, and presidents of Indonesia. Previous
research has shown how one can augment knowledge
graphs with statements about their completeness, stating
which parts of data are complete. Such meta-information
can be leveraged to check query completeness, that is,
whether the answer returned by a query is complete. Yet,
it is still unclear how such a check can be done in practice,
especially when a large number of completeness statements
are involved. We devise implementation techniques to
make completeness reasoning in the presence of large sets
of completeness statements feasible, and experimentally
evaluate their effectiveness in realistic settings based on
the characteristics of real-world knowledge graphs.

I. INTRODUCTION

Real-world knowledge graphs may contain a large
amount of data. DBpedia,1 for instance, contains
at least 580 million facts extracted from English
Wikipedia alone,2 whereas Wikidata3 has over 370
million facts about 42 million entities.4 Given such
a quantity, one may wonder, what quality those
knowledge graphs possess?

Data quality plays an important role in the de-
velopment of knowledge graphs. Data completeness
is a key aspect of data quality that deals with

1http://dbpedia.org
2http://lists.w3.org/Archives/Public/public-lod/2014Sep/0028.html
3http://wikidata.org
4https://tools.wmflabs.org/wikidata-todo/stats.php

the breadth, depth, and scope of information con-
tained in data sources (or in our context, knowledge
graphs) [1]. Generally, data over knowledge graphs
is treated in either of the two ways: data is assumed
to be complete (i.e., the closed-world assumption),
or data is assumed to be incomplete (i.e., the open-
world assumption) [2]. In the real-world, however,
it is often necessary to employ a mix between the
two assumptions: for some parts of data, they are
complete; though for other parts, they are (still) po-
tentially incomplete.5 Managing data completeness
involves providing and making explicit metadata
pertaining to which parts of data can be regarded
as complete, and which parts cannot.

In practice, there is a substantial amount of Web
data sources providing (natural language) metadata
about completeness. For example, OpenStreetMap
provides around 2,300 pages with completeness
status,6 and Wikipedia contains over 14,000 pages
having the keywords “list is complete” and “com-
plete list of”. While such completeness metadata
can be helpful for data editors in order to be better
informed as to which parts of data are complete,
the lack of formal, machine readable completeness
metadata hinders the automatic processing of such
metadata, which could otherwise enable advanced
usages such as completeness analytics, search opti-
mization, and query completeness checking.

Related Work. In previous research, Darari et
al. [3] proposed a framework for managing com-
pleteness over (RDF-based [4]) knowledge graphs.

5That is, those parts of data upon which the completeness is still
unknown.

6For example, see https://wiki.openstreetmap.org/wiki/Ahlen



They formalized completeness descriptions over
knowledge graphs and provided a machine-readable
representation for those descriptions. Furthermore,
they investigated the problem of query completeness
checking: the check whether completeness state-
ments can guarantee the completeness of a query.
For instance, having the statements “complete for
all children of US presidents” and “complete for
all spouses of US presidents” would guarantee the
completeness of the query “give all children and
spouses of US presidents”. Their work, however,
concentrated on how such checking can be formal-
ized, without elaborating how it can be done in a
scalable manner. In [5], Prasojo et al. developed
COOL-WD, a tool to manage completeness over
Wikidata knowledge base. The tool contains over
10,000 completeness statements about entities in
Wikidata. While some simple heuristics has been
deployed for the tool, there is still no optimization
provided for reasoning with (general) completeness
statements. In [6], Darari et al. demonstrated COR-
NER, a system for checking query completeness
based on metadata about completeness, as formal-
ized in [3]. Yet, the system is not able to handle
large-scale cases.

Contributions. In this paper, we focus on the
engineering aspect of the problem of completeness
and expand upon the work of Darari et al. [3] by
optimizing query completeness checking. In partic-
ular, our contributions are as follows: (i) We propose
indexing techniques for completeness statements
based on our analysis that the problem of finding
completeness statements relevant for query com-
pleteness checking can be reduced to the established
problem of subset querying (Section III); and (ii) we
conduct experimental evaluations based on realistic
settings for the problem of query completeness
checking (Section IV).

II. FORMAL FRAMEWORK

In this work, knowledge graphs are described
within the context of RDF (Resource Description
Framework) knowledge graphs, which have recently
gained increasing attentions [7].

A. RDF and SPARQL

We assume three pairwise disjoint infinite sets
I (IRIs), L (literals), and V (variables). We col-

lectively refer to IRIs and literals as terms (or
constants). A 3-tuple (s, p, o) ∈ I × I × (I ∪ L)
is called an RDF triple (or a triple), where s is
the subject, p the predicate and o the object of the
triple. An RDF graph G consists of a finite set of
triples [4]. For simplicity, we omit namespaces for
the abstract representation of RDF graphs.

The standard query language for RDF is SPARQL
(SPARQL Protocol and RDF Query Language) [8].
The basic building blocks of a SPARQL query
are triple patterns, which resemble triples, except
that in each position also variables are allowed.
We focus on the conjunctive fragment of SPARQL,
which uses sets of triple patterns, called basic graph
patterns (BGPs). A mapping µ is a partial function
µ : V → I∪L. Given a BGP P , µP denotes the BGP
obtained by replacing variables in P with terms
according to µ. The evaluation of a BGP P over an
RDF graph G, denoted as JP KG, results in a set of
mappings such that for every mapping µ ∈ JP KG, it
holds µP ⊆ G. For a BGP P , we define the freeze
mapping ĩd as mapping each variable ?v in P to
a fresh IRI ṽ. From such a mapping, we construct
the prototypical graph P̃ := ĩd P to represent any
possible graph satisfying the BGP P . Prototypical
graphs will be used later on when characterizing
query completeness checking.

SPARQL queries come as SELECT, ASK, or
CONSTRUCT queries. A SELECT query has the abstract
form (W,P ), where P is a BGP and W ⊆ var(P ).
A SELECT query Q = (W,P ) is evaluated over a
graph G by projecting the mappings in JP KG to
the variables in W , written as JQKG = πW (JP KG).
Syntactically, an ASK query is a special case of
a SELECT query where W is empty. A CONSTRUCT

query has the abstract form (P1, P2), where both
P1 and P2 are BGPs, and var(P1) ⊆ var(P2).
Evaluating a CONSTRUCT query over G yields a
graph where P1 is instantiated with all the mappings
in JP2KG. In this paper, the semantics considered in
query evaluation is the bag semantics, which is the
default of SPARQL [8]. In bag semantics, duplicates
of query answers are kept.

B. Knowledge Graph Completeness

Completeness Statements. Completeness state-
ments capture which topics of a knowledge graph
are complete. A completeness statement C has



the form Compl(PC) where PC is a non-empty
BGP. For example, we express that a graph is
complete for all pairs of triples that say “?m
is a movie (= Mov) and ?m is directed (=
dir) by Tarantino” using the statement Cdir =
Compl((?m, a,Mov), (?m, dir , tarantino)), whose
BGP matches all such pairs.

To model the open-world assumption of RDF
graphs, we define an extension pair as a pair (G,G′)
of two graphs, where G ⊆ G′. We call G the
available graph and G′ the ideal graph. Here, an
available graph is the graph that we currently store,
while an ideal graph is a hypothetical extension over
the available graph, representing a version of ideal,
complete information.

Without completeness statements, any graph ex-
tending the available graph can be an ideal graph.
Completeness statements restrict the possibilities of
ideal graphs: for the parts captured by completeness
statements, they must contain no more informa-
tion than in the available graph. To a statement
C = Compl(PC), we associate the CONSTRUCT

query QC = (PC , PC). Note that, given a graph G,
the query QC returns a graph consisting of those
instantiations of the pattern PC present in G. For
example, the query QCdir

returns the movies directed
by Tarantino in a graph G. An extension pair (G,G′)
satisfies the statement C, written (G,G′) |= C, if
JQCKG′ ⊆ G. Intuitively, whenever an extension
pair (G,G′) satisfies a completeness statement C,
then the subgraph of G′ captured by C is also
present in G. The above definition naturally extends
to the satisfaction of a set C of completeness
statements, that is, (G,G′) |= C iff for all C ∈ C,
it is the case that JQCKG′ ⊆ G.

An important tool for characterizing complete-
ness entailment is the transfer operator TC, which
captures the complete parts of a graph w.r.t. a
set of completeness statements. Given a set C of
completeness statements and a graph G, the transfer
operator is defined as TC(G) =

⋃
C∈CJQCKG.

Query Completeness. When querying a knowl-
edge graph, we may want to know whether the
query is complete w.r.t. the real world. For instance,
when querying DBpedia for movies directed by
Tarantino, it would be interesting to know whether
we really get all such movies. Intuitively, over
an extension pair a query is complete whenever

all answers we retrieve over the ideal state are
also retrieved over the available state. Given a
SELECT query Q, to express that Q is complete, we
write Compl(Q). An extension pair (G,G′) satisfies
Compl(Q), if the result of Q evaluated over G′ is
the same as Q over G, that is, JQKG′ = JQKG. In
this case we write (G,G′) |= Compl(Q).

Completeness Entailment. From the notions
above, a question naturally arises as to when some
meta-information about data completeness can pro-
vide a guarantee for query completeness. We ap-
proach the question by ‘quantifying’ over all exten-
sion pairs7 such that if an extension pair satisfies the
completeness statements, then it must also satisfy
the query completeness. We define completeness
entailment as follows. Let C be a set of com-
pleteness statements and Q be a SELECT query. We
say that C entails the completeness of Q, written
C |= Compl(Q), if any extension pair satisfying C
also satisfies Compl(Q).

As an illustration, consider Cdir as above.
Whenever an extension pair (G,G′) satisfies Cdir ,
then G contains all triples about movies directed
by Tarantino. Now let us consider the query Qdir =
({ ?m }, { (?m, a,Mov), ( ?m, dir , tarantino),
(?m, dir ,miller) }) asking for movies directed by
both Tarantino and Miller. In this case, the statement
Cdir is not sufficient to guarantee the completeness
of Qdir. It might be that Miller directed a movie
(that was also directed by Tarantino) but this
director information is missing in the available
graph, leading to the non-inclusion of the movie in
the query result. The query completeness can be
guaranteed, for instance, by having an additional
statement about the completeness of movies
directed by Miller.

To check whether the completeness of a
query Q = (W,P ) is entailed by a set C of
completeness statements, we evaluate all the corre-
sponding CONSTRUCT queries of the statements over
the prototypical graph P̃ and check whether in the
evaluation result, we have P̃ back. Intuitively, this
means that over any possible graph instantiation for
answering the query, the completeness statements

7In this case, not only we abstract over ideal graphs, but also
available graphs.



guarantee that we have the graph instantiation back
in our available graph. Formally:

Theorem 1: [3] C |= Compl(Q) iff P̃ = TC(P̃ ).

As query completeness checking corresponds to
evaluating a linear number of CONSTRUCT queries
over the (frozen) conjunctive body of the query, its
complexity is NP-complete [3].

With respect to our example of Cdir

and Qdir , it is the case that P̃dir =
{(m̃, a,Mov), (m̃, dir , tarantino), (m̃, dir ,miller)},
while the transfer operator gives us
T{Cdir}(P̃dir) = {(m̃, a,Mov), (m̃, dir , tarantino)}.
Hence, according to our theorem, it is the case that
{Cdir} 6|= Compl(Qdir).

III. INDEXING TECHNIQUES

A. Relevant Completeness Statements
Before formulating a principle to optimize com-

pleteness reasoning, let us first estimate the com-
plexity of the reasoning task. From Theorem 1,
the completeness reasoning task is the checking
whether TC(P̃ ) = P̃ , where TC is the transfer
operator w.r.t. C, and P̃ is the prototypical graph
of Q. Note that the ‘⊆’ direction of the equality
can be seen immediately. The interesting part is
the ‘⊇’ direction, which corresponds to finding, for
each triple (s, p, o) ∈ P̃ , a completeness statement
C ∈ C such that (s, p, o) ∈ JQCKP̃ (recall that
TC(P̃ ) =

⋃
C∈CJQCKP̃ ). Thus, only statements that

potentially match such a triple (s, p, o) are required
to be processed.

Let C be a set of completeness statements,
maxLn(C) the maximum length (i.e., the maximum
number of triple patterns) of statements in C, and
Q = (W,P ) a query. Take any C ∈ C; to
evaluate the query QC over P̃ , it is necessary to
map the triple patterns of QC to triples in P̃ . Note
there are at most |P̃ ||QC | possibilities to map triple
patterns to triples, where |QC | and |P̃ | stand for
the number of triple patterns and triples in QC

and P̃ , respectively. Hence, applying this reasoning
to each statement in C results in the following
overall runtime: O(|C||P̃ |maxLn(C)).

As customary in database theory when analyzing
the data complexity of query evaluation, we are as-
suming that the query Q is given whereas the set of
completeness statements varies. Furthermore, since

completeness statements can be treated as queries,
we assume the maximum length of statements to
be bounded by a constant. Under these assump-
tions, the complexity of reasoning is a function of
the number of completeness statements. Using a
plain completeness reasoner, which evaluates the
CONSTRUCT queries of all statements, may lead to
poor performance. Thus, we need to find an ap-
proach to trim down the number of completeness
statements in completeness reasoning.

Constant-Relevance Principle. Consider the
query asking for “Movies directed by Tarantino”
and the statement “All presidents of Indonesia.”
It is intuitive that the statement does have any
contribution to the completeness of the query;
namely, the statement is irrelevant to the query.

Let us now introduce the constant-relevance prin-
ciple as a direction to distinguish between irrel-
evant and relevant completeness statements. The
principle states that a completeness statement C
can contribute to query completeness only if all
constants of the completeness statement are present
in the query Q, that is, const(C) ⊆ const(Q).
We say that a statement satisfying this principle
is constant-relevant. The following proposition says
that whenever a statement is not constant-relevant,
then the statement does not contribute to complete-
ness reasoning.

Proposition 1: Let C be a completeness statement
and Q = (W,P ) be a query. If C is not constant-
relevant w.r.t. Q, then JQCKP̃ = ∅.

Proposition 1 opens up the problem of how to
retrieve constant-relevant statements in an efficient
manner. In the following part, we present retrieval
techniques for constant-relevant completeness state-
ments.

Problem Definition. For a set C of completeness
statements, we want to know how to retrieve those
statements that are constant-relevant w.r.t. a given
query Q. We denote this set as CQ, that is,

CQ = {C ∈ C | const(C) ⊆ const(Q) }.
To compute CQ from C and Q, is an instance
of the well-established subset querying problem,
which has been investigated by the database and AI
communities [9]–[11]. The subset querying problem
itself is defined as follows: Given a set S of sets, and
a query set Sq, retrieve all sets in S that are contained



in Sq. In our setting, S consists of the constant sets
const(C) of the completeness statements C, while
the query set Sq consists of the constants in Q, that
is, Sq = const(Q).

We study two retrieval techniques based on
specialized index structures for subset querying,
namely, inverted indexes and tries. Additionally,
we develop a baseline technique using standard
hashing.

Running Example. Throughout the description
below, we refer to a set C = {C1, C2, C3, C4 } of
completeness statements with const(C1) = { a, b },
const(C2) = { a, b, c }, const(C3) = { a, b, c },
const(C4) = { d }, and a query Q with const(Q) =
{ a, b }. Note that CQ = {C1 }, as C1 is the only
constant-relevant statement w.r.t. Q.

B. Standard Hashing-based Retrieval
In this baseline approach, we translate the prob-

lem of subset querying into one of evaluating
exponentially many set equality queries. Hashing
supports equality queries by performing retrieval
of objects based on keys. We store completeness
statements according to their constant sets using a
hash map. For each of the 2|const(Q)| − 1 non-empty
subsets of const(Q), we generate a set equality
query using the hash map to retrieve the statements
with exactly those constants. In our example, the
non-empty subsets of const(Q) are {a}, {b}, and
{a, b}. Querying for both {a} and {b} returns the
empty set, while querying for {a, b} returns the
set {C1}. Taking the union of these three results
gives us {C1} as the final result.

As for the implementation, we rely on a standard
Java HashMap, where the key is constructed by
setting an ordering for completeness statement’s
constants, and the value is the set of all statements
with those constants.

C. Inverted Indexing-based Retrieval
Inverted indexes have been originally developed

by the information retrieval community for search
engine applications [12]. In the information retrieval
domain, an inverted index is a data structure that
maps a word to the set of documents containing
that word. Inverted indexes are typically used for
finding documents containing all words in a search
query, that is, for superset querying.

In database applications, inverted indexes are
also used for subset querying. In object-oriented
databases, objects may have set-valued attributes.
Given an attribute and a query set, one may want
to find all the objects whose set of attribute values
is contained in the query set. Helmer and Mo-
erkotte [9] compared indexing techniques for an
efficient evaluation of set operation queries (i.e.,
subset, superset and set equality) involving low-
cardinality set-valued attributes. Their experimental
evaluations showed that in terms of retrieval costs,
inverted indexes overall performed best.

Formalization. For a set C of completeness state-
ments, we let P =

⋃
C∈C const(C) be the set of all

constants in C. We define a map M that maps from
constants in P to bags of completeness statements
in C, where M(p) is a bag that contains as many
copies of a statement C as there are occurrences of
the constant p in C. We call such a map an inverted
index. The inverted index M of our example is
shown below.

Constants Completeness Statements

a C1, C2, C3

b C1, C2, C3

c C2, C3

d C4

Next, we take BQ =
⊎

p∈const(Q)M(p), which is
the bag of all statements that have at least one con-
stant in Q, and where a statement occurs as many
times as it has occurrences of constants appearing
in the query Q. With respect to our example, BQ =
M(a) ]M(b) = {|C1, C1, C2, C2, C3, C3 |}. Let us
analyze which statements are constant-relevant. The
statement C1 occurs twice in BQ and has two con-
stants, hence, all its constants appear in the query Q.
However, the statements C2 and C3 both have three
constants, but occur only twice in BQ. This means
that they have other constants that do not appear in
the query Q and thus, they are not constant-relevant.
Therefore, we conclude that CQ = {C1 }.

We can generalize our example to arrive at a
characterization of the set CQ. We denote the oc-
currence count of a statement C in BQ by #C(BQ).
As seen from the example, those statements whose
occurrence count is the same as the number of
constants are the constant-relevant ones. In this case,



for a statement C, we take the bag version of
const(C). Then, CQ satisfies the equation CQ =
{C ∈ BQ | #C(BQ) = |const(C)| }.

The crucial operations for the implementation of
the retrieval technique using inverted indexes are
bag union and count. We use the Google Guava
library8 which provides the class HashMultiset

with the methods addAll (to support bag union)
and count (to count the number of occurrences of
statements in a bag).

D. Trie-based Retrieval
A trie, or a prefix tree, is an ordered tree for

storing sequences, whose nodes are shared be-
tween sequences with common prefixes. Tries have
been adopted for set-containment queries in the
AI community by Hoffmann and Koehler [10] and
Savnik [11]. Both studies showed by means of
empirical evaluations that tries can be used to effi-
ciently index sets, and perform subset and superset
queries upon those sets.

Formalization. We again assume a lexicographi-
cal ordering of constants. For a set C of statements,
we define SC as the set containing for each state-
ment in C the corresponding sequence of constants.
The trie TC over the set SC of sequences is the
tree whose nodes are the prefixes of SC, denoted
as Pref (SC), where each node s̄ ∈ Pref (SC) has a
child s̄ ·p iff s̄ ·p ∈ Pref (SC), where p is a constant.
On top of this trie, we define M : Pref (SC) → 2C

as the mapping that maps each prefix to the set of
statements whose constants are exactly those in the
prefix.

In our example, we have that SC =
{ (a, b), (a, b, c), (d) } and M = { (a, b) 7→
{C1 }, (a, b, c) 7→ {C2, C3 }, (d) 7→ {C4 } }. For
simplicity, we left out mappings with the empty
value in M . A graphical representation of the
trie TC is shown below.

()

(d) : {C4 }(a)

(a, b) : {C1 }

(a, b, c) : {C2, C3 }

8https://github.com/google/guava

Having built a trie from completeness statements,
we now want to retrieve the constant-relevant state-
ments w.r.t. a query. Let us do that for our example.
Consider the trie TC as before. As const(Q) =
{ a, b }, the sequence of const(Q) is therefore s̄Q =
(a, b). The key idea behind our retrieval is that
we visit nodes that are subsequences of the query
sequence and collect the map values of the visited
nodes w.r.t. M . We start at the root of TC with the
query sequence (a, b) and an empty set of constant-
relevant statements. The root node is trivially a
subsequence of s̄Q and the mapping of the root
obviously returns the empty set. Thus, our set of
constant-relevant statements is still empty.

At this position, we have two options. The first
is to retrieve from TC all the subsequences con-
taining the head of the current query sequence, that
is, the constant a. By the trie structure, all such
subsequences reside in the subtree of TC rooted at
the concatenation of the root of the current trie and
the head of the current query sequence. We then
proceed down that subtree. To proceed down, the
head of the query sequence has to be removed.
Therefore, our current query sequence is now (b).
As the map value of the root (a) of the current trie
is empty, we still have an empty set of constant-
relevant statements. From this position, we try to
visit the subsequences in TC that not only contain a,
but also one additional constant from the current
query sequence. Therefore, we continue proceeding
down the subtree rooted at (a, b), which is the
concatenation of the root of the current trie and
the head of the current query sequence. From the
mapping result of the root (a, b), the set of constant-
relevant statements is now {C1 }. Since our current
query sequence is now the empty sequence, we do
not proceed further.

Now, let us pursue the second option. We stay
at the position at the root of TC, while simplifying
s̄Q by removing the head of the query sequence,
making it now (b). In this case, we want to visit all
the subsequences in the trie TC that do not contain
the constant a, if they exist. Now, we try to proceed
down the subtree rooted at the concatenation of the
root of the current trie and the head of the current
query sequence. This means we have to proceed
down the subtree rooted at (b). Since it does not
exist, we stay with the current trie and remove



again the head of the query sequence. As the query
sequence is now the empty sequence, we do not
go further and finish our whole tree traversal. As
a final result, we have our set of constant-relevant
statements which contains only C1.

From our example, we now formalize the retrieval
of constant-relevant statements using tries. We can
decompose a non-empty sequence s̄ = (p1, . . . , pn)
into the head p1 and the tail (p2, . . . , pn). For a
sequence s̄ and a trie T, we define T/s̄ as the
subtree in T rooted at the node s̄. Note that T/s̄
is the empty tree ⊥ if such a subtree does not exist.
We define cov(s̄Q,TC) as the set of completeness
statements in C whose sequences of their constants
are subsequences of s̄Q, which are not necessar-
ily contiguous. It follows from this definition that
cov(s̄Q,TC) = CQ. Given a subsequence s̄ = p · s̄′
of s̄Q and a subtree T of TC, we observe that
the function cov satisfies the following recurrence
property:

cov(s̄,T) =


∅ if T = ⊥
M(root(T)) if s̄ = ()

M(root(T))
∪ cov(s̄′,T/(root(T) · p))
∪ cov(s̄′,T)

otherwise.

The recurrence property has two base cases: when
the trie is empty, then simply the empty set is
returned; and when there is no element left in the
sequence s̄ (i.e., the trie traversal stops), the cov
function returns the set of completeness statements
associated with the sequence root(T). Now for the
recursive case, there are three components involved.
The first one is simply returning the set of com-
pleteness statements associated with root(T). The
second and third ones correspond to how the trie is
traversed: both make the cov calls with the tail s̄′

of s̄ as the call’s sequence, but the second case is
over the subtree T/(root(T) · p) while the third one
is over the same trie T.

Note that in the above property, as also observed
in [10], the function cov performs pruning: when a
subtree in the call cov(s̄,T/(root(T) · p)) does not
exist, we cut out all the recursion call possibilities if
the subtree existed. Let us give an illustration. For a
query sequence s̄Q = (p1, . . . , pn) of length n, there
are at most 2n possible subsequences. However, half
of them (those containing p1) lie in the tree rooted

at the node (p1). If there is no node (p1), the size
of the search space is immediately reduced to 2n−1.

As for the trie implementation, we create a class
Trie where each of its nodes is labeled by some
prefix sequence. Prefix sequences are built from
constants in completeness statements and are im-
plemented using Java lists. For the retrieval, we im-
plement a recursive method based on the recurrence
property of the cov function. In the method, for each
visited node, we use the HashMap of the mapping M
to map the label (i.e., prefix sequence) of the node
to its corresponding set of completeness statements.
All the mapping results are collected in a standard
Java set which at the end of the method call will be
our set CQ of constant-relevant statements.

IV. EXPERIMENTAL EVALUATION

We have presented in the previous section three
different indexing schemes that can be used for re-
trieving constant-relevant completeness statements.
In this section, we report on our experimental eval-
uation investigating: (i) “How do the number of
completeness statements, the length of completeness
statements, and the length of the query impact on the
retrieval time under the three indexing schemes?”;
and (ii) “Which indexing approach performs best in
which setting?”.

A. Experimental Setup

We randomly generate queries and sets of
completeness statements based on three parame-
ters: (i) number of completeness statements (Nc),
(ii) maximum length of completeness statements
(Lc), and (iii) length of queries (Lq).

We set up three scenarios, where in each we
keep two of the parameters fixed and vary the
remaining one. As our reference for setting the
default values for the parameters, we take DB-
pedia [13], one of the most popular and largest
RDF knowledge graphs, as an approximation of
the realistic parameter values. From the English
Wikipedia, DBpedia extracted around 580 million
RDF triples.9 If we assumed that 1

5
of the triples are

captured by completeness statements, and that each
statement covers 100 triples, DBpedia would have
1,160,000 completeness statements. Therefore, we

9http://lists.w3.org/Archives/Public/public-lod/2014Sep/0028.html



set the default value Nc = 1,000,000. The length
of queries is chosen based on statistics of SPARQL
queries over DBpedia. Arias et al. [14] found that
97% of DBpedia queries are of length less than or
equal to 3. Therefore, we choose 3 as the default
length for short queries. On the other hand, 99.9%
of queries over DBpedia had length less than or
equal to 6, so a length of 6 stands for relatively
long queries. So, there are two default values for
query length: Lq = 3 for the short ones, and Lq = 6
for the long ones. As for the default value of Lc,
we set it to 6, to have a variation of completeness
statement length from 1 to 6, which covers the query
length.

Our experiment program was implemented in
Java using the Apache Jena library.10 The experi-
ments were run on a standard laptop under Windows
8 with Intel Core i5 2.5 GHz processor and 8 GB
RAM, and we report medians over 20 runs.

Random Generation of Statements and Queries.
The statements and queries for the experiments have
been generated randomly with a uniform distri-
bution of the IRIs for constants. Again, we take
DBpedia as our reference. DBpedia has about 2,700
properties and 4.5 million entities, We approximate
the number of constant IRIs in the predicate position
from the number of properties of DBpedia, that
is, 2,500, and the number of constant IRIs in the
subject or object position from about 1

5
of the

number of DBpedia entities, that is, 1,000,000. The
generated statements were of the form Compl(P ),
while the generated queries were of the form
(var(P ), P ), that is, all variables in the body were
distinguished. Generating the statements and queries
is essentially generating triple patterns, which serve
as their building blocks.

The triple patterns of a statement are generated
as follows. First, we pick a random length between
1 and Lc. Then we randomly choose the predi-
cates of the triple patterns, where repetitions are
allowed. Next, for this collection of predicates, we
generate fully-formed triple patterns. To do that, we
instantiate the subjects and objects of triple patterns,
by constants or variables. We generate variables
in such a way that there is no cross-product join
between triple patterns of the statement, that is, the

10http://jena.apache.org/

triple patterns with variables form one connected
component. Together, the generated triple patterns
become the pattern P for that statement. We repeat
this process until there are Nc randomly generated
statements. We generate triple patterns for queries
in a similar way.

B. Results

1) Number of Completeness Statements: In this
scenario, we vary the parameter Nc within the range
of 100,000 – 1,000,000. Figure 1 shows the resulting
retrieval times for short queries (1.a) and for long
ones (1.b). The y-axis is in log-scale. As can be
clearly seen, inverted indexing is generally slower
and less scalable than the other techniques. It is
on average 53× slower than tries for short queries
and 3× slower than standard hashing for long
queries. The performance comparison of standard
hashing and tries, however, depends on the length
of the queries. For short queries, standard hashing is
slightly faster. For long queries, the tries technique
is faster.

One possible reason why inverted indexing is
slow is that at an intermediate step it has to process
all statements whose constants overlap with the
constants of the query. Hence, with inverted index-
ing the probability for a completeness statement to
be processed in the retrieval is much larger than
for other retrieval techniques. The other techniques
only process statements whose constants are clearly
contained in the query constants. For long queries,
the tries perform better than the standard hashing.
This is likely due to the subsequence pruning of
tries.

2) Length of Completeness Statements: In this
scenario, we vary the maximum length Lc of com-
pleteness statements from 1 to 6. Figure 1 shows
the resulting retrieval times for short queries (1.c)
and long queries (1.d). Notably, the retrieval time
for inverted indexing increases, while the time for
tries even decreases. Basically, the retrieval time for
standard hashing remains constant, though showing
a little oscillation with no clear pattern. We notice
that for short queries, standard hashing performs
best, whereas for long queries, tries perform best.
Again, inverted indexing performs the worst among
all the retrieval techniques.
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Fig. 1. Increasing the number of completeness statements for short (a) and long queries (b); Increasing maximum length of completeness
statements for short (c) and long queries (d); Increasing the query length (e)

These graphs demonstrate the fundamental dif-
ference between the inverted indexes and the tries.
In the inverted indexes, having a single overlapping
constant is enough for a statement to be included
in the bag union. This does not happen with the
trie-based technique as it only processes statements
all of whose constants are contained in the query.
When a statement becomes longer, the probability of
the statement to be processed by the tries technique
decreases. That the growth is nearly constant for
standard hashing, is likely due to evaluating always
the same set equality queries.

3) Query Length: In this scenario, we vary the
query length Lq from 1 to 6. Figure (1.e) shows the
results. We can see that for all techniques, the re-
trieval time increases with the query length, though
at different rates. For standard hashing, it grows
exponentially, whereas for the other techniques, it
only grows linearly. At the beginning, the standard
hashing technique performs better than the tries
one. However, from Lq = 4 the standard hashing
technique starts to perform worse. At Lq = 6,

standard hashing is about 14× slower than tries. We
observe a similarity between the asymptotic growth
of inverted indexing and tries, though on an absolute
scale the tries technique clearly performs better.

As expected, standard hashing does not perform
well for long queries due to its exponentially many
set equality queries. The tries technique, though
potentially having exponential growth in the worst
case, performs better than standard hashing. This is
most likely due to its pruning ability over subse-
quences of query constants.

4) Reasoning with the Constant-Relevant Filter-
ing: This scenario differs from the above in that
now we compare the cost of completeness reasoning
without and with the optimization technique. We
show that applying the constant-relevance principle
can considerably reduce the overhead incurred by
completeness reasoning.

To measure this overhead, we perform experi-
ments that compare the runtimes of plain complete-
ness reasoning and of reasoning based on constant-
relevance. For the reasoning based on constant-



relevance, we use the standard hashing retrieval
technique as it shows relatively good performance in
our previous experiments. All the parameter values
are the default ones: Nc = 1,000,000, and Lc = 6,
while we still distinguish between short queries
(Lq = 3) and long queries (Lq = 6). The table below
reports the reasoning time for plain completeness
reasoning and the reasoning plus the retrieval time
for the completeness reasoning based on constant-
relevance.

Query Types Plain Reasoning Optimized Reasoning

Short 145,773 ms 1.3 ms
Long 146,095 ms 4.1 ms

We note that reasoning based on constant-
relevance is considerably faster than the plain
one (i.e., milliseconds vs. minutes, respectively).
Completeness reasoning with the constant-relevance
principle is fast, with runtimes between 110,000×
(for short queries) and 35,000× (for long queries)
faster than that without constant-relevance. This
is due to the fact that much fewer completeness
statements are considered for the reasoning using
the constant-relevance principle. For short queries,
there are on average about 49 constant-relevant
completeness statements, whereas for long queries,
there are on average about 105 constant-relevant
statements. On the other hand, the original set
contains 1 million completeness statements.

C. Discussion
For short queries, our baseline approach, the stan-

dard hashing, shows the best performance, while for
long queries, tries perform better. Inverted indexes
appear not suitable for the retrieval task for both
short and long queries. Moreover, on an absolute
scale, completeness reasoning with the constant-
relevant retrieval techniques only takes up to about
a few milliseconds.

V. CONCLUSIONS

We presented techniques for efficient complete-
ness reasoning over large sets of statements based
on the constant-relevance principle to rule out
a significant number of irrelevant completeness
statements. We developed retrieval techniques for
constant-relevant statements based on different in-
dex structures. Our experiments showed that the

proposed techniques enable the deployment of com-
pleteness reasoning to large datasets. For future
work, we plan to investigate completeness reasoning
optimizations with even more number of complete-
ness statements (e.g., hundreds of millions of state-
ments). Exploring other potential index structures
for completeness reasoning is also of our interest.
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