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The Semantic Web is commonly interpreted under the open-world assumption, meaning that information
available (e.g., in a data source) captures only a subset of the reality. Therefore, there is no certainty about
whether the available information provides a complete representation of the reality. The broad aim of this
article is to contribute a formal study of how to describe the completeness of parts of the Semantic Web stored
in RDF data sources. We introduce a theoretical framework allowing augmentation of RDF data sources with
statements, also expressed in RDF, about their completeness. One immediate benefit of this framework is
that now query answers can be complemented with information about their completeness. We study the
impact of completeness statements on the complexity of query answering by considering different fragments
of the SPARQL language, including the RDFS entailment regime, and the federated scenario. We implement
an efficient method for reasoning about query completeness and provide an experimental evaluation in the
presence of large sets of completeness statements.
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1 INTRODUCTION

The increasing amount of structured data made available on the Web is laying the foundation of
a global-scale knowledge base. Projects such as Linked Open Data (LOD) (Heath and Bizer 2011),
by inheriting some basic design principles of the Web (e.g., simplicity, decentralization), aim at
making huge volumes of data available by the Resource Description Framework (RDF) standard
data format (Klyne and Carroll 2004). RDF enables one to make statements about resources in
the form of triples, consisting of a subject, predicate, and object. Ontology languages, such as RDF
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Schema (RDFS) (Brickley and Guha 2004) and OWL (Hitzler et al. 2012), provide the necessary
underpinning for the creation of vocabularies to structure knowledge domains. The common
path to access such a huge amount of structured data is via SPARQL endpoints, namely, network
locations that can be queried by using the SPARQL query language (Harris and Seaborne 2013).

With a large number of RDF data sources covering possibly overlapping knowledge domains,
it is natural to observe a wide range of data source quality; some data sources are manually cu-
rated while others result from crowdsourcing efforts or automatic extraction techniques (Bizer
et al. 2009; Hoffart et al. 2011). In this setting, the problem of providing high-level descriptions
(in the form of metadata) of their content becomes crucial. Such descriptions will connect data
publishers and consumers; publishers will advertise “what” is there inside a data source so that
specialized applications can be created for data source discovering, cataloging, selection, and so
forth. Proposals such as the VoID vocabulary (Alexander et al. 2011) address this aspect. With VoID
it is possible, among other things, to provide information about how many instances a particular
class has, the SPARQL endpoint of a source, and links to other data sources. However, VoID mainly
focuses on providing quantitative information. We claim that in attempting to provide comprehen-
sive descriptions of data sources, qualitative information is crucial; hence, the overall aim of this

article is to study a specific aspect of data quality for RDF data sources, that is, completeness.
In previous work, Fürber and Hepp (2010) investigated data quality problems for RDF data

originating from relational databases. Wang et al. (2005) focused on data cleansing, while Stoilos
et al. (2010) concentrated on incompleteness of reasoning tasks. The problem of assessing the
completeness of Linked Data sources was discussed by Harth and Speiser (2012); here, complete-
ness is defined in terms of authoritativeness of data sources, which is a purely syntactic property.
Hartig et al. (2009), Hartig (2015), Hartig and Pirrò (2017), Fionda et al. (2015a), and Fionda et al.
(2015b) discussed approaches to retrieve more complete results of SPARQL queries over the Web
of Linked Data. Their approaches are based on traversing RDF links to discover more relevant
data during query execution; still, the completeness of query answers cannot be guaranteed. In
the relational database world, completeness was first investigated by Motro (1989), who provided a
formalization of completeness of databases and queries. Levy (1996) studied how statements about
the completeness of a database relate to query completeness. Razniewski and Nutt (2011) provided
a general solution to this problem for the relational setting, including a comprehensive study of
the complexity of completeness reasoning. To the best of our knowledge, neither the problem
of formalizing the semantics of RDF data sources in terms of their completeness nor the prob-
lem of assessing query completeness in centralized and federated scenarios has been addressed
before.

Information about completeness is beneficial for RDF data sources, where data is generally as-
sumed to be incomplete. As an example, it would be possible to complement the answer to a query
(e.g., retrieve movies directed by Quentin Tarantino) with information about the completeness of
the answer (e.g., the movies in the answer are all movies directed by Tarantino). However, so far,
there is no approach to characterizing data sources in terms of their completeness that is both
conceptually well founded and practically applicable. For instance, with the widely used metadata
format VoID, it is not possible to express that an RDF data source of the movie website IMDb1

is complete for all movies directed by Tarantino. The possibility of providing in a declarative and
machine-readable way this kind of completeness statement paves the way for a new generation
of services for consuming data. In this respect, the semantics of completeness statements inter-
preted by a reasoning engine can guarantee the completeness of query answering. We now give
an overview of our approach motivated by real-world scenarios.

1http://www.imdb.com/.
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Fig. 1. A completeness statement (in natural language) on IMDb as of July 29, 2016. It says that the source
is complete for the cast and crew of the movie Reservoir Dogs.

1.1 Motivating Scenario

We now motivate the need for formalizing and expressing completeness statements in a machine-
readable way. Then, we show how completeness statements are useful for query answering.

Availability of Completeness Statements. We start our discussion by considering the IMDb data
source, which provides movie-related information. Figure 1 shows a screenshot taken from the
IMDb website; the page is about the movie Reservoir Dogs and lists the cast and crew of the movie.
For instance, it says that Tarantino was not only the director and writer of the movie but also played
the character Mr. Brown. As it can be noted, the data source includes a “completeness statement,”
which says that the page is complete for all cast and crew members of the movie. So far, IMDb has
around 24,000 editor-verified completeness statements about casts and crews for all titles in the
database.2 The availability of such statements increases the potential value of the data source. In
particular, users who were looking for information about the cast of this movie and found this page
will probably prefer it to other pages since, assuming the truth of the statement, all they need is
here.

The problem with such statements, expressed in natural language, is that they cannot be au-
tomatically processed, thus hindering their applicability, for instance, in query answering. The
interpretation of the statement “verified as complete” is left to the user. On the other hand, a
reasoning and querying engine when requested to provide information about the cast and crew
members of Reservoir Dogs could have leveraged such statements and informed the user about the
completeness of the results.

While the IMDb example shows the availability of completeness statements by domain experts,
other examples of Web data sources, such as OpenStreetMap3 and Wikipedia, provide complete-
ness statements based on crowdsourcing. For Wikipedia, we have a complete list of paintings

2http://www.imdb.com/interfaces.
3http://wiki.openstreetmap.org/wiki/Hall_of_Fame/Streets_complete.
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Fig. 2. A list template for complete information with timestamps on Wikipedia (a) and its usage to state the
completeness of the list of the Twenty-five Year Award recipients (b).

attributed to Edvard Munch4 and a complete list of Olympic medalists in archery.5 In fact, search-
ing for pages on Wikipedia containing the keywords “complete list of” and “list is complete” gives
around 14,000 results. If such completeness statements were exploited by machines, one would
expect that there would be an incentive to publish many more of them.

Completeness Statements with Timestamps. The notion of completeness discussed so far is time-
agnostic; it allows one to specify only whether (a portion of) a data source is complete. The expres-
sion of completeness statements relies on the judgment of the author of those statements (i.e., the
maintainer of the source or an external agent). In this situation, more flexibility may be required
with regard to the time validity of completeness statements. Therefore, one may be interested in
having completeness guarantees up to a certain time. To cope with this aspect, we introduce times-
tamped completeness statements. In defining these statements, we were (again) inspired by real
data sources, such as Wikipedia, that provide a template list for complete information with times-
tamps, as shown in Figure 2.

Figure 2 shows a list template taken from Wikipedia.6 The template allows one to specify that
a list is “complete and up-to-date as of {some specific date},” with this information being shown
on each page where the template list is used. Such a statement differs from the previous type
of statement in so far as it specifies up to what time the completeness holds. Wikipedia pages
containing timestamped completeness statements range from the page of buildings that have ever
won the Twenty-five Year Award7 (as shown in Figure 2) to the page of Italian DOP cheeses.8

Having timestamped completeness statements by nature requires less maintenance because the
statements will still be correct even if new information (that happens after the given timestamp)
appears.

4http://en.wikipedia.org/wiki/List_of_paintings_by_Edvard_Munch.
5http://en.wikipedia.org/wiki/List_of_Olympic_medalists_in_archery.
6https://en.wikipedia.org/wiki/Template:Complete_list.
7https://en.wikipedia.org/wiki/Twenty-five_Year_Award.
8https://en.wikipedia.org/wiki/List_of_Italian_DOP_cheeses.
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Fig. 3. An example of a completeness statement about DBpedia.

Machine-Readable Statements. Due to the openness characteristic of data sources made available
as Linked Data, the ability to express completeness statements is a valuable aspect. The machine-
readable nature of the RDF enables one to deal with the problems discussed in the example about
IMDb. This is because completeness statements themselves can be represented in the RDF. As
an example, the description of an RDF data source such as DBpedia9 (i.e., an RDF counterpart
of Wikipedia) could include the meta-information that it is complete for all Quentin Tarantino
movies. Figure 3 shows how DBpedia can be complemented with completeness statements ex-
pressed in our formalism. Here, we provide a high-level presentation of the completeness frame-
work; details on the theoretical framework supporting it appear in later sections.

A completeness statement can be thought of as a SPARQL Basic Graph Pattern (BGP). The BGP

(?m rdf:type s:Movie).(?m s:director dbp:Tarantino),

for instance, expresses the completeness of all movies directed by Tarantino, that is, all such movies
appear in the data source. In the figure, this information is represented using our completeness
vocabulary (see Section 2.2). The RDF modeling of completeness statements is inspired by SPIN,10

a SPARQL inferencing notation. Furthermore, we also formalize completeness statements with
timestamps and develop an RDF modeling for those in Section 5.

Query Completeness. The availability of completeness statements about data sources is useful in
different tasks, including data integration, data source discovery, and query answering. In this ar-
ticle, we will focus on how to leverage completeness statements for query answering. The research
question that we address is how to assess whether available data sources with different degrees
of completeness can ensure the completeness of query answers. Consider the scenario depicted in
Figure 4, in which the data sources DBpedia and LinkedMDB (Hassanzadeh and Consens 2009),
an RDF data source about movies, are described in terms of their completeness. The Web user Syd
wants to pose the queryQ to the SPARQL endpoints of these two data sources, asking for all movies

directed by Tarantino in which Tarantino also starred. By leveraging the completeness statements,
the query engines at the two endpoints could tell Syd whether the completeness of his query can

9http://dbpedia.org/.
10http://spinrdf.org/sp.html.
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Fig. 4. Completeness statements and their usage for query answering.

be guaranteed. For instance, although DBpedia is complete for all of Tarantino movies, nothing
can be said about his participation as an actor in these movies (which is required in the query).
At the time of writing this article, DBpedia is actually incomplete; this is because, in the DBpedia
description of the movie Reservoir Dogs, the fact that Tarantino played the Mr. Brown character is
missing (and, from Figure 1, we know that this is the case). On the other hand, LinkedMDB can
provide a complete answer. With our framework, it is possible to express in the RDF the com-
pleteness statement available in natural language in Figure 1 and infer the completeness of query
answers for given completeness statements.

In this case, LinkedMDB can guarantee the completeness of the query answer because it has
all the actors in Tarantino movies (represented by the statement lv:st1) in addition to Tarantino
movies themselves (represented by the statement lv:st2). Note that the statement lv:st1 consists
of two parts: (i) the pattern, which is expressed via the BGP (?m, s:actor, ?a) and (ii) the
condition, that is, the BGP (?m, rdf:type, s:Movie).(?m, s:director, dbp:Tarantino). A
completeness statement allows one to say that a certain part (i.e., with respect to some condition)
of data is complete or, in other words, to state that a data source contains all triples of a pattern P1

that satisfy a condition P2. The detailed explanation and the semantics of completeness statements
can be found in Section 2.

In the case of completeness statements with timestamps, query completeness must be ap-
proached differently. For this reason, we introduce the notion of the guaranteed completeness date

of a query, that is, the latest date for which complete query results are guaranteed. In Section 5.1,
we present motivating scenarios for guaranteed completeness dates.

Beyond Query Answering. While query answering is our focus in this article, completeness state-
ments can be applied in various other scenarios. Data collection: Completeness statements are par-
ticularly useful for managing data collections, such as works of an artist, cities in countries, election
results, census data, and so forth. When data collectors become aware of data completeness, they
know where to focus their efforts in completing data. Moreover, their data collection efforts would
get rewarded more from the use of quality stamps like completeness statements whenever they

ACM Transactions on the Web, Vol. 12, No. 3, Article 18. Publication date: July 2018.
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achieve some progress on completing data. Completeness analytics: How complete is an entity com-
pared to other similar entities? Which properties are mostly complete for what types of entities?
Having a machine-readable RDF representation of completeness information enables analytics for
answering such questions. Search optimization: A user wants to look for movies by Tarantino in
2008. By having completeness statements on IMDb about these movies, a search engine could stop
after finding this specific source without the need to consult other sources.

1.2 Contributions

The original version of our ideas on completeness management for RDF data sources was published
in the Proceedings of the International Semantic Web Conference (Darari et al. 2013). The present
article significantly extends the previous work in the following ways:

(1) we introduce time into completeness statements and query completeness (Section 5);
(2) we formulate the constant-relevance principle to rule out irrelevant completeness state-

ments in completeness reasoning and develop a retrieval technique based on this principle
(Section 6.1);

(3) we perform a comprehensive experimental evaluation about reasoning with large sets of
completeness statements (Section 6.2 and Section 6.3);

(4) we include the proofs of all theorems, as well as more recent related work, and improve the
accessibility of the theoretical parts by providing many more explanations and examples.

The framework that we are going to introduce provides the necessary underpinning to comple-
ment, with qualitative descriptions, existing proposals such as VoID (Alexander et al. 2011) that
mainly deal with quantitative descriptions.

1.3 Organization of the Article

The rest of the article is organized as follows. Section 2 provides some background about the RDF
and SPARQL and introduces a formalization of the completeness problem for RDF data sources.
This section also describes how completeness statements can be represented in RDF. Section 3 dis-
cusses how completeness statements can be used in query answering when considering a single
data source at a time. In Section 4, we study query completeness for federated data sources. In
Section 5, we introduce an extension of our completeness framework to deal with time. Section 6
introduces a retrieval technique to filter out irrelevant completeness statements during complete-
ness reasoning and then discusses an experimental evaluation about completeness reasoning with
large sets of statements. We present related work in Section 7. Section 8 provides a discussion of
our completeness framework, while Section 9 presents conclusions and future work. We provide
proofs in an electronic appendix.

2 FORMAL FRAMEWORK

We now give an overview of the RDF and SPARQL and formalize the basic notions of our com-
pleteness management framework.

RDF and SPARQL. We assume that there are three pairwise disjoint infinite sets I (IRIs), L (lit-
erals), and V (variables). We collectively refer to IRIs and literals as RDF terms or, simply, terms.
A tuple (s,p,o) ∈ I × I × (I ∪ L) is called an RDF triple (or a triple), where s is the subject, p the
predicate and o the object of the triple. An RDF graph or data source consists of a finite set of
triples (Klyne and Carroll 2004). For simplicity, we omit namespaces for the abstract representa-
tion of RDF graphs. In this work, we mainly focus on ground RDF graphs (i.e., no blank nodes)
and discuss the role of blank nodes in Section 8.

ACM Transactions on the Web, Vol. 12, No. 3, Article 18. Publication date: July 2018.
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The standard query language for the RDF is SPARQL. The basic building blocks of a SPARQL
query are triple patterns, which resemble RDF triples, except that in each position variables are also
allowed. SPARQL queries include graph patterns, built using the AND operator, and more sophisti-
cated operators, including OPT (for “optional”). We concentrate on both the AND and OPT operators
for the following reasons: (i) AND forms the core of SPARQL queries and (ii) OPT is the most dis-
tinctive feature of SPARQL with regard to classical relational database technology (Kaminski and
Kostylev 2016) that is used substantially in practice (Picalausa and Vansummeren 2011; Saleem
et al. 2015). Triple patterns connected with only the AND operator are called basic graph patterns

(BGPs). Alternatively, one may use a set of triple patterns to represent a BGP. A mapping μ from
variables to terms is defined as a partial function μ : V → I ∪ L. The operator dom(μ ) returns the
set of all mapped variables in μ. Given two mappings μ and μ ′, we say that the mappings are
compatible, written μ ∼ μ ′, if both map the overlapping variables to the same term. The operator
var (t ) (and var (P )) denotes the set of variables occurring in a triple pattern t (and a BGP P ). Given
a BGP P , the expression μP returns a graph in which all the variables in P are replaced with terms
according to μ. Evaluating a graph pattern P over an RDF graph G results in a set of mappings
from var (P ) to terms, denoted as �P�G . The join and left outer join between sets of mappings M
and M ′ are defined as follows:

M � M ′ = { μ ∪ μ ′ | μ ∈ M, μ ′ ∈ M ′, and μ ∼ μ ′ }
M M ′ = (M � M ′) ∪ { μ ∈ M | ∀μ ′ ∈ M ′ : μ � μ ′ }.

The evaluation of a SPARQL graph pattern is defined recursively as follows (Pérez et al. 2009):

�t�G = { μ | dom(μ ) = var (t ) and μ (t ) ∈ G }
�P1 AND P2�G = �P1�G � �P2�G
�P1 OPT P2�G = �P1�G �P2�G ,

where t ranges over all triple patterns, and P1 and P2 range over all graph patterns with AND and
OPT operators.11

SPARQL queries come as DESCRIBE, SELECT, ASK, or CONSTRUCT queries. DESCRIBE queries,
whose purpose is to describe RDF resources, are not considered in this work owing to their ar-
bitrary nature (i.e., up to the SPARQL endpoint maintainer to decide which useful description is
returned). The operator πW (μ ) (and πW (Ω)) denotes the projection of a mapping μ (and a set of
mappings Ω) into the set of variables W . A SELECT query has the abstract form (W , P ), where
P is a graph pattern and W is a subset of the variables in var (P ). A SELECT query Q = (W , P ) is
evaluated over a graph G by projecting the mappings in �P�G to the variables in W , written as
�Q�G = πW (�P�G ). Syntactically, an ASK query is a special case of a SELECT query in whichW is
empty. For an ASK queryQ , we write also �Q�G = true if �P�G � ∅, and �Q�G = false otherwise.
A CONSTRUCT query has the abstract form (P1, P2), where P1 is a BGP and P2 is a graph pattern.
In this article, we only use CONSTRUCT queries where P2 is also a BGP. The result of evaluating
Q = (P1, P2) over G is the graph �Q�G , which is obtained by instantiating the pattern P1 with all
the mappings in �P2�G . Further information about SPARQL can be found in Pérez et al. (2009).

Later, we will distinguish between three classes of queries: (i) Basic queries, that is, queries
(W , P ), where P is a BGP and that return bags of mappings (as is the default in SPARQL);
(ii) DISTINCT queries, that is, queries (W , P )d , where P is a BGP and that return sets of mappings,;
and (iii) OPT queries, that is, queries (var (P ), P ), where P is a graph pattern with OPT. Furthermore,

11For the fragment in our article, the semantics also complies with the W3C semantics, as in Angles and Gutierrez (2008).

ACM Transactions on the Web, Vol. 12, No. 3, Article 18. Publication date: July 2018.



Completeness Management for RDF Data Sources 18:9

our work also considers two SPARQL evaluation extensions: SPARQL evaluation under RDFS se-

mantics and federated SPARQL evaluation. We will discuss these in more detail in later sections.

2.1 Completeness Statements

To tackle completeness management for RDF data sources, we proceed in two steps: (i) we for-
malize a mechanism allowing one to specify which parts of a data source are complete and (ii) we
devise techniques to check whether a query is complete over a potentially incomplete data source.

We first define completeness statements to capture which information is complete.

Definition 2.1 (Completeness Statement). A completeness statement Compl (P1 | P2) consists of a
nonempty BGP P1 and a BGP P2. We call P1 the pattern and P2 the condition of the completeness
statement.

We use BGPs for their flexibility to represent complex completeness information that needs
more than one triple pattern and can be of various shapes (e.g., star, path, tree, cycle). Note that,
by construction, completeness statements have triple granularity. As an illustration, to express that
a source is complete for all pairs of triples that say “?m is a movie and ?m is directed by Tarantino”
we use

Cdir = Compl ((?m, a,Movie), (?m, director, tarantino) | ∅), (1)

whose pattern matches all such pairs and whose condition is empty. To express that a source is
complete for all triples about actors in movies directed by Tarantino, we use

Cact = Compl ((?m, actor, ?a) | (?m, a,Movie), (?m, director, tarantino)), (2)

whose pattern matches triples about actors and whose condition restricts the actors to those of
movies directed by Tarantino. The condition in Cact does not imply that the data source contains
triples of the form (?m, a,Movie) and (?m, director, tarantino). If we move the condition to the
pattern, however, we impose that the data source contains the triples.

Now to model the Open World Assumption (OWA) of RDF data sources, we define an incomplete
data source.

Definition 2.2 (Incomplete Data Source). We identify data sources with RDF graphs. Then, adapt-
ing a notion introduced by Motro (1989), we define an incomplete data source as a pair G = (Ga ,Gi )
of two graphs, where Ga ⊆ Gi . We call Ga the available graph and Gi the ideal graph.

Here, an available graph is the graph currently stored (the data that we can access), while an
ideal graph is a possible conceptualization of the world. A restriction of the set of ideal graphs
corresponds to an increase of knowledge about the world. Thus, by requiring that ideal graphs
contain a superset of the triples in the available graph, we assume that the information repre-
sented by the available graph is correct. Without completeness statements, any graph extending
the available graph can be an ideal graph. Having completeness statements restricts the possible
shape of ideal graphs: regarding the parts captured by completeness statements, they must not
contain more information than that stored in the available graph.

Consider, for example, a graph with two triples as the available graph: (obama, child,malia),
(obama, child, sasha). The information about the world contained in this graph is vastly incom-
plete, except that it is complete for the children of Barack Obama. In the above perspective, stating
that the example graph is complete for the children of Barack Obama amounts to requiring that an
ideal graph modeling all information about the world, whatever its concrete shape, cannot contain
further children of Obama. In Section 2.4, we will see that conclusions about query completeness
are drawn from the restrictions imposed on all conceivable ideal graphs. Such reasoning, as is
typical in logic, is never concerned with individual ideal graphs but rather considers the entirety

ACM Transactions on the Web, Vol. 12, No. 3, Article 18. Publication date: July 2018.
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of ideal graphs that, together with the available graph, satisfy the completeness statements. Ideal
graphs are the vehicle to provide a logical semantics to completeness statements. They are hypo-
thetical in nature and neither data providers nor consumers need to deal with them.

Let us now formalize completeness statements. To a statementC = Compl (P1 | P2), we associate
the CONSTRUCT queryQC = (P1, P1 AND P2). Note that, over a graphG, the queryQC returns a graph

consisting of those instantiations of the pattern P1 present inG for which the condition P2 also can
be satisfied. For example, the query QCact returns the cast of the Tarantino movies in graph G. We
now define the semantics of completeness statements.

Definition 2.3 (Satisfaction of Completeness Statements). An incomplete data source G = (Ga ,Gi )
satisfies the statement C , written G |= C , if �QC �G i ⊆ Ga holds.

Intuitively, an incomplete data source (Ga ,Gi ) satisfies a completeness statement C if the sub-
graph of Gi captured by C is also present in Ga . This definition naturally extends to the satis-
faction of a set C of completeness statements, that is, G |= C iff for all C ∈ C, it is the case that
�QC �G i ⊆ Ga .

Example 2.4. Consider the DBpedia data source that contains information about Tarantino-
related movies:

Ga
dbp = {(reservoirDogs, director, tarantino), (pulpFiction, director, tarantino),

(killBill, director, tarantino), (desperado, actor, tarantino),

(pulpFiction, actor, tarantino), (desperado, a,Movie),

(reservoirDogs, a,Movie), (pulpFiction, a,Movie), (killBill, a,Movie)}.

A possible extension of the above graph is the graph Gi
dbp

, which also contains the information

that Tarantino starred in Reservoir Dogs:12

Gi
dbp = G

a
dbp ∪ { (reservoirDogs, actor, tarantino) }.

Putting the above two graphs together forms the incomplete data source Gdbp = (Ga
dbp
,Gi

dbp
). In

this case, the statementCdir (Equation (1)) is satisfied by Gdbp, since all triples from evaluatingQCdir

overGi
dbp

are included inGa
dbp

. In contrast, the statementCact (Equation (2)) is not satisfied by Gdbp

because QCact returns over Gi
dbp

the triple (reservoirDogs, actor, tarantino) that is not in Ga
dbp

.

An important tool for characterizing completeness entailment in the next sections is the transfer

operator TC, which captures the complete parts of a graph with regard to a set of completeness
statements. Given a set C of completeness statements and a graph G, the operator is defined as

TC (G ) =
⋃

C ∈C
�QC �G . (3)

The operator takes the union of evaluating over G all the corresponding CONSTRUCT queries of
the statements in C. In terms of incomplete data sources, the transfer operator takes the parts
of the ideal graph that have to be present in the available graph. In a way, it transfers complete
information from the ideal graph to the available graph. Crucial properties of the transfer operator
are summarized in the following proposition, which follows directly from the construction of TC

and the definition of the satisfaction of C.

12Which is actually the case in the real world.
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Proposition 2.5 (Properties of TC). Let C be a set of completeness statements. Then,

(1) (Ga ,Gi ) |= C iff TC (Gi ) ⊆ Ga .

Consequently, for any graph G, we have that

(2) the pair (TC (G ),G ) is an incomplete data source satisfying C, and

(3) TC (G ) is the smallest available graph for which C holds.

2.2 RDF Representation of Completeness Statements

Practically speaking, completeness statements should be compliant with the existing ways of pro-
viding metadata about RDF data sources, for instance, by enriching current proposals such as
VoID (Alexander et al. 2011). Hence, it becomes essential to be able to express completeness state-
ments in RDF itself. Suppose that we want to express that LinkedMDB satisfies the following
completeness statement (as in Equation (2)):

Cact = Compl ((?m, actor, ?a) | (?m, a,Movie), (?m, director, tarantino)).

To reach this goal, we need (i) a vocabulary to say that this is a statement about LinkedMDB;
(ii) a mechanism to state which triple patterns form the statement’s pattern and which form the
statement’s condition; and (iii) a mechanism to represent the constituents of the triple patterns,
namely, the subject, predicate, and object of a triple pattern. We introduce the following property
names whose meaning is intuitive:

hasComplStmt, hasPattern, hasCondition, subject, predicate, object.

If a constituent of a triple pattern is a term (an IRI or a literal), then it can be specified directly in
RDF. As this is not possible for variables, we represent a variable by a resource that has a literal
value for the property varName. In light of these considerations, we can represent Cact in RDF as
the resource lv:st1 described in Figure 4.

More generally, consider a completeness statement Compl (P1 | P2), where P1 = { t1, . . . , tn } and
P2 = { tn+1, . . . , tm } and each ti , 1 ≤ i ≤ m is a triple pattern. Then, the statement is represented
using a resource for the statement and a resource for each ti that is linked to the statement resource
by the property hasPattern or hasCondition, respectively. The constituents of each ti are linked
to ti ’s resource in the same way via subject, predicate, and object. Our vocabulary is available
at http://completeness.inf.unibz.it/ns.

2.3 Query Completeness

The standard way to access data is via queries. When querying a data source, we want to know
whether the data source provides all the information needed to answer the query, that is, whether
the query is complete with regard to the real world. For instance, when querying DBpedia for
movies directed by Tarantino, it would be interesting to know whether we really get all such
movies. Intuitively, over an incomplete data source, a query is complete whenever all answers we
retrieve over the ideal graph coincide with those over the available graph.

Definition 2.6 (Query Completeness). Let Q be a SELECT query. To express that Q is complete, we
write Compl (Q). An incomplete data source G = (Ga ,Gi ) satisfies Compl (Q) ifQ returns the same
result over Ga as it does over Gi , that is, �Q�Ga = �Q�G i . In this case, we write G |= Compl (Q).

In this work, we focus on classes of queries that are monotonic. Therefore, by definition, it holds
that �Q�Ga ⊆ �Q�G i for all incomplete data sources G = (Ga ,Gi ). We note that without mono-
tonicity the problem of query soundness might also arise. Dealing with this problem is beyond the
scope of this article.
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Example 2.7. Consider the incomplete data source Gdbp as in Example 2.4 and the two queries
Qdir asking for all movies directed by Tarantino, and Qdir+act , asking for all movies both directed
by and starring Tarantino:

Qdir = ({ ?m }, { (?m, a,Movie), (?m, director, tarantino) })
Qdir+act = ({ ?m }, { (?m, a,Movie), (?m, director, tarantino), (?m, actor, tarantino) }).

Then, it holds that Qdir is complete over Gdbp since �Qdir�Ga
dbp
= { { ?m �→ reservoirDogs },

{ ?m �→ pulpFiction }, { ?m �→ killBill } } = �Qdir�G i
dbp

. On the other hand, Qdir+act is not complete

over Gdbp since �Qdir+act�Ga
dbp

does not have the mapping { ?m �→ reservoirDogs }, which is in

�Qdir+act�G i
dbp

.

2.4 Completeness Entailment

From the notions above, a question arises related to when some meta-information about data
completeness can provide a guarantee for query completeness. The question is whether the com-
pleteness statements guarantee that the available state already contains all data that is required
for computing the query answer so that one can trust the results of the query. In the following,
we formalize the entailment of query completeness by completeness statements. While previously
we have looked at examples of concrete incomplete data sources, we now “quantify” all incom-
plete data sources satisfying the statements, requiring that if an incomplete data source satisfies
the completeness statements, then it must also satisfy the query completeness.

Definition 2.8 (Completeness Entailment). Let C be a set of completeness statements and Q be a
SELECT query. We say that C entails the completeness ofQ , written C |= Compl (Q), if every incom-
plete data source that satisfies C also satisfies Compl (Q).

Checking whether completeness entailment holds is the core problem on which we will focus
in the rest of the article. Since entailment, by universal quantification, involves all incomplete data
sources satisfying C, and since for each available graph Ga there can be many, usually infinitely
many, ideal graphs Gi such that (Ga ,Gi ) |= C, reasoning about completeness does not depend on
any specific ideal graph Gi but rather on the statements in C.

Example 2.9. Consider Cdir from Equation (1). Whenever an incomplete data source G satisfies
Cdir , then Ga contains all triples about movies directed by Tarantino, which is exactly the infor-
mation needed to answer the queryQdir from Example 2.7. Thus, {Cdir } |= Compl (Qdir ). However,
this is not enough to completely answer Qdir+act ; thus, {Cdir } �|= Compl (Qdir+act ). We will see later
how this intuitive reasoning can be formalized in various settings.

3 COMPLETENESS REASONING OVER A SINGLE DATA SOURCE

In this section, we show how completeness statements can be used to judge whether a query returns
a complete answer. We study this problem in different settings: (i) completeness statements that
hold over a single data source; (ii) completeness statements in a federation of data sources (see
Section 4); and (iii) completeness statements with timestamps (see Section 5). For completeness
statements over a single data source, we devise characterizations of completeness entailment for
basic queries, DISTINCT queries, OPT queries, and queries under RDFS semantics.

3.1 Completeness Entailment for Basic Queries

One of the query classes that we consider in this work is the class of queries with a conjunctive
body. The standard semantics for such queries is bag semantics, which allows repetition of results.
Generally, a basic query Q is complete with regard to a set C of completeness statements, if for
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every incomplete data source G = (Ga ,Gi ) satisfying C, the query answers over Gi are contained
in the query answers over Ga , where duplicates are taken into account. That is, a mapping occur-
ring n times in �Q�G i must occur at least n times in �Q�Ga . Actually, since Ga ⊆ Gi and since
conjunctive queries are monotonic, we always have that the bag �Q�Ga is contained in the bag
�Q�G i . Hence, Q is complete over G iff every mapping occurring n times in �Q�G i occurs also n
times in �Q�Ga .

We want to provide a characterization of completeness entailment for basic queries. Let us give
an example to provide an intuition of the characterization.

Example 3.1. Consider the set Cdir,act consisting of Cdir from Equation (1) and Cact from Equa-
tion (2). Recall the query Qdir+act = ({ ?m }, Pdir+act ), where

Pdir+act = { (?m, a,Movie), (?m, director, tarantino), (?m, actor, tarantino) }.

We want to check whether these statements entail the completeness of Qdir+act , that is, whether
Cdir,act |= Compl (Qdir+act ) holds.

Suppose that G = (Ga ,Gi ) satisfies Cdir,act . Suppose also that Qdir+act returns a mapping μ =
{ ?m �→m′ } over Gi for some term m′. Then, Gi contains μPdir+act , the instantiation by μ of
the BGP of our query, consisting of the three triples (m′, a,Movie), (m′, director, tarantino), and
(m′, actor, tarantino). Intuitively, these triples constitute a graph that is prototypical for the query,
since any graph over which the query returns an answerm′, contains a subgraph of this shape.

The CONSTRUCT query QCdir
, corresponding to our first completeness statement, returns

over the graph μPdir+act the two triples (m′, a,Movie) and (m′, director, tarantino), while the
CONSTRUCT query QCact , corresponding to the second completeness statement, returns the triple
(m′, actor, tarantino). Thus, all triples in μPdir+act are being reconstructed byTCdir,act

from μPdir+act .
Now, we have that

μPdir+act = TCdir,act
(μPdir+act ) ⊆ TCdir,act

(Gi ) ⊆ Ga ,

where the last inclusion holds due to G |= Cdir,act . Therefore, our query Qdir+act returns the map-
ping μ also over Ga . Since μ and G were arbitrary, this shows that Cdir,act |= Compl (Qdir+act )
holds. Equivalently, for every incomplete data source G = (Ga ,Gi ) satisfying Cdir,act , we have that
�Qdir+act�Ga = �Qdir+act�G i .

In summary, in this example, we have reasoned about a set of completeness statements C and a
basic queryQ = (W , P ). We have considered a generic mapping μ, defined on the variables of P , and
applied it to P , thus obtaining a prototypical graph μP . Then, we have verified that μP = TC (μP ).
From this, we could conclude that, for every incomplete data source G = (Ga ,Gi ) satisfying C, we
have that �Q�Ga = �Q�G i . Next, we make this approach formal.

Definition 3.2 (Prototypical Graph). Let (W , P ) be a query. The freeze mapping ˜id is defined as
mapping each variable ?v in var (P ) to a new IRI ṽ . Instantiating the graph pattern P with ˜id yields
the graph P̃ := ˜id P , which we call the prototypical graph of P .

Now, we can generalize the reasoning from above to a generic completeness check. To check
whether the completeness of a query is entailed by a set of completeness statements, we evaluate
all the corresponding CONSTRUCT queries of the statements over the prototypical graph P̃ and check
whether over the evaluation result we have P̃ back. Intuitively, this means that whenever there is
an answer of the query over a possible ideal graph, the completeness statements guarantee that
the available graph also has the data to return that answer.
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Theorem 3.3 (Completeness of Basic Queries). Let C be a set of completeness statements and

Q = (W , P ) be a basic query. Then,

C |= Compl (Q) iff P̃ = TC (P̃ ).

The following complexity result follows from the fact that a completeness check is basically
evaluating a union of conjunctive queries (recall the definition of the TC-operator).

Corollary 3.4. Deciding whether C |= Compl (Q ), given a set C of completeness statements and

a basic query Q , is NP-complete.

The result shows that the complexity of completeness reasoning is no higher than that of con-
junctive query evaluation, which is also NP-complete (Chandra and Merlin 1977).

3.2 Completeness Entailment for DISTINCT Queries

Basic queries return bags of answers (i.e., they may contain duplicates), while DISTINCT eliminates

duplicates. In the following, we illustrate the difference between basic and DISTINCT queries for
completeness entailment.

Example 3.5 (Basic vs. DISTINCT Queries). Consider the singleton Cos containing the statement

Cos = Compl ((?m, award, oscar ) | ∅),
meaning that we have all triples of things winning an Oscar. Consider also the basic query

Qaw = (Waw, Paw ) = ({?m}, { (?m, award, oscar ), (?m, award, ?aw) }),
asking how many awards an Oscar-winning thing has won (as the triple pattern (?m, award, ?aw)
may give duplicates depending on the multiplicity of ?aw). Based on Theorem 3.3, it follows
that Cos � |= Compl (Qaw ) since P̃aw � TCos (P̃aw ). However, the situation changes if the query is a
DISTINCT query, that is, the query is instead

Qawd = (Wawd , Pawd )d = ({?m}, { (?m, award, oscar ), (?m, award, ?aw) })d ,

which only asks for things having won the Oscar (note here that the duplicates with regard
to ?aw are removed). Now, we want to check whether Cos |= Compl (Qawd ) holds. Suppose that
an incomplete data source G = (Ga ,Gi ) satisfies Cos . Suppose also that Qawd returns a map-
ping ν = { ?m �→m′ } over Gi for some term m′. Thus, there must be a mapping μ of the
graph pattern Pawd of our query whose projection onto Wawd gives ν , and where μPawd ⊆ Gi .
Suppose that μ = { ?m �→m′, ?aw �→ aw′ } for some term aw ′. Therefore, Gi contains μPawd =

{ (m′, award, oscar ), (m′, award, aw ′) }.
The CONSTRUCT query QCos , corresponding to our only completeness statement in Cos , returns

over μPawd the triple (m′, award, oscar ). Now, we have that

{ (m′, award, oscar ) } = TCos (μPawd ) ⊆ TCos (Gi ) ⊆ Ga ,

where the last inclusion holds due to G |= Cos .
However, even though μPawd � TCos (μPawd ), our queryQawd still returns the mapping ν overGa ,

since for the subset TCos (μPawd ) of Ga , it is the case that ν ∈ �Qawd�TCos (μPawd ) , as there exists a
mapping ν ′ = { ?m �→m′, ?aw �→ oscar }) in �Pawd�TCos (μPawd ) , which when projected onto Wawd

gives ν . This shows that Cos |= Compl (Qawd ) holds because ν and G were arbitrary.

For a query Q involving DISTINCT, the difference in the characterization in Theorem 3.3 of ba-
sic queries is that, instead of retrieving the full graph P̃ after applyingTC, we only check whether
sufficient parts of P̃ are preserved that still allow us to retrieve the identity mapping on the distin-
guished variables of Q (recall the definitions of P̃ and ˜id in Definition 3.2).
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Theorem 3.6 (Completeness of DISTINCT Queries). Let C be a set of completeness statements

and Q = (W , P )d be a DISTINCT query. Then,

C |= Compl (Q) iff πW ( ˜id) ∈ �Q�TC (P̃ ) .

The complexity of completeness entailment for DISTINCT queries is NP-complete, which is the
same as for basic queries.

Corollary 3.7. Deciding whether C |= Compl (Q ), given a set C of completeness statements and

a DISTINCT query Q = (W , P )d , is NP-complete.

As discussed, checking the completeness of DISTINCT queries is slightly different from that of
basic queries, since now we can ignore the multiplicity of mappings. Both problems are in the
same complexity class and concern the conjunctive fragment of SPARQL. In the next section, we
characterize completeness for the OPT fragment of SPARQL.

3.3 Completeness Entailment for OPT Queries

One interesting feature of SPARQL is the OPT (“optional”) operator. With OPT, one can specify that
parts of a query are only evaluated whenever possible, just like the left outer join in SQL. For
example, when querying for movies, one can also ask for the prizes that they won, if any. The
OPT operator is used substantially in practice (Picalausa and Vansummeren 2011). Intuitively, the
mappings for a pattern (P1 OPT P2) are computed as the union of all the mappings of P1 that can
be extended with the mappings of P2 and those that cannot. Completeness entailment for queries
with OPT differs from that of queries without, as illustrated below.

Example 3.8 (Completeness with OPT). Consider the following query with OPT:

Qmaw = ({ ?m, ?aw }, ((?m, a,Movie) OPT (?m, award, ?aw))),

asking for all movies and, if available, their awards. Consider also the completeness statement
expressing that all movies that have an award are complete and all awards of movies are complete:

Caw = Compl ((?m, a,Movie), (?m, award, ?aw) | ∅).

If the query Qmaw used AND instead of OPT, then its completeness would be entailed by Caw . With
OPT in Qmaw , however, more completeness is required: those movies that do not have an award
also have to be complete. Thus, Caw alone does not entail the completeness of Qmaw .

If one uses OPTwithout restrictions, queries may display an unintended nonmonotonic behavior.
Moreover, the combined complexity of the queries is PSPACE-complete (Schmidt et al. 2010). Pérez
et al. (2009) have introduced the class of so-called well-designed graph patterns, which avoids the
anomaly that may otherwise occur. Furthermore, this query class has a lower complexity, coNP-
complete. Formally, a graph pattern P is well designed if for every subpattern P ′ = (P1 OPT P2) of P
and for every variable ?x occurring in P , the following condition holds: If ?x occurs both inside P2

and outside P ′, then it also occurs in P1. We restrict ourselves in the following to OPT queries with
well-designed graph patterns, which we call well-designed OPT queries.

Graph patterns with OPT have a hierarchical structure that can be made explicit by so-called
pattern trees. A pattern tree T is a pair ((N ,E, r ),P ), where (i) (N ,E, r ) is a tree with node set N ,
edge set E, and root r ∈ N ; and (ii) P is a labeling function that associates to each node n ∈ N a
BGP P (n). Every graph pattern can be represented by a pattern tree. As an example, consider a
pattern ((P1 OPT P2) OPT (P3 OPT P4)), where P1 to P4 are BGPs. Its corresponding pattern tree would
have the root node labeled with P1, two child nodes labeled with P2 and P3, respectively, and the
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P3 node would have another child labeled with P4. The tree can be depicted as follows:

The tree representation of well-designed graph patterns has a specific characteristic: whenever
there is a common variable between two nodes in the tree, there exists a common ancestor of
these nodes in which the variable also appears. Pattern trees with this property are called quasi–

well-designed pattern trees (QWDPTs) (Letelier et al. 2012). In general, such trees have desirable
properties: one can exploit the trees to be an execution plan for well-designed queries; and there
exists a normal form to eliminate redundant triples and nodes in the trees, called the NR normal
form. Any well-designed graph pattern P can be translated into an equivalent QWDPT in NR
normal form in polynomial time (Letelier et al. 2012).

For every node n in T , we define the branch pattern Pn of n as the set union of the BGPs along
the path from n to the root of T . Then, the branch query Qn of n has the form (var (Pn ), Pn ). The
following theorem characterizes the completeness of well-designed OPT queries via branch queries.

Theorem 3.9 (Completeness of OPT Queries). Let C be a set of completeness statements, Q be

a well-designed OPT query, and T be an equivalent QWDPT of Q in NR normal form. Then,

C |= Compl (Q) iff C |= Compl (Qn) f or all branch queries Qn o f T .

Technically, the theorem allows us to reduce the problem of completeness checking for OPT
queries to that of basic queries. As shown in the corollary below, the problem is still in NP (and
NP-hard) because the number of guesses is basically k times more than that of a single basic query
(i.e., the yes-certificate is still polynomially long), where k is the number of branch queries.

Corollary 3.10. Deciding whether C |= Compl (Q ), given a set C of completeness statements and

a well-designed OPT query Q , is NP-complete.

In the following, we revisit Example 3.8 by applying our characterization in Theorem 3.9.

Example 3.11 (Completeness with OPT Revisited). Consider the queryQmaw and the completeness
statementCaw as above. The following is the corresponding QWDPT representation T ofQmaw in
NR normal form:

The branch queries of T are the following two queries:

• Qmaw1 = ({ ?m }, { (?m, a,Movie) }) and
• Qmaw2 = ({ ?m, ?aw }{ (?m, a,Movie), (?m, award, ?aw) }).

Because of Theorem 3.3, it holds that {Caw } |= Compl (Qmaw2 ), but {Caw } �|= Compl (Qmaw1).
Thus, from Theorem 3.9, it follows that {Caw } �|= Compl (Qmaw ).

ACM Transactions on the Web, Vol. 12, No. 3, Article 18. Publication date: July 2018.



Completeness Management for RDF Data Sources 18:17

3.4 Completeness Entailment Under the RDFS Semantics

RDFS is a simple ontology language widely used for RDF data (Brickley and Guha 2004). With
RDFS, one can express subclass and subproperty as well as domain and range relationships. RDFS
information allows for additional inferences about data and needs to be taken into account when
checking completeness entailment.

Example 3.12 (RDF vs. RDFS). Consider the query

Qfilm = ({ ?m }, { (?m, a, Film) }),
asking for all films, and the completeness statement

Cmovie = Compl ((?m, a,Movie) | ∅),
saying that we are complete for all movies. A priori, we cannot conclude that Cmovie entails
the completeness of Qfilm because we do not know about the relationship between films and
movies. Consider now the RDFS schema Sfm, consisting of the two axioms (Film, subclass,Movie)
and (Movie, subclass, Film), stating that films and movies are equivalent. Taking into account the
schema Sfm, we can, in fact, conclude that the statement Cmovie entails the completeness of Qfilm.

To see this, suppose that (Ga ,Gi ) is an incomplete data source satisfyingCmovie , with respect to
the schema Sfm. If the query Qfilm retrieves a film f over the ideal graphGi , then f is also a movie,
owing to the first axiom. Then, Cmovie implies that the movie f occurs also in the available graph
Ga . Applying the second axiom, which is the converse of the first one, we infer that f is also a film
in Ga . Thus, Qfilm retrieves f also over Ga .

Note that we applied the axioms from Sfm twice: first, for the ideal graph, we translated films
into movies to make the completeness statement applicable, and second, for the available graph,
we translated movies into films to make the query applicable.

We focus on minimal RDFS, which formalizes the essence of RDFS (Muñoz et al. 2009), avoiding
axiomatic information that only reasons about the internals of the language itself and not about the
data. The minimal RDFS vocabulary contains the terms subproperty, subclass, domain, range,
and type. A schema graph S is a set of triples built using any of the minimal RDFS terms, except
type, as predicates. As a shortcut, we may also use the property a to represent type information.

We assume that schema information is not lost in incomplete data sources. Hence, for incomplete
data sources, it is possible to extract their RDFS schema into a separate graph. The closure of a

graph G with regard to a schema S , written clS (G ), is the set of all triples that are entailed. The
computation of this closure can be reduced to the computation of the closure of a single graph that
contains both schema and nonschema triples as clS (G ) = cl (S ∪G ). Below, we show the derivation
rules for computing the closure (Muñoz et al. 2009), where sp is short for subproperty, sc for
subclass, dom for domain, rng for range.

We now say that a set C of completeness statements entails the completeness of a query Q with
regard to an RDFS schema graph S , written C |=S Compl (Q), if for all incomplete data sources
(Ga ,Gi ) it holds that, if the pair (clS (Ga ), clS (Gi )) satisfies C, then the pair also satisfies Compl (Q).

An essential tool to perform completeness reasoning is the transfer operator. To take account
of the role of the schema, we modify the transfer operator in such a way that we first compute
the schema closure of the argument, then transfer the triples, and, finally, compute the schema
closure of the result. In this way, we consider the RDFS closure of the data graph, and then also
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the RDFS inferences of the “transferred” data with regard to the completeness statements. For a
set of completeness statements C and a schema graph S , let T S

C
denote the function composition

clS ◦TC ◦ clS . Then, the following theorem holds.

Theorem 3.13 (Completeness under RDFS). Let C be a set of completeness statements, Q =
(W , P ) be a basic query, and S be a schema graph. Then,

C |=S Compl (Q) iff P̃ ⊆ T S
C

(P̃ ).

The complexity of completeness entailment with RDFS is still NP-complete due to the tractabil-
ity of the RDFS closure computation (Muñoz et al. 2009).

Corollary 3.14. Deciding whether C |=S Compl (Q ), given a set C of completeness statements, a

schema graph S , and a basic query Q , is NP-complete.

An analogous characterization holds for checking the completeness of DISTINCT queries under
RDFS semantics. The following example shows how the theorem is used to check the completeness
of a query under RDFS semantics.

Example 3.15 (Completeness under RDFS). Consider the query Qfilm, the statement Cmovie , and
the schema graph Sfm, as above. From Theorem 3.3, we have that {Cmovie } �|= Compl (Qfilm). How-

ever, we have that P̃film = { (m̃, a, Film) } ⊆ { (m̃, a, Film), (m̃, a,Movie) } = T S
{Cmovie } (P̃film). Thus, by

Theorem 3.13, it holds that {Cmovie } |=Sfm
Compl (Qfilm).

4 COMPLETENESS REASONING OVER FEDERATED DATA SOURCES

Data on the Web is inherently distributed. Hence, the single-source query mechanism of SPARQL
has been extended to deal with multiple data sources (Prud’hommeaux and Buil-Aranda 2013).
This extension allows us to express a federated query, which is a SPARQL query evaluated across
diverse data sources using the SERVICE keyword. In particular, in the body of a federated query, it
is possible to specify which parts of the query are to be executed at which SPARQL endpoints of
the data sources.

Up to this point, we have studied the problem of querying a single data source annotated with
completeness statements. The federated scenario calls for an extension of the completeness frame-
work discussed in Section 3 to guarantee query completeness based on completeness statements
over multiple data sources. In this setting, as opposed to a single available graph, we now have
multiple, federated available graphs, each of which may be complete for different aspects of the
data. Moreover, there is just (hypothetically) one ideal graph to reflect the idea that the ideal graph
captures all the facts of the real world, while each available graph contains parts of those facts.
Given such a federation extension, the question we want to tackle is as follows: given a nonfeder-
ated query (i.e., a query without the SERVICE keyword) and completeness statements over multiple
data sources, how can the query be rewritten into a federated version such that each query part
is assigned to a suitable source that can guarantee the query part’s completeness, hence ensuring
the completeness of the whole query? We call such a rewriting a smart rewriting. This section
discusses how we develop the federation extension to address this question.

Federated SPARQL Queries. Before introducing the federation extension of the completeness
management framework, we first formalize the notion of federated SPARQL queries. A federated
SPARQL query is a SPARQL query that contains the SERVICE keyword. A federated SPARQL query
is executed over a federated graph. Formally, a federated graph is a family (Barile 2016) of RDF
graphs Ḡ = (G j )j ∈J , where J is a set of IRIs of data sources (or their endpoints). A federated SPARQL
query (as for the case of a nonfederated query) can be a SELECT or an ASK query (Arenas et al. 2010).
In what follows, we focus on the conjunctive fragment (i.e., the AND fragment) of SPARQL with
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the inclusion of the SERVICE keyword. In addition, we assume that each triple in a federated query
occurs within the scope of a (nonvariable) SERVICE call and that endpoint IRIs in the set J always
resolve to their corresponding graphs. Thus, for presentation purposes, we provide a simpler, but
compliant, semantics to the existing SERVICE semantics (Buil-Aranda et al. 2013).

As opposed to nonfederated SPARQL queries, which are evaluated over graphs, in the federated
scenario, queries are evaluated over a pair (i, Ḡ ), where the first component is an IRI indicating
the current SPARQL endpoint, and the second component is a federated graph. The semantics of
graph patterns with AND and SERVICE operators is defined as follows:

�t�(i,Ḡ ) = �t�Gi

�P1 AND P2�(i,Ḡ ) = �P1�(i,Ḡ ) � �P2�(i,Ḡ )

�(SERVICE j P )�(i,Ḡ ) = �P�(j,Ḡ ),

where t ranges over all triple patterns, and P , P1, and P2 range over all graph patterns with AND
and SERVICE operators. We denote federated queries as Q̄ . Note that, for a federated query Q̄ , the
result �Q̄�(i,Ḡ ) is independent of the “default” endpoint i , since we assume that each triple in Q̄
occurs within the scope of a SERVICE call that specifies where to evaluate the triple.

The following will be the running example of this section.

Example 4.1. Consider the two data sources of DBpedia and LMDb shown in Figure 4 plus an ad-
ditional data source named FB (Facebook), whose endpoints are reachable at the IRIs DBPe, LMDBe,
and FBe, respectively. A federated query Q̄fb that asks about Tarantino movies over LMDb and
their number of likes over FB is shown below:

Q̄fb =({ ?m, ?l }, ((SERVICE LMDBe {(?m, a,Movie), (?m, director, tarantino)}) AND
(SERVICE FBe {(?m, likes, ?l)}))).

4.1 Federated Completeness Framework

We now extend our completeness management framework to the federated setting. We assume
from now on that the set J of IRIs of data sources is fixed and all indexes are drawn from J . We
first formalize incomplete federated data sources that compare multiple available data sources with
a single ideal source.

Definition 4.2 (Incomplete Federated Data Source). An incomplete federated data source (incom-
plete FDS) is a pair Ḡ = (Ḡa ,Gi ) consisting of an available federated graph Ḡa = (Ga

j )j ∈J and an

ideal graph Gi , such that Ga
j ⊆ Gi for all j ∈ J .

Example 4.3. Let the set of IRIs be J = { DBPe, LMDBe, FBe }. Consider an incomplete FDS Ḡ =
(Ḡa ,Gi ) about Tarantino movies, which is graphically represented in Figure 5.

The definition of an incomplete FDS captures the intuition that the ideal graph represents all
the facts that hold in the world, while each data source contains a part of those facts. Note that,
assuming a global schema is used, the graphs of the sources may overlap. Next, we adapt com-
pleteness statements in the federated setting, making explicit for which specific data sources the
statements are intended.

Definition 4.4 (Indexed Completeness Statements). An indexed completeness statement is a pair
(C,k ), whereC is a completeness statement andk ∈ J is an IRI. An indexed completeness statement
is satisfied by an incomplete FDS if it is satisfied by the incomplete data source corresponding to
the index, that is,

((Ga
j )j ∈J ,G

i ) |=fed (C,k ) iff (Ga
k ,G

i ) |= C .
This definition naturally extends to sets C̄ of indexed completeness statements.
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Fig. 5. An incomplete federated data source about Tarantino movies.

Example 4.5. Consider the completeness statements Cdir in Equation (1), Cact in Equation (2),
andCfb = Compl ((?m, likes, ?l) | ∅) about the completeness of the number of likes. Let C̄ be the set
of indexed completeness statements, defined as follows:

C̄ = { (Cdir , DBPe), (Cdir , LMDBe), (Cact , LMDBe), (Cfb, FBe) }.

One can readily check that the incomplete FDS Ḡ as above satisfies the set C̄.

Via flattening, we associate a nonfederated version to each federated query, federated graph,
incomplete FDS, and set of indexed completeness statements.

Definition 4.6 (Flattening). We define flattenings for federated queries, federated graphs, incom-
plete FDSs, and sets of indexed completeness statements as follows:

• The flattening Q̄ fl of a federated query Q̄ is obtained by replacing each occurrence of a
SERVICE call (SERVICE j P ) in Q̄ with the pattern P .

• The flattening Ḡ fl of a federated graph Ḡ = (G j )j ∈J is the union of the individual graphs,
that is, Ḡ fl =

⋃
j ∈J G j .

• The flattening Ḡ fl of an incomplete FDS Ḡ = (Ḡa ,Gi ) is the incomplete data source Ḡ fl =

((Ḡa ) fl,Gi ), whose available graph is the flattening of the available federated graph of Ḡ.
• The flattening C̄

fl of a set C̄ of indexed completeness statements is the set C̄
fl = {C | (C,k ) ∈

C̄ }, where we ignore the indexes.

In the federated setting, the notion of completeness entailment is different from that over a
single source, as we now have to deal with indexed completeness statements.

Definition 4.7 (Federated Completeness and Entailment). A federated query Q̄ is complete over
an incomplete FDS Ḡ = (Ḡa ,Gi ), written Ḡ |=fed Compl (Q̄ ), if �Q̄�(j0,Ḡa ) = �Q̄

fl�G i for every IRI
j0 ∈ J , that is, the evaluation of Q̄ over the available federated graph returns the same result as
evaluating the flattening of Q̄ over the ideal graph. If C̄ is a set of indexed completeness statements,
then C̄ entails Compl (Q̄ ), written C̄ |=fed Compl (Q̄ ), if Ḡ |=fed C̄ implies Ḡ |=fed Compl (Q̄ ) for all
incomplete FDSs Ḡ.

Example 4.8. Consider again the incomplete FDS Ḡ and the federated query Q̄fb. We have that
Ḡ |=fed Compl (Q̄fb). The reason is that for every IRI j0 ∈ J , it holds that �Q̄fb�(j0,Ḡa ) = { { ?m �→
reservoirDogs, ?l �→ 100 } } = �Q̄ fl

fb
�G i .
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If Q is a basic, nonfederated query, then we say that Q is complete over Ḡ if Q is complete over
the flattening of Ḡ, written Ḡ |=fed Compl (Q ), iff Ḡ fl |= Compl (Q ). This means that Q is complete
if evaluated over the union of all sources in the federation. From this definition, the proposition
below follows.

Proposition 4.9. Let C̄ be a set of indexed completeness statements and Q be a basic query. Then,

C̄ |=fed Compl (Q ) iff C̄
fl |= Compl (Q ).

Example 4.10. Consider the set C̄ of indexed completeness statements, introduced in Exam-
ple 4.5. Suppose that the nonfederated query Qfb is the flattened version of Q̄fb. Since it is

the case that P̃fb = { (m̃, a,Movie), (m̃, director, tarantino), (m̃, likes, l̃) } = TC̄ fl (P̃fb), we have that
C̄

fl |= Compl (Qfb) by Theorem 3.3. This implies that C̄ |=fed Compl (Qfb) from Proposition 4.9.

Using the above proposition, we can check the completeness of a basic query in the federated
setting with the criterion in Theorem 3.3, as shown in the above example.

We now introduce smart rewritings that allow us to evaluate each triple pattern of a query over
a single source such that the join of the results is the same as the result of the original query
executed over the union of all sources. Let us first define that a federated query Q̄ is a federated

rewriting of a basic query Q if Q̄ fl = Q . In other words, by dropping the SERVICE calls from Q̄ , we
obtain Q .

Definition 4.11 (Smart Rewriting). Let C̄ be a set of indexed completeness statements, Q a basic
query, and Q̄ a federated rewriting of Q . Then, Q̄ is a smart rewriting of Q with regard to C̄ if
�Q̄�(j0,Ḡa ) = �Q�⋃j∈J Ga

j
for every (Ḡa ,Gi ) satisfying C̄ and every j0 ∈ J .

This definition emphasizes that indexed completeness statements not only express the relation-
ship between an available graph and the ideal graph but also the relationship among available
graphs themselves: two different available graphs with the same completeness statement have
exactly the same (complete) data that is captured by the statement. As an illustration, consider
Example 4.5, in which both DBpedia and LMDb have the same completeness statementCdir about
movies directed by Tarantino. Therefore, the set of Tarantino movies in DBpedia must be identi-
cal to that in LMDb. In the next section, we describe sufficient and necessary conditions for the
existence of such smart rewritings and ways for finding them.

4.2 Finding Smart Rewritings

Now that we have the notion of smart rewritings, the question arises as to how to find one. Let
us first define an indexed triple (t , j ) as a pair of a triple t and an IRI j. Next, we define a federated

transfer operator to generate, given a graph, a set of indexed triples with regard to a set of indexed
completeness statements.

Definition 4.12. Let C̄ be a set of indexed completeness statements andG a graph. We define the
operator TC̄ over G as follows:

TC̄ (G ) =
⋃

(C,k )∈C̄
{ (t ,k ) | t ∈ �QC �G }.

The operator TC̄ is similar to the transfer operator TC in Equation (3), except that it now labels
the resulting triples with the indexes of the indexed completeness statements that can derive them
fromG. Note that a set of indexed triples can be flattened. For a set T̄ of indexed triples, we define
the flattening as T̄ fl = { t | (t ,k ) ∈ T̄ }. We now present a proposition that provides a syntactic
characterization of the completeness of a basic query with regard to a set of indexed completeness
statements.
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Proposition 4.13. Let C̄ be a set of indexed completeness statements and Q = (W , P ) be a basic

query. Then,

C̄ |=fed Compl (Q ) iff P̃ = (TC̄ (P̃ )) fl .

According to this proposition, we can verify whether C̄ entails the completeness of a basic
query Q by checking if we obtain the prototypical graph P̃ after applying the federated transfer
operator TC̄ to P̃ and then flattening the result. Let us now revisit our running example.

Example 4.14. Consider the set C̄ of indexed completeness statements and the query Qfb from
above. We have the prototypical graph

P̃fb = { (m̃, a,Movie), (m̃, director, tarantino), (m̃, likes, l̃) }.

The result of the federated transfer operator TC̄ (P̃fb) is the set of indexed triples

{ ((m̃, a,Movie), DBPe), ((m̃, director, tarantino), DBPe), ((m̃, a,Movie), LMDBe),

((m̃, director, tarantino), LMDBe), ((m̃, likes, l̃), FBe) }.
It is easy to see that (TC̄ (P̃fb)) fl = P̃fb. Therefore, by Proposition 4.13, it is the case that C̄ |=fed

Compl (Qfb).

According to the above proposition, if Q = (W , P ) is complete with regard to C̄, then for every
triple ti occurring in { t1, . . . , tn } = P̃ , we can find a corresponding triple (ti ,ki ) ∈ TC̄ (P̃ ). Therefore,
we can choose a set of indexed triples S̄ = { (t1,k1), . . . , (tn ,kn ) } ⊆ TC̄ (P̃ ), such that it satisfies two
properties: (i) uniqueness: for each pair of indexed triples (ti ,k ), (ti ,k

′) ∈ S̄ , it is the case thatk = k ′,
that is, the index of ti is unique; and (ii) covering: it is the case that S̄ fl = P̃ . Hence, each triple of
P̃ occurs exactly once in S̄ . We call such a set of indexed triples a smart set. It immediately follows
that such smart sets always exist whenever C̄ |=fed Compl (Q ). We next define a transformation
from a smart set to a graph pattern with the SERVICE operator.

Definition 4.15 (SERVICE Transformation). Let T̄ = { (t1,k1), . . . , (tm ,km ) } be a smart set with re-
gard to a set C̄ of indexed completeness statements and a queryQ . For each indexed triple (ti ,ki ) in

T̄ , we create a SERVICE pattern (SERVICE ki ( ˜id
−1

(ti ))), where ˜id
−1

is the inverse of the freeze map-
ping ˜id. We then define the transformation from T̄ to a graph pattern with the SERVICE operator
as follows:

PT̄ = (SERVICE k1 ( ˜id
−1

(t1))) AND . . . AND (SERVICE km ( ˜id
−1

(tm ))).

As an alternative, one can also put together all triple patterns that go into the same endpoint.
Let us give an example of a SERVICE transformation.

Example 4.16. Consider again the setTC̄ (P̃fb) of indexed triples. The following is a smart set (i.e.,
satisfying the uniqueness and covering properties) of that set:

{ ((m̃, a,Movie), LMDBe), ((m̃, director, tarantino), LMDBe), ((m̃, likes, l̃), FBe) }.
The SERVICE transformation of that smart set is exactly the body of the federated query Q̄fb.

The next lemma basically says, for a basic query that can be answered completely with regard to
a set of indexed completeness statements, we can always find a smart rewriting of the basic query
and such a smart rewriting is complete with regard to the set of indexed completeness statements.

Lemma 4.17. Let C̄ be a set of indexed completeness statements and Q = (W , P ) be a basic query

such that C̄ |=fed Compl (Q ). Moreover, let S̄ be a smart set with regard to C̄ and Q , and PS̄ be the

SERVICE transformation from the smart set S̄ . Then,

Q̄ = (W , PS̄ ) is a smart rewriting of Q with regard to C̄ such that C̄ |=fed Compl (Q̄ ).
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It also holds that a basic query Q can only have a smart rewriting with regard to a set C̄ of
indexed completeness statements if C̄ |=fed Compl (Q ).

Theorem 4.18. Let C̄ be a set of indexed completeness statements and let Q = (W , P ) be a basic

query. Then,

there exists a smart rewriting of Q with regard to C̄ iff C̄ |=fed Compl (Q ).

The following example is a consequence of this theorem.

Example 4.19. Consider again the set C̄ of indexed completeness statements and the query Qfb,
as above. From Example 4.14, we have that C̄ |=fed Compl (Qfb). On the other hand, from the smart
set in Example 4.16, we can construct a smart rewriting of Qfb with regard to C̄, which is the
federated query Q̄fb. Note that single data source approaches cannot guarantee the completeness
of Qfb, as we need to join query answers from more than one data source.

We have shown that for a basic query that is complete with regard to a set of indexed com-
pleteness statements, rather than evaluating the query over the union of all available sources, we
evaluate a smart rewriting of the query, which always exists. This way, we send the various parts
of the query only to those individual sources that can provide complete results for these parts and
join the results. Eventually, we retrieve the complete query answer in this way.

Practical Considerations about Smart Rewriting. In this work, we consider the problem of check-
ing query completeness in a crisp manner: either completeness can be guaranteed or not. In the
federated case, Theorem 4.18 states that only a complete query can be rewritten in a smart way.
Nevertheless, in the setting in which only a subset of the query can be found to be complete, one
possible way to still efficiently answer the query over federated data sources is as follows: for
those parts of the query that can be guaranteed to be complete, they can be evaluated exclusively
over a data source that is guaranteed to be complete by the completeness statements. To obtain a
complete answer for remaining parts, we send them to every data source.

Another practical consideration is where to store the completeness statements. One possible
way is to have a completeness hub, which stores completeness statements of multiple data sources
and provides federated completeness checking. A system to demonstrate such a functionality has
been proposed by Darari et al. (2014). A decentralized approach can be taken in the following
way: Since the query processor can query sources for data, it is conceivable to query data sources
for their completeness statements. To exclude irrevelant statements, the query processor could
ask the sources for statements whose constants are a subset of the constants of the query. Using
the terminology of Section 6, the processor would apply the constant-relevance principle, which is
underlying the optimization techniques that we present later and that turned out to be effective
in significantly reducing the number of statements to consider in our experiments.

Schema Heterogeneity. In practice, we observed three different scenarios of schema usages. The
easiest is when different data sources use the same schema. In this case, completeness statements
can readily be employed. The second case is when data from different sources is expressed with dif-
ferent schemas. This isone of the motivations for the RDFS incorporation (which supports schema
mapping via rdfs:subClassOf and rdfs:subPropertyOf) to our completeness framework, as in
Section 3.4. Example 3.12 has shown that, despite using a different term (i.e., Film), the query
can still be guaranteed to be complete by the completeness statement of all movies, thanks to the
RDFS mapping between Film and Movie. Moreover, the increased attention to global schemas (e.g.,
schema.org) will also mitigate this issue. For example, the DBpedia schema is already mapped to
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schema.org.13 Parts of Wikidata (Erxleben et al. 2014), one of the fastest growing KBs with RDF
support, have also been mapped to schema.org with at least 464 class and property mappings.14

In this case, one can create completeness statements about DBpedia and Wikidata using terms
from schema.org. Given the centrality of DBpedia and Wikidata in terms of their linkedness to
many other data sources on the Web of Linked Data, this can be an advantageous situation for
interoperable completeness statements over multiple data sources. Additionally, there is increased
agreement on common vocabularies for modeling certain entity types on the Web of Linked Data,
as exemplified by the increase usage of the FOAF vocabulary from 27% of all datasets in 2011 to
69% in 2014, and the Dublin Core vocabulary from 31% in 2011 to 56% in 2014 (Schmachtenberg
et al. 2014). In fact, completeness statements produced using those shared vocabularies can be com-
patible across different sources, with the following characteristic: the more widely vocabularies are
used, the better for the interoperability of completeness statements.

The last scenario is the most difficult one: different data sources employ not only different
schemas but also different structures. For example, one data source might represent movies di-
rected by Tarantino using two triples, such as (reservoirDogs, a,Movie), (reservoirDogs, directedBy,
Tarantino), instead of one triple, such as (reservoirDogs, a,MovieDirectedByTarantino). In this situ-
ation, RDFS reasoning is not sufficient to map between those two different representations. More
complicated rule-based mappings might provide a solution, yet it is beyond the scope of this work.
For more details on tools and approaches to schema mapping and data integration, we refer the
reader to Doan et al. (2012), Euzenat and Shvaiko (2013), and Heath and Bizer (2011).

5 COMPLETENESS REASONING WITH TIME

When creating completeness statements about a data source, one might make the assumption that
the data source, regardless of time, is always complete for parts of data captured by the statements.
This is true under the following circumstances: the data by nature will not change anymore (e.g.,
all movies starring Charlie Chaplin and all actors in Reservoir Dogs) or, if the data may still change,
the data source enforces a synchronization mechanism to immediately capture new facts in the
real world. Nevertheless, there might be situations in which such a synchronization is unlikely,
say, when the data provider is not an authority or the data originates from crowdsourcing. Conse-
quently, completeness statements can become out of date,that is, the data in the source captured by
the statements does not reflect the newly updated complete facts in the real world. In this section,
we discuss how to extend completeness statements to cope with data dynamicity over time and
reason about query completeness given such extended statements.

5.1 Motivating Example

To deal with data dynamicity, a time extension to completeness statements is a necessity. While
several works in temporal RDF existed with respect to representation and reasoning (Gutiérrez
et al. 2005; Lopes et al. 2010) and indexing (Pugliese et al. 2008; Tappolet and Bernstein 2009), none
took into account the data completeness aspect.15 In this work, by dynamicity we refer to any
addition of data, that is, new information is added without invalidating old information. In other
words, we work with graphs whose information is monotonically nondecreasing. Many domains of
information typically follow this characteristic, for instance, publications of a researcher, movies of
an actor, and children of a person. Consider the statement “Crew of Tarantino movies are complete”
over a data source. Given the fact that Tarantino is currently an active director, the data captured by

13http://wiki.dbpedia.org/services-resources/ontology.
14As of December 5, 2017, by the Wikidata SPARQL query: http://bit.ly/wikidataToSchemaOrgMappings.
15Also in our work, data is left as is with no explicit time annotation. Only completeness statements have time annotations.
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the statement is likely to grow. However, suppose that the data source fails to capture an update
of the data. What happens then is that the completeness statement over the source provides a
false claim. On the other hand, consider the statement “Crew of Tarantino movies up to 2012 are
complete,” which is the statement as before, now with a date. The date represents the temporal
scope of the statement, giving a boundary up to when it is complete, that is, up to 2012. Thus, the
statement is still correct, even if there are new Tarantino movies released after 2012 whose crew
are not captured by the data source. We call such a statement a bounded completeness statement.

Now, consider the statement “Movies starring Chaplin are complete and there will not be any
updates.” This statement is plausible since Chaplin passed away in 1977. A data source with the
statement is therefore always complete for movies starring Chaplin regardless of time since the
data can no longer grow. We call such a statement an unbounded completeness statement.

Reasoning about query completeness based on statements with a time extension must be ap-
proached differently. For this reason, we introduce the notion of the guaranteed completeness date

of a query, that is, the latest date on which complete query results are guaranteed to be contained
in the actual query results.

Consider again the statement “Crew of Tarantino movies up to 2012 are complete.” Suppose
that we have another statement, “Cast of Tarantino movies up to 2017 are complete.” If we query
for people who are both cast and crew of Tarantino movies, we can be certain that the query
answers will be complete up to 2012, since the crew of Tarantino movies are complete up to that
time and even further for the cast. However, from 2013 onwards, the query completeness cannot
be guaranteed, as we might be missing some crew members of Tarantino movies released after
2012. We therefore call 2012 the guaranteed completeness date of the query.

In contrast, let us consider again the statement “Movies starring Chaplin are complete and there
will not be any updates.” If we are now querying for movies starring Chaplin, the results of this
query will be complete and will be so for query results at any time in the future. Therefore, the
guaranteed completeness date of the query is infinity.

Not all queries have a guaranteed completeness date, depending on the statements we have.
Consider again the statement “Cast of Tarantino movies up to 2017 are complete” and consider the
query asking for all spouses of the cast of Tarantino movies. Since we do not have any completeness
assertion about the spouses, the completeness of that query cannot be guaranteed with regard to
any date; thus, there is no guaranteed completeness date for the query.

5.2 Time-Extended Completeness Framework

We now formalize the extended completeness framework and its semantics. We define a date as an
element d ∈ N ∪ {∞ }.16 We use natural numbers, as we can reduce dates of various granularities
(e.g., years, seconds, and calendar dates) to them. We assume a fixed constant now ∈ N.

Timestamped Completeness Statements. The first step is to incorporate timestamps in complete-
ness statements.

Definition 5.1 (Timestamped Completeness Statement). A timestamped completeness statement is
of the form

Ĉ = Compl (P1 | P2,d ),

where Compl (P1 | P2) is a completeness statement as seen before, now extended with a date d , such
that either d ≤ now or d = ∞. In the first case, we say that Ĉ is bounded, whereas in the second
case, Ĉ is unbounded.

16Without loss of generality, our framework also supports continuous domains (e.g., R), given that the discretization of all
known timestamps gives a discrete space again.
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Example 5.2. Consider the statements “Crew of Tarantino movies up to 2012 are complete,”
“Cast of Tarantino movies up to 2017 are complete,” and “Movies starring Chaplin are complete
and there will not be any updates,” as above. They can be represented formally as

Ĉcrew = Compl ({ (?m, crew, ?c), (?m, a, TarantinoMov) } | ∅, 2012)

Ĉcast = Compl ({ (?m, cast, ?c), (?m, a, TarantinoMov) } | ∅, 2017)

Ĉchap = Compl ({ (?m, a,ChaplinMov) } | ∅,∞).

Over a set of timestamped completeness statements, we define the operator date to extract the
dates of the statements. To select timestamped completeness statements based on their dates, over
a set Ĉ of timestamped completeness statements and a date d , the selection Ĉ≥d is defined as

Ĉ≥d = { Ĉ ∈ Ĉ | date(Ĉ ) ≥ d }.
The selection Ĉ=d is defined analogously. As before, we associate to a statement Ĉ , a CONSTRUCT
query QĈ = (CONSTRUCT P1 P1 ∪ P2). Over a graph G, the transfer operator T

Ĉ
(G ) is defined simi-

larly to that in Equation (3) in Section 2.1, in which we take the union of the results of the evaluation
�QĈ �G of all Ĉ ∈ Ĉ.

RDF Representation of Timestamped Completeness Statements. To represent timestamped com-
pleteness statements in RDF, we propose using the datatype representation from the XML Schema
Definition (XSD) namespace to represent noninfinity dates, which can also be of various granulari-
ties, such as years and calendar dates.17 To represent infinity, we introduce in our vocabulary18 the
term infinity. Then, we create the property name hasTimestamp to link between completeness
statements and their timestamps.

Incomplete Data Series. The models of timestamped completeness statements are incomplete
data series. An incomplete data series (or, for short, a series) S is a pair of an available graph and a
sequence of ideal graphs, of the form

S =
(
Ga

now,
(
Gi

1,G
i
2, . . . ,G

i
now, . . .

))
,

such that (Ga
now,G

i
now ) is an incomplete data source and it holds that Gi

d
⊆ Gi

d+1 for all pairs
Gi

d
,Gi

d+1 of ideal graphs. We have one available graph only since we focus on the actual avail-
able graph, that is, the state of the available graph we have now. On the other hand, we have a
sequence of ideal graphs to represent data dynamicity over time with regard to the real world.

Example 5.3 (Incomplete Data Series). Let now = 2017 and

Smov =
(
Ga

now,
(
Gi

1, . . . ,G
i
2012, . . . ,G

i
now, . . .

))

be a series about Tarantino and Chaplin movies that can be graphically represented as in Figure 6.19

Note that, in this example, the set of movies starring Chaplin will no longer grow (i.e., only The

Kid) and any other ideal graph Gi
k

not shown in the figure is defined accordingly.

We now formalize when a series satisfies a timestamped completeness statement. A series S
satisfies a bounded timestamped completeness statement Ĉ = Compl (P1 | P2,d ), written as S |= Ĉ ,
if all the triples constructed by evaluating QĈ over the ideal graph at date d are in the actual
available graph, formalized as �QĈ �G i

d
⊆ Ga

now . Note that this implies that �QĈ �G i
d′
⊆ Ga

now for

all d ′ ≤ d by the definition of a series. If the statement is unbounded, then the comparison for

17http://www.w3.org/2001/XMLSchema.
18http://completeness.inf.unibz.it/ns.
19For the sake of example, we only use toy data.
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Fig. 6. An incomplete data series about Tarantino and Chaplin movies.

completeness is made over all ideal graphs: for all d ∈ N, it must hold that S |= Compl (P1 | P2,d ).
Given a set Ĉ of timestamped completeness statements and a series S, we define that S |= Ĉ, if for
all Ĉ ∈ Ĉ, it holds that S |= Ĉ .

Example 5.4. Consider the series Smov and the statements Ĉcrew , Ĉcast , and Ĉchap, as above. Then,

it holds that Smov |= Ĉcrew because the result of the query evaluation

�QĈcrew
�G i

2012
= { (killBill, crew, john), (killBill, a, TarantinoMov) }

is contained in Ga
now . For a similar reason, Smov |= Ĉcast also holds. Moreover, it is the case that

Smov |= Ĉchap since forGi
2012,Gi

2017, and any other ideal graphGi
k

in Smov , the result (i.e., the graph
{ (theKid, a,ChaplinMov) }) of the query QĈchap

evaluated over them is contained in Ga
now .

Query Completeness at a Date. To describe query completeness at date d , we use Compl (Q,d ).
A series S satisfies Compl (Q,d ) with d ∈ N, written as S |= Compl (Q,d ), if evaluating Q over the
ideal graph at d gives results that are all contained in the results of evaluating Q over the actual
available graph, formalized as �Q�G i

d
⊆ �Q�Ga

now
. Furthermore, a series S satisfies the unbounded

version of query completeness, written as S |= Compl (Q,∞), if for all d ∈ N, it holds that S |=
Compl (Q,d ).

Example 5.5. To say that the query asking for all people who are both cast and crew of Tarantino
movies up to 2012 is complete, we can use Compl (Qcc , 2012) where

Qcc = ({ ?m, ?c }, { (?m, cast, ?c), (?m, crew, ?c), (?m, a, TarantinoMov) }).

As we can see, �Qcc �G i
2012

returns (?m �→ killBill, ?c �→ john) and is contained in �Qcc �Ga
now

, there-
foreSmov |= Compl (Qcc , 2012). In contrast, �Qcc �G i

2017
also returns (?m �→ hatefulEight, ?c �→ tom),

which is not in �Qcc �Ga
now

, therefore Smov � |= Compl (Qcc , 2017).

Having defined timestamped completeness statements and query completeness at a date, the
question arises regarding how to actually check the entailment between them. Given a set Ĉ of
timestamped completeness statements, a query Q , and a date d , we say that Ĉ entails query com-

pleteness at d , written as Ĉ |= Compl (Q,d ), if for all S |= Ĉ, it is the case that S |= Compl (Q,d ).
The following lemma gives us a syntactic characterization to decide whether Ĉ |= Compl (Q,d ). It
says that the query completeness at d is entailed by Ĉ iff the prototypical graph P̃ ofQ is contained
in the result of the transfer operator applied to P̃ , using only the statements in Ĉ with dates ≥ d .
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Lemma 5.6 (Entailment of Query Completeness at a Date). Let Ĉ be a set of timestamped

completeness statements, let Q = (W , P ) be a query, and let d be a date. Then,

Ĉ |= Compl (Q,d ) iff P̃ ⊆ T
Ĉ≥d

(P̃ ).

Guaranteed Completeness Date. We now formalize the notion of guaranteed completeness date,
introduced in the preceding examples. The guaranteed completeness date of a query Q with regard
to a set Ĉ of timestamped completeness statements is the latest dated such that the entailment Ĉ |=
Compl (Q,d ) holds, formally gcd (Q, Ĉ) = max{d ∈ N ∪ {∞ } | Ĉ |= Compl (Q,d ) }. We also define
max{} = −∞, and note that cases in which gcd (Q, Ĉ) = −∞ correspond to the query Q not having
any completeness date.

Example 5.7. Consider the set of statements Ĉ = { Ĉcrew, Ĉcast , Ĉchap } and the queryQcc , as above.

It is the case that gcd (Qcc , Ĉ) = 2012 for the following reasons. While the statement Ĉchap obviously

does not contribute at all to the guaranteed completeness date of the query, the statements Ĉcrew

and Ĉcast do contribute. If we execute the query, we can be complete up to 2012, since the crew
of Tarantino movies are complete up to that time, as guaranteed by Ĉcrew , and even further for
the cast, as guaranteed by Ĉcast . From 2013 onward, however, the query completeness cannot be
guaranteed, as some crew members of Tarantino movies might be missing. Therefore, 2012 is the
guaranteed completeness date.

5.3 Computing the Guaranteed Completeness Date

We now analyze how the guaranteed completeness date of a query can be computed. By Lemma 5.6,
we can replace the entailment Ĉ |= Compl (Q,d ) in the definition of the guaranteed completeness
date by its syntactic characterization P̃ ⊆ T

Ĉ≥d
(P̃ ). In this way, we compute the maximum date from

all the dates d in Ĉ such that query completeness can be guaranteed by using only the statements
having a date d ′ ≥ d , as shown in the following theorem.

Theorem 5.8 (Computing the Guaranteed Completeness Date). Let Q = (W , P ) be a query

and let Ĉ be a set of timestamped completeness statements. Then,

gcd (Q, Ĉ) = max
{
d ∈ date(Ĉ) | P̃ ⊆ T

Ĉ≥d
(P̃ )

}
.

In the following example, we apply the above theorem to compute the guaranteed completeness
date of our running example.

Example 5.9. Consider the statements Ĉ = { Ĉcrew, Ĉcast , Ĉchap } and the query Qcc = (Wcc , Pcc ),

as above. The set of the dates is date(Ĉ) = { 2012, 2017,∞ }. Then, we have that

• P̃cc ⊆ { (m̃, cast, c̃), (m̃, crew, c̃), (m̃, a, TarantinoMov) } = T
Ĉ≥2012

(P̃cc )

• P̃cc � { (m̃, cast, c̃), (m̃, a, TarantinoMov) } = T
Ĉ≥2017

(P̃cc )

Thus, we can conclude that gcd (Qcc, Ĉ) = 2012.

From the theorem above, we observe the following computational complexity of the decision
version of computing the guaranteed completeness date. It shows that adding a time extension
does not increase the complexity of completeness reasoning as it is still in NP.

Corollary 5.10 (Complexity of Deciding the Guaranteed Completeness Date). Deciding

whether gcd (Q, Ĉ) ≥ d , given a queryQ , a set Ĉ of timestamped completeness statements, and a date

d , is NP-complete.
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Fig. 7. Algorithm for finding the guaranteed completeness date.

Algorithm for Finding the Guaranteed Completeness Date. Based on Theorem 5.8, a naïve way
to compute the guaranteed completeness date is, for every d ∈ date(Ĉ), to repeatedly compute
T

Ĉ≥d
(P̃ ) and then take the maximum of the dates d such that P̃ ⊆ T

Ĉ≥d
(P̃ ). This has a drawback

since we may be reevaluating the CONSTRUCT query of a statement over P̃ , even if the result is
always the same. We could improve the computation by using binary search, as date(Ĉ) has a
natural order and T

Ĉ≥d
(P̃ ) is monotonic in d . As a consequence, checking P̃ ⊆ T

Ĉ≥d
(P̃ ) would be

done only loд( |date(Ĉ) |) times instead of |date(Ĉ) | times.
Now, we observe the following. For a date d , the result of T

Ĉ≥d
(P̃ ) is, in fact, the union of all

T
Ĉ=d′

(P̃ ), where d ≤ d ′ ≤ max (date(Ĉ)). Thus, we can compute T
Ĉ≥d

(P̃ ) in an incremental way
from the latest d ′. An algorithm to find the guaranteed completeness date would incrementally
compute the union from the latest date in date(Ĉ) to the earliest date in date(Ĉ) while on the way
checking if P̃ is already included. If that is the case, we can just stop and return the current date
in the iteration as the guaranteed completeness date. In this way, each corresponding CONSTRUCT
query of a timestamped completeness statement needs to be executed at most only once over P̃ .

We formalize this as the algorithm findGCD in Figure 7. The algorithm takes as input the pro-
totypical graph P̃ of Q and a set of timestamped completeness statements Ĉ. At first, we assign
the empty set to P ′, which will store the application results of the transfer operator T

Ĉ=d
(P̃ ), and

assign all the dates in Ĉ and −∞ to D. We then perform a while loop with the conditions “P̃ � P ′”
to check that P̃ has not been included in the accumulation, and “D � ∅” to ensure that we still
have some dates in D. For every loop, we execute extractMax (D) to return the latest date d in D
and remove it from D. Next, we add to P ′ the result of T

Ĉ=d
(P̃ ). At the end of the algorithm, we

will return d , which is the guaranteed completeness date of Q with regard to Ĉ. Note that when
d = −∞, the transfer operator T

Ĉ=−∞
(P̃ ) would return an empty set, since Ĉ=−∞ = ∅ by definition.

Using this incremental computation, completeness checking requires evaluation of each com-
pleteness statement at most once, which means that completeness checking with time is no more
complex than completeness checking without time.

Nonmonotonic Data Dynamicity. In this work, we assume that graphs are monotonically grow-
ing. In other words, the information in those graphs cannot shrink but rather will only grow over
time. As such, a limitation of our work is that it applies only to invariable facts, that is, facts that
hold eternally. If facts can also become invalid, completeness statements may then only capture the
completeness of facts “at a specific point of time,” as opposed to “up to a specific point of time.”
This can be problematic for checking the completeness of queries that require joins. A possible
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solution is to also incorporate time into RDF graphs. As an illustration, suppose that facts about
people being students have a temporal qualification. Then, we can say that we are complete for
all students of Bolzano University until 2016 in the sense that we have a complete (timestamped)
record of people who were Bolzano students up to 2016. This would make little sense for triples
without timestamps since—say, after graduation—people are no longer a student (and hence, the
facts have to be removed).

In this section, we have motivated, formalized, and developed a technique for completeness
reasoning with time over basic queries. This serves also as the basis for time-aware completeness
reasoning under the RDFS entailment regime and the federated setting, which can be realized
with relatively minimal effort. An important question now is how in practice we may perform
completeness reasoning at all. In the next section, we will see how completeness reasoning can
deal with large sets of completeness statements.

6 EXPERIMENTAL EVALUATION

We now experimentally evaluate completeness reasoning. We first focus on completeness reason-
ing over basic queries and then extend it to the RDFS semantics. Before delving further into the
discussion of the evaluation, we shall introduce a relevance principle, which allows reduction of
the number of completeness statements considered in the reasoning. Later, we will show that this
principle can improve the feasibility of completeness reasoning via experimental evaluations with
real query logs from DBpedia, Linked Geo Data, and Semantic Web Dog Food SPARQL endpoints.

6.1 Relevant Completeness Statements

Real-world RDF data sources may contain a large amount of data. This reflects in possibly large
numbers of completeness statements to describe the completeness of data. At this point, the ques-
tion about how fast completeness reasoning can be performed with a large amount of completeness
statements naturally arises.

Let us first estimate the complexity of the completeness reasoning task, from which we will for-
mulate a principle to optimize completeness reasoning. LetQ = (W , P ) be a query and let C be a set
of completeness statements. According to Theorem 3.3, the task of completeness reasoning for ba-
sic queries is to check whetherTC (P̃ ) = P̃ , whereTC is the transfer operator with regard to C and P̃
is the prototypical graph of Q . While it is immediate to check the ‘⊆’ direction of the equality, the
interesting part is the ‘⊇’ direction. This corresponds to finding, for each triple (s,p,o) ∈ P̃ , a com-
pleteness statement C ∈ C such that (s,p,o) ∈ �QC �P̃ (recall that TC (P̃ ) =

⋃
C ∈C�QC �P̃ ). Hence,

we only find statements that potentially match such a triple (s,p,o).
Let Q = (W , P ) be a query, let C be a set of completeness statements, and let maxLn(C) be the

maximum length (i.e., the maximum number of triple patterns) of statements in C. Take anyC ∈ C;
to evaluate the query QC over P̃ , it is necessary to (consistently) map the triple patterns of QC to
triples in P̃ . Note that there are at most |P̃ | |QC | possible ways to map triple patterns to triples, where
|QC | and |P̃ | stand for the number of triple patterns and triples inQC and P̃ , respectively. Therefore,
applying this reasoning to each statement in C leads to an overall runtime of O ( |C| |P̃ |maxLn(C) ).
Obviously, from this observation, completeness reasoning is data independent, that is, the size of
the RDF graph to which completeness statements are given does not matter.

As is customary in the database theory when analyzing the data complexity of query evaluation,
we are assuming that Q is given while the set of completeness statements varies. Moreover, since
completeness statements are basically also queries, we assume the maximum length of complete-
ness statements to be bound by a constant. Under these assumptions, the complexity of reasoning
is a function of the size of the set of completeness statements. Using a plain completeness reasoner,
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which evaluates the CONSTRUCT queries of all completeness statements, can potentially lead to slow
performance. However, according to Theorem 3.3, which characterizes completeness entailment
of basic queries, for a complete query with n triple patterns, there is a set of no more that n com-
pleteness statements that already entails the completeness of that query. From this observation,
the problem of finding exactly those n completeness statements is crucial. Despite the fact that
there is no obvious way to identify a priori such a set, as in the worst case all statements need
to be checked, we establish a principle in the following that allows one to rule out a significant
number of irrelevant statements.

Constant-Relevance Principle. Let us now introduce a relevance principle for completeness state-
ments. Consider the query asking for “All movies directed by Tarantino” and the statement “All
cantons of Switzerland.” Intuitively, one can see that the statement does not contribute to the
completeness of the query; in other words, the statement is irrelevant to the query.

We shall now set the constant-relevance principle as a way to distinguish between irrelevant
and relevant completeness statements. The principle states that a completeness statement C can
contribute to entailing query completeness only if all constants (or terms, which consist of IRIs and
literals) of the completeness statement occur also in the query Q , that is, const (C ) ⊆ const (Q ). We
say that a statement satisfying this principle is constant relevant. The following proposition shows
that if a statement is not constant relevant, then it does not contribute to completeness reasoning.

Proposition 6.1. Let C be a completeness statement and let Q = (W , P ) be a query. If C is not

constant- relevant with regard to Q , then �QC �P̃ = ∅.

Proposition 6.1 opens up the problem of how to (efficiently) retrieve constant-relevant state-
ments. It turns out that this problem is a variant of subset querying, which has been well stud-
ied (Helmer and Moerkotte 2003; Hoffmann and Koehler 1999; Savnik 2013). Our investigation on
finding efficient techniques for completeness reasoning (Darari et al. 2016) showed that, despite
its simplicity, standard hashing can be leveraged to perform subset querying in the context of
completeness reasoning, outperforming the inverted indexing (Helmer and Moerkotte 2003) and
tries (Hoffmann and Koehler 1999; Savnik 2013) techniques for most experiment cases. Thus, we
concentrate our analysis on standard hashing. The idea of the standard hashing technique is to
translate the problem of subset querying into one of evaluating exponentially many set equality
queries. Hashing supports equality queries by performing retrieval of objects based on keys.

From a practical point of view, we store completeness statements according to their constant
sets using a hash map. The maintenance cost (i.e., insert and delete operations) of the hash map
is relatively low; hence, we focus more on the lookup operations. For each of the 2 |const (Q ) | − 1
nonempty subsets of const (Q ), we generate a set equality query using the hash map to retrieve
the statements with exactly those constants and then compute the union of all the retrieved state-
ments. For example, from the query Qdir = ({ ?m }, { (?m, a,Movie), (?m, director, tarantino) }), as
in Example 2.7, the set of constants is const (Qdir ) = { a,Movie, director, tarantino }, and the set qual-
ity queries are constructed from its nonempty subsets: { a }, {Movie }, . . . , and the set const (Qdir )
itself. Clearly, one possible limitation of this approach is the exponential blowup in the size of
constants in queries. Nevertheless, in practice, queries contain a manageable number of constants,
thus making this approach potentially suitable.

As discussed before in Section 3.4, completeness reasoning can also incorporate RDFS seman-
tics. Then, RDFS-aware completeness checking, as characterized by Theorem 3.13, requires the
closure computation before and after the TC-application over the prototypical graph. In relation
to the constant-relevance principle, completeness statements may then also capture inferred facts
of the prototypical graph. Therefore, when RDFS schemas are considered, we need to extend the
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relevance principle: a statement C is constant relevant to a query Q = (W , P ) with regard to a

schema S if all constants in C are contained in the constants in ˜id
−1

clS (P̃ ), that is, the melting of
the RDFS closure over the prototypical graph.

Our experimental evaluation was conducted with the aim to answer the following questions:
(i) What is the overhead of completeness reasoning over querying? (ii) How do the two main
completeness reasoning components, the hashmap lookup and the TC-application, influence the
overall completeness reasoning time? (iii) How do RDFS schemas influence completeness reason-
ing?

6.2 Experimental Setup

We created a framework for the experiments in Java using the Apache Jena library, an open-source
Semantic Web library.20 To implement completeness reasoning, we particularly relied on the ARQ
module of Jena, which provides functionalities for SPARQL query processing. The retrieval of
constant-relevant statements was implemented using a standard Java HashMap. We used the in-
built RDFS reasoner of Jena via the method ReasonerRegistry.getRDFSSimpleReasoner() to
compute RDFS closures.

The three ingredients that characterize our setting were queries, completeness statements, and
RDFS schemas. As for the queries, we used openly available real query logs of DBpedia (DBP),
Semantic Web Dog Food (SWDF), and Linked Geo Data (LGD), provided in the Linked SPARQL
Queries (LSQ) dataset (Saleem et al. 2015). We extracted SELECT queries in the conjunctive frag-
ment, which account for about 44% of the total number of SELECT queries, giving us around 467,000
queries in total.21 For example, one of the extracted queries from the DBpedia log is as follows:22

Qcala = ({?abs}, {(Cala, abstract, ?abs), (Cala, a,MusicalArtist)}).

As for the completeness statements, for each query Q = (W , P ) that we obtained above, we took
the query’s BGP body P and constructed one completeness statement for each element23 of the
powerset of the BGP P . For example, given the query Qcala as above, the generated completeness
statements are

• Compl ((Cala, abstract, ?abs) | ∅),
• Compl ((Cala, a,MusicalArtist) | ∅), and
• Compl ((Cala, abstract, ?abs), (Cala, a,MusicalArtist) | ∅).

This way of generating completeness statements creates the worst-case scenario in the sense that
there are many relevant completeness statements for each query (as opposed to, for instance, just
taking the exact BGP of the query as the pattern of the completeness statement).

Using query homomorphism techniques (Chandra and Merlin 1977), we removed duplicate com-
pleteness statements, that is, completeness statements whose CONSTRUCT query representations are
equivalent to another query. Note that, here, we did not minimize the CONSTRUCT query represen-
tations of completeness statements. Instead, we checked if the statements could fully capture each
other. For example, the following two completeness statements are equivalent:

• Compl ((?y, a, Person), (obama, spouse, ?y) | ∅), and
• Compl ((obama, spouse, ?spouse), (?spouse, a, Person) | ∅).

20http://jena.apache.org/.
21As of July 1, 2017.
22For the sake of example, we removed the prefixes and presented the abstract representation of the query.
23Except the empty set.
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Table 1. Overview of the Experiment Results

Endpoint NQ NC |Q | tCR tQE NS tCRS

SWDF 22,592 27,815 1.22 0.064 ms 8.3 ms 162 3.7 ms
DBP 336,139 406,589 1.13 0.068 ms 19.04 ms 6,977 285 ms
LGD 108,611 50,932 1.54 0.138 ms 36.2 ms 1,511 55 ms

Note: NQ is the number of queries, NC is the number of completeness statements, |Q | is the
average query length (i.e., number of triple patterns), tCR is the average completeness reasoning
time, tQ E is the average query evaluation time, NS is the number of RDFS axioms, and tCRS is
the average RDFS-enabled completeness reasoning time.

In total, we generated about 485,000 unique completeness statements. Observe that, by construc-
tion, all queries are guaranteed to be complete.

As for the RDFSs, we took real-world schemas of those data sources: the Semantic Web Confer-
ence ontology,24 the DBpedia ontology,25 and the LGD ontology.26 For each ontology, we extracted
the RDFS axioms (i.e., rdfs:domain, rdfs:range, rdfs:subClassOf, and rdfs:subPropertyOf).
The extracted schemas have various sizes (i.e., the number of RDFS axioms): 162 for SWDF, 6977
for DBP, and 1511 for LGD. The experiment framework (including the source code) is available
online at http://completeness.inf.unibz.it/completeness-experiment/.

The goal of the evaluation was to measure completeness reasoning time for the queries. We
distinguished between three cases of the experiments, depending on the endpoint of the queries:
DBP, SWDF, or LGD. The experiments were run on a standard laptop in Windows 10 with an Intel
Core i5 2.50GHz processor and 12GB RAM. Furthermore, for each query, we also took the query
evaluation time, as provided by the LSQ dataset. The experiment machine for query evaluation
had 16GB RAM and a 6-Core i7 3.40GHz CPU running Ubuntu 14.04.2 using Virtuoso 7.1 (Saleem
et al. 2015). Note that the machine for query evaluation was relatively better than our machine for
completeness reasoning.

6.3 Results and Discussion

Table 1 summarizes the results of the experiments. The number of queries varies greatly, with
SWDF having the lowest and DBP having the highest. For the completeness statements, there are
not many redundancies for DBP and SWDF as opposed to LGD. What is interesting is that mostly
queries are short, close to one triple pattern, with a slight exception of LGD queries, whose average
length is in the middle, between one and two triple patterns. On average, completeness reasoning
time takes between 0.06 ms to 0.13 ms, which was very fast, thanks to the constant-relevance
principle.

To compare with plain completeness reasoning (where all completeness statements are con-
sidered in reasoning), we took randomly 1000 queries for each case, and performed completeness
reasoning, measuring, on average, 227 ms, 3,359 ms, and 434 ms, respectively. Thus, we have a
considerable speed-up by using the constant-relevance principle, up to nearly 50,000 times faster.
While for the plain reasoning the number of all completeness statements positively correlates
with reasoning time, for the reasoning with the constant-relevance principle, this is not the
case, as observed from the average reasoning time between DBP and LGD. With regard to query

24http://data.semanticweb.org/ns/swc/swc_2009-05-09.html.
25http://wiki.dbpedia.org/services-resources/ontology.
26http://downloads.linkedgeodata.org/releases/2014-09-09/.
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Fig. 8. Comparison of query length to completeness reasoning (CR) time and query evaluation (QE) time.

Fig. 9. Distribution of hashmap lookup time (H) and TC -application time (TC) in completeness reasoning
across different query lengths.

evaluation, completeness reasoning overall adds only a little overhead to query evaluation time:
0.5%, on average.

Figure 8 shows how overhead varies depending on query length. Note that the y-axis is in log
scale. We can see that the data for query evaluation time shows no clear trend, whereas com-
pleteness reasoning time positively correlates with query length. Yet, in nearly all cases, query
evaluation takes longer than completeness reasoning by several orders of magnitude. Note that, in
all 3 query logs, most queries have short length, for instance, there are only fewer than 10 queries
per length group for DBpedia queries with length greater than 6. Also, the worst case of complete-
ness reasoning time in the figure is only 159 ms (for the DBP case in which the query length equals
13), which we consider reasonable.

Regarding the time for completeness reasoning with the constant-relevant principle, we can
break this up into the time needed for the hashmap lookup for constant-relevant statements and
the time for the TC-application of those constant-relevant statements. Figure 9 shows how they
distribute. As seen from the figure, the growth of the hashmap lookup time and TC-application
time are exponential in the query length. For the former, it is due to the exponential number of
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Fig. 10. Comparison of query length to number of distinct constants (top) and number of relevant statements
(bottom).

set equality queries for retrieving constant-relevant statements. For the latter, it is due to how
we generated completeness statements from the query, that is, we used the worst-case generation
from the powerset of the query’s BGP. The longest hashmap lookup time is just 6 ms, whereas the
longestTC-application time is 152 ms, both of which we think are reasonably quick. Note that the
hashmap lookup time relies on the number of constants, which, in our query logs, can be up to
14 constants. To see how many constants may break the hashmap lookup, we also performed an
experiment with synthetic queries, in which we varied the number of constants from 1 to 32. From
this experiment, we observed that hashmap lookup for up to 18 constants took slightly less than
100 ms. The time doubled until ultimately reaching 20 minutes with 32 constants.

Figure 10 (with a linear scale on the y-axis) provides an idea of how query length relates with
the number of (distinct) constants in queries and the number of constant-relevant statements,
respectively. In the top figure, it can be seen that the number of constants grows linearly with re-
gard to query length, with a few exceptions. This is likely the reason for the exponential growth of
hashmap lookup time in Figure 9, since the hashmap lookup depends exponentially on the number
of constants (as per our analysis in Section 6.1). From the bottom figure, we can infer that, owing to
the powerset-based generation of completeness statements, we observe an exponential growth of
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relevant completeness statements. Still, the number of relevant statements drops drastically from
the number of all completeness statements, thanks to the constant-relevance principle.

The incorporation of the RDFS increases the reasoning time, with the case of DBP queries being
the worst. Nevertheless, on an absolute scale, it is still reasonably fast (i.e., on average, below 0.3 s),
even when using relatively large ontologies with up to 7,000 RDFS axioms. To compare the results
with plain reasoning, we also took for each case randomly 1,000 queries and measured the rea-
soning time with all completeness statements under RDFS semantics. The average runtimes were
236 ms for the SWDF case, 3,727 ms for the DBP case, and 498 ms for the LGD case. As such, our
optimized technique can provide a speedup of up to 63.

Conclusions of the experiments. We have evaluated completeness reasoning in practical settings
based on real query logs from DBpedia, SWDF, and LGD SPARQL endpoints. We observed that
completeness reasoning with the constant-relevant principle can be done quickly, with the aver-
age time of submillisecond and the longest time of 159 ms. Compared with query evaluation time,
completeness reasoning adds only a little overhead, just about 0.5%, on average. Also, the perfor-
mance of completeness reasoning tends to be positively correlated with query length. Reasoning
performance also relies on the number of constants, which, in practice, is relatively low (up to
14 constants). A possible weakness of our approach is when there are a large number of con-
stants in the query (e.g., 32 constants) owing to the exponential blowup of the set-equality queries
generated.

We also performed experiments of completeness reasoning under RDFS semantics. In this case,
the completeness reasoning time increases, with the worst-case average of 285 ms for DBP queries.
Completeness reasoning time with RDFS also positively correlates with the size of the used RDFS.

Regarding completeness reasoning for other query classes, the current results provide a rea-
sonable hint. For the DISTINCT class, the only difference is that there is one additional projection
operation, which has a negligible effect on the runtime (as per Theorem 3.6). Moreover, for the
OPT class, from the statistics over the DBpedia query log, the average number of OPT operators in
an OPT query is only 1.14, while 99% are below 3. Hence, according to Theorem 3.9, the reasoning
time is roughly 4 times that without OPT, which would still be fast. Completeness reasoning in the
federated and timestamped settings can also readily adopt the constant-relevance principle, with
the additional little cost of data source identifier and timestamp bookkeeping. Consequently, the
results of the experiments suggest that completeness reasoning can also be done reasonably well
in those settings.

7 RELATED WORK

Data completeness, as defined by Wang and Strong (1996), is the breadth, depth, and scope of infor-
mation contained in the data. Batini and Scannapieco (2016) considered data completeness to be
one of the most significant data quality dimensions. Like other quality dimensions (e.g., accuracy
and timeliness), the problem of data completeness may occur in various application domains, such
as biology, aviation, and health care, as studied by Becker et al. (2015).

In the field of relational databases, concerns about data (in)completeness can be traced back
to Codd (1979), who proposed a treatment of nulls based on 3-valued logic. Motro (1989) developed
an integrity model for databases that considers completeness (and validity). Levy (1996) introduced
local completeness statements, by which one can assert the completeness of parts of a database re-
lation, and studied their relationship to relational query completeness. Razniewski and Nutt (2011)
reduced the problem of query completeness to query containment and used this reduction to study
the complexity of the completeness problem in the relational setting.

In the Semantic Web area, the problem of completeness is particularly challenging owing to
the OWA. Several researchers studied completeness in the broader context of data quality. Fürber
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and Hepp (2011) developed a generic vocabulary for data quality management in the Semantic
Web. Their vocabulary can facilitate the standardized formulation of data quality rules, data qual-
ity problems, and data quality scores for RDF data sources. For example, one completeness-related
problem that can be described is “missing element”: schema elements, instances, or property val-
ues are missing, when required. Mendes et al. (2012) proposed Sieve, a framework for Linked Data
quality assessment and fusion. Sieve enables users to define quality scoring functions and perform
conflict-resolution tasks based on the quality scores to combine RDF data from multiple sources.
As an illustration, users can define a completeness scoring function based on the average num-
ber of properties of instances in a data source. A recent initiative to improve RDF data quality is
underway by the W3C’s RDF Data Shapes group.27 The group is developing SHACL (Knublauch
and Kontokostas 2017), a language for validating RDF graphs against a set of conditions (called
“shapes”). In SHACL, one can formulate integrity constraints, for example, by requiring that ev-
ery person has a gender. The lack of such required information indicates incompleteness of data.
By this approach, however, one cannot detect whether optional information, such as a spouse, is
missing.

Zaveri et al. (2016) surveyed techniques to measure the completeness (among other data quality
aspects) of RDF data sources. These techniques often measure completeness of a data source as
the fraction of real-world information present in another data source that is chosen as the gold
standard. The surveyed techniques were not concerned with how to express that a source is of
gold-standard quality for some type of information. With our approach, one can describe the data
quality aspect of completeness over RDF data sources, meaning that the sources can serve as the
gold standard for parts captured by the statements. Harth and Speiser (2012) discussed the problem
of assessing the completeness of Linked Data querying. They regarded the whole Web as the most
ideal gold standard for evaluating queries. To be more realistic, they weakened that to data that is
reachable from authoritative data sources. In their work, no assumption was made as to whether
the whole Web really captures all information in the real world. Galárraga et al. (2013) stressed
the need for complete information for rule mining over RDF KBs. Since completeness cannot be
guaranteed, they introduced a partial completeness assumption (PCA) as a substitute, which states
that if the KB knows some r -attribute of x , then it knows all r -attributes of x . Such an assumption
is restricted in the sense that completeness is defined at the level of atomic attributes. Recently,
Acosta et al. (2017) proposed HARE, a hybrid SPARQL engine to enhance the completeness degree
of query answers. HARE implemented query execution strategies that can identify portions of
queries yielding missing values and can perform microtask crowdsourcing to fill those missing
values. As opposed to our work, HARE cannot be used to check whether queries are complete
in the sense that all (ideal) answers are returned, as they focus rather on expanding the result of
SPARQL queries.

In RDF, an existing way to close the scope of some data is via RDF collections, that is, groups
of things represented as lists in the RDF graph (Manola and Miller 2004). Similarly, via enumer-
ated classes, OWL provides a way to describe a closed class by enumerating all of its instances
(Hitzler et al. 2012). Both approaches, however, consider only atomic classes as opposed to our
more expressive approach, which leverages arbitrary BGPs to describe completeness (in which,
for instance, the predicate position can be a variable). In Description Logics (DLs), which are a
family of formalisms underlying OWL, several proposals have been made for partial closed-world
features. Seylan et al. (2009) introduced the notion of a DBox whose behavior is similar to that of
a database: that the predicate (i.e., concept and role) assertions in the DBox are closed (or com-
plete). Lutz et al. (2013, 2015) generalized DBoxes by allowing a mix of open and closed predicates

27https://www.w3.org/2014/data-shapes.
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both in the schema and in the data (as opposed to DBoxes in which only closed predicates are
permitted in data). Moreover, they provided a data complexity analysis of answering conjunctive
queries (CQs) when closed predicates are admitted in DL KBs. Ngo et al. (2016) later complemented
their work with a combined complexity analysis. All of the DL work above investigated a different
problem than ours: given a DL KB with closed predicates, can certain facts be inferred and thus
used for computing query answers? Our work studies the completeness property of queries, that
is, whether queries can be answered completely over an RDF KB.

There have been proposals to add metadata to RDF resources. For providing provenance meta-
data, well-known vocabularies include Dublin Core Terms (DCMI 2012), MetaVocab,28 and W3C
PROV (Lebo et al. 2012). These vocabularies are intended to provide provenance information, such
as creators, subjects, publishers, creation dates, and abstracts. While these vocabularies are generic,
specialized vocabularies to describe (RDF and non-RDF) datasets exist. DCAT (Maali and Erickson
2014) is an RDF vocabulary for data catalogs, which can be of various formats, ranging from XML
to RDF. Important DCAT concepts include Catalog, Dataset, and Distribution. VoID (Alexander
et al. 2011) is more focused on describing RDF datasets. VoID covers four categories of metadata:
general, access, structural, and description of links between datasets. With VoID it is possible,
among other things, to provide information about how many instances a particular class has, the
SPARQL endpoint of a source, and links to other data sources. While those approaches are more fo-
cused on provenance and quantitative information of datasets, our completeness metadata serves a
different goal: to characterize datasets in terms of their completeness that is both conceptually well
founded and practically applicable. Schmachtenberg et al. (2014) analyzed the adoption of meta-
data best practices over the Web of Linked Data. Some of the main findings are that around 37%
of all datasets use provenance metadata and that VoID is used in around 15% of all datasets. The
findings confirmed that metadata about RDF datasets is substantially deployed in practice. Thus,
it is conceivable that statements about completeness can be added as metadata for RDF datasets as
well—in particular, to complement the lack of formal completeness specifications in the existing
proposals.

In Darari et al. (2013), we proposed a framework for managing completeness over RDF data
sources and introduced the notions of completeness statements to describe complete parts of data
sources and of query completeness. Moreover, we investigated the problem of completeness entail-
ment: to check whether a set of completeness statements entails query completeness. Nevertheless,
we expand this work by (i) providing a time extension, (ii) developing an indexing technique for
completeness statements that can reduce the number of statements considered in the reasoning,
and (iii) providing an experimental evaluation based on real SPARQL query logs to show the fea-
sibility of query completeness reasoning.

Darari et al. (2016) formalized and characterized a case of completeness reasoning in which
data-specific inferences are taken into account as opposed to the data-agnostic case (Darari et al.
2013). Furthermore, they proposed a practical class of completeness statements, called SP-
statements, which consist of a single triple pattern and are used to state the completeness of a
property of an entity. They developed an indexing technique for SP-statements, and conducted an
experimental evaluation using the indexing.

8 DISCUSSION

In this section, we discuss relevant aspects of our completeness management framework, which
are organized into two parts. The practical considerations part comprises modeling of complete-
ness statements, correctness, availability and creation of completeness statements, data volatility,

28http://webns.net/mvcb/.
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and knowledge about ideal graphs. The technical considerations part comprises complexity, query
coverage, FILTER extension, UNION extension, aggregate extension, blank nodes, and OWA and
CWA interpretation of query answers.

Practical Considerations

Modeling of Completeness Statements. By their nature, completeness statements support captur-
ing information of any kind as long as it can be represented by means of BGPs. The flexibility of
BGPs allows us to express, for example, completeness over multiple columns (when the informa-
tion comes from relational databases), by producing for each column predicate a corresponding
completeness statement with that predicate. Completeness statements are also able to represent
multihop information. As an illustration, the completeness statement for Trump’s daughters can
be modeled as Compl ((trump, child, ?c), (?c, gender, female) | ∅). Here, we do not state that we are
complete for all of Trump’s children, but instead all of Trump’s children whose gender is female
(specified by a join). Similarly, completeness statements can naturally deal with multi-valued prop-

erties, e.g., the statement of completeness for Trump’s children refers to all his children.
Practically, publishers who want to provide data and consumers who want to query data would

have to have some common understanding of which schema to use. We envision that when talk-
ing about the completeness of a data source, the statements that are created would use the schema
or vocabulary of that data source.29 This would reduce the learning curve in adopting complete-
ness statements for both the data publisher and data consumer. Nevertheless, to foster the adop-
tion, a simpler form of completeness statements might be useful. Darari et al. (2016) proposed
SP-statements, a class of completeness statements suitable for crowdsourced, entity-centric KBs.
SP-statements are of the form Compl ((s, p, ?v) | ∅), used to state the completeness of all values of
the property p with respect to the KB entity s . This simplicity might potentially serve as a first
step toward introducing completeness statements to the Linked Data community. SP-statements
are used in COOL-WD (Darari et al. 2017) to provide completeness annotations over Wikidata,
where users may add completeness statements by simply clicking the corresponding property box
right inside Wikidata.

In the case in which data modeling violates schemas, we expect that such data might be dif-
ficult to use independently of the existence of completeness statements. Hence, in such situ-
ations, one might resort to standard approaches to detect such violations, for example, using
SHACL (Knublauch and Kontokostas 2017) or ShEx (Prud’hommeaux et al. 2017) and then fixing
the erroneous data using data cleaning tools such as the LOD Laundromat (Beek et al. 2014).

Correctness. Any inferences are only as correct as the used antecedents. If owners of data sources
can add completeness annotations by themselves, incorrect completeness annotations may occur,
which, in turn, may lead to incorrect conclusions. This issue cannot be avoided but can be made
more transparent by annotating conclusions with information about the antecedents used (e.g.,
“conclusion is based on the completeness assertions X , Y , and Z over data source W , given by
agents A and B on date D”). Such provenance information can therefore serve as a basis for trust
determination over conclusions. We refer to Artz and Gil (2007), Hartig (2009), and Lebo et al.
(2012) for work about trust and provenance.

Another view on correctness is that as analogous to completeness statements, one can also
formulate correctness statements and use them for annotating queries with correctness informa-
tion. This was already observed by Motro (1989). While both completeness and correctness are

29This applies also for data querying in which the query schema is generally the same as that of the data source’s schema.
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important issues on the Semantic Web, we focus here on completeness, because we believe that
correctness statements are less common.

Availability and Creation of Completeness Statements. At the core of the proposed framework
lies the availability of completeness statements. We have discussed in Section 1.1 how existing
data sources, such as IMDb, already incorporate such statements (Figure 1) and how they can be
made machine readable using our framework (as in Section 2.2). Such availability of completeness
statements rests on the assumption that a domain expert has the necessary background knowledge
to provide completeness statements.

We believe that it is in the interest of data providers to annotate their data sources with state-
ments about completeness in order to increase their value. Users can be more inclined to prefer data
sources that include “completeness marks” to other data sources. For example, there were two tick-
ets created for feature requests of data completeness in Wikidata.30 Our completeness statement
framework (particularly the RDF representation of completeness statements, as in Section 2.2)
makes it explicit to both data publishers and data consumers what is meant by a data source that
is “complete for some topic.” With completeness statements, both data publishers and consumers
have a precise, shared understanding of what portions of data are complete. Not all topics may be
given a crisp definition of completeness. Therefore, for some topics that can potentially be ambigu-
ous, an additional textual description to provide context on completeness might be attached, for
instance, as in the definition of completeness of cast and crew by IMDb.31 In the context of query-
ing by data consumers, thanks to our completeness reasoning feature, layman-type consumers can
still benefit from completeness statements since query results can be annotated in an automated
way with completeness flags. Moreover, in the era of crowdsourcing, the availability of indepen-
dent “ratings” from users can also contribute (as in Wikipedia and OpenStreetMap), in a bottom-up
manner, to the description of the completeness of data sources. Systems to support the process of
collaborative creation of completeness statements have been demonstrated by CORNER (Darari
et al. 2014) and COOL-WD (Prasojo et al. 2016). CORNER32 focused on the development of a com-
pleteness statement hub for multiple RDF data sources. COOL-WD33 features adding and viewing
completeness statements directly from Wikidata, currently storing 10,000 completeness statements
about Wikidata entities and showing a promising first step toward providing completeness meta-
data for Wikidata (and the Web of Linked Data in general).

A Web extraction technique based on manually created regular expressions was developed to
extract cardinality information about children (Mirza et al. 2016). The technique was later gener-
alized in Mirza et al. (2017), in which the authors proposed a distant-supervision method using
conditional random fields to learn cardinality text patterns for four Wikidata relations (including
child). Cardinalities extracted from their techniques can be leveraged to automatically generate
completeness statements as follows: Whenever the cardinality matches the count of the corre-
sponding relation values of an entity in an RDF data source, then a completeness statement for
the entity’s relation can be generated. For instance, consider the text “Barack Obama has two chil-
dren.” The cardinality information extracted would be of the form: |(BarackObama, child) | = 2.
Now, when a data source contains two children of Obama, one can match this with the cardi-
nality information and assert that the data source is complete for all children of Obama. Such a
way of generating completeness statements might be a scalable alternative to manually generating
completeness statements.

30See, https://phabricator.wikimedia.org/T150116 and https://phabricator.wikimedia.org/T150116.
31https://help.imdb.com/article/contribution/filmography-credits/complete-cast-crew/GMZECKUS8JG34C4J.
32http://corner.inf.unibz.it/.
33http://cool-wd.inf.unibz.it/.
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Another way to add completeness statements is by using bots to import information from ex-
ternal authoritative sources (in the form of tables, or APIs) to RDF data sources. Bots are created
manually, but the data import process can then be done automatically. To illustrate, the proceed-
ings data of a conference is very likely to be complete for all the papers in the proceedings as well as
their authors. Hence, when importing data, completeness statements about papers in proceedings
and papers’ authors can be added automatically using the corresponding bot. We refer the reader
to an ongoing initiative to provide RDF data about Semantic Web proceedings, the ScholarlyData
project,34 in which completeness statements can be potentially added automatically.

As for providing timestamps for completeness statements, several options exist, such as adding
explicitly timestamps to completeness statements, as in Wikipedia,35 or using the “last updated”
information for the respective data.

Data Volatility. Batini and Scannapieco (2016) distinguish two types of data elements based on
the frequency of changes: (i) stable data elements and (ii) volatile data elements. As for stable data
elements, nontimestamped completeness statements (as in Section 2.1) are adequate to capture
their completeness. As for volatile data elements, a different strategy is needed to make sure that
completeness statements do not become outdated when the data changes. We have incorporated
this strategy into timestamped completeness statements (as in Section 5). Those statements provide
a boundary up to when the corresponding data is complete, which relaxes the need for immediate
updates of completeness statements. Additionally, when the corresponding data captured by the
timestamped statements is also annotated with timestamps, our framework may provide exact (i.e.,
sound and complete) answers for queries with respect to some specified point in time.

Knowledge about Ideal Graphs. While the ideal graph as a whole is difficult (if not impossible)
to obtain in practice, knowledge about portions of the ideal graph is available in many different
forms.

One prime form is authoritative sources. Government, company, and university websites
(among others) provide primary information about themselves, which is often complete. For
instance, the official Germany portal deutschland.de lists all 16 federal states in Germany,36

Schneider Electric lists all of its products,37 and the website of TU Dresden lists all of its schools and
faculties.38 In addition to authoritative sources, knowledge about the ideal graph may come from
websites that already contain (natural language) completeness annotations, such as Wikipedia,
IMDb, and OpenStreetMap (as in Section 1.1). In this case, the ideal graph knowledge relies on
the wisdom of the crowd. Other forms of knowledge about the ideal graph may include research
papers (e.g., the complete list of Hilbert’s Mathematical Problems (Hilbert 1902), books (e.g., the
Harry Potter book series for (complete) knowledge about Harry Potter), patents, court cases, and
speech transcripts. Basically, any sources that may give information may also provide complete-
ness information (i.e., knowledge about the ideal graph).

Technical Considerations

Complexity. All problems of checking completeness entailment were shown to be NP-complete
in combined complexity. This is good news, as it says that completeness checking is no more
difficult than query evaluation. In particular, even though considering bag semantics for queries,

34http://www.scholarlydata.org/.
35https://en.wikipedia.org/wiki/Template:Complete_list.
36https://www.deutschland.de/en/topic/politics/germany-europe/state-governments.
37https://www.schneider-electric.co.id/en/all-products/.
38https://tu-dresden.de/tu-dresden/organisation/bereiche-fakultaeten?set_language=en.
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where query containment is Π2
P -hard (Chaudhuri and Vardi 1993), we retain the complexity of set

semantics.

Query Coverage. SPARQL queries may also contain other operators, such as FILTER, UNION, and
so on. Nevertheless, the use of SPARQL queries in practice is dominated by the operators AND and
OPT, whose completeness checking procedure was proposed in Section 3. Our analysis from the
Linked SPARQL Queries (LSQ) dataset, which contains query logs from, among others, DBpedia,
has shown that around 3 out of 4 queries asked over DBpedia were about AND and/or OPT, without
other operators.

FILTER Extension. Our proposed framework provides a sufficient characterization for complete-
ness entailment of queries with FILTER. The idea is that, for any query with FILTER, it can be
answered completely if completeness statements can guarantee the completeness of the query
where the FILTER parts are removed. Having a full characterization with the incorporation of
FILTER in both completeness statements and queries is left for future work.

UNION Extension. For queries with nonnested UNION, completeness can be guaranteed iff all the
BGPs of the UNION parts can be guaranteed to be complete. For queries with nested UNION, a flat-
tening transformation to DNF transformation of propositional formulas (Ligeza 2006) can be em-
ployed first, which generates an equivalent query with nonnested UNION. This approach, however,
may potentially lead to an exponential blowup of the query size.

Aggregate Extension. SPARQL 1.1 includes aggregate operators such as COUNT, SUM, and MAX.
Computing aggregates over incomplete data may produce incorrect results. Our completeness
checking technique can be leveraged to check whether the body of the aggregate queries can
be guaranteed to be complete. If the answer is yes, then the correctness of the resulting aggregate
values can be ensured.

Blank Nodes. Blank nodes provide support for anonymous resources in RDF (Klyne and Carroll
2004). Owing to the local scope of their labels, blank nodes may add complexity to data process-
ing (Erxleben et al. 2014; Heath and Bizer 2011). Moreover, semantic mismatches may occur when
blank nodes are used in conjunction with, for example, SPARQL’s COUNT (Hogan et al. 2014). De-
spite this, they are used in practice, to some extent, for modeling unknown nulls (Darari et al. 2015;
Hogan et al. 2014) and n-ary relations (Noy and Rector 2006). The use of blank nodes for unknown
nulls contradicts the idea of completeness: one may state that a graph is complete for triples of the
form (tom, spouse, ?s), while the graph contains the triple (tom, spouse, _:b), indicating that Tom
has a spouse who is unknown. For the case of n-ary relations, skolemization can be leveraged as a
way to systematically replace blank nodes with fresh, skolem IRIs (Cyganiak et al. 2014; Hayes and
Patel-Schneider 2014; Hogan 2015). Such a practice is followed, for example, by Wikidata develop-
ers to avoid blank nodes’ complications (Erxleben et al. 2014).39 This way, completeness statements
can still represent the information previously encoded with blank nodes.

OWA and CWA Interpretation of Query Answers. RDF data is usually interpreted under the
open-world assumption (OWA), for which it is unknown whether the information is complete or
not (Patel-Schneider 2015). The presence of completeness statements adds knowledge about the
fact that some portions of RDF datasets are known to be closed. Consequently, SPARQL queries
evaluated only over those (closed) portions are guaranteed to return complete answers. As an
illustration, consider the query “Retrieve movies directed by Tarantino.” Without completeness

39For instance, the IRI of Wikidata for Barack Obama’s presidency is http://www.wikidata.org/entity/statement/
q30-14c52ecf-4b9e-083b-86c8-86029c334d99.
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statements, answers to this query are always open for possible extensions since the data source
upon which the query is evaluated might miss some Tarantino movies. Now, when we know that
the data source is complete for all Tarantino movies, a corresponding completeness statement may
be formulated that makes this knowledge explicit. As an effect, answers to the query for Tarantino
movies are now closed for extensions (as guaranteed by the statement); hence, those answers are
complete. Yet, answers to other queries whose data is not captured by completeness statements
are still open. Thus, we can say that our approach stands in the middle between the classic open-
and closed-world assumptions.

9 CONCLUSIONS AND FUTURE WORK

In this article, we have presented a theoretical framework to manage completeness of RDF data
sources. The framework focuses on providing formal and machine-readable completeness descrip-
tions (or statements) about RDF data sources and reasoning methods to infer whether query com-
pleteness can be guaranteed given such descriptions. Such an automated way to infer query com-
pleteness was not possible before, since (i) completeness descriptions were provided only in natural
language, such as those found on IMDb, Wikipedia, and OpenStreetMap sites; and (ii) it was not
clear how completeness descriptions can guarantee query completeness.

Our completeness management framework supports a variety of scenarios to capture different
requirements for managing completeness. The first and simplest scenario is when only a single
data source is considered to entail query completeness. Here, we cover several query classes: basic
queries, DISTINCT queries, queries with the OPT (“optional”) keyword, and queries under RDFS
semantics. A more complex scenario is when completeness statements of multiple data sources
are taken into account in completeness reasoning. We presented a federation extension to enable
rewriting of a complete query into a federated one, which assigns each query part to a suitable
complete source. Another scenario is when data dynamicity over time is also an issue. We pre-
sented a time extension to represent more expressive completeness statements with timestamps
to bound their completeness scope. Hence, in addition to checking whether query answers are
complete, we can also check the guaranteed completeness date of the query, that is, the latest date
for which the query completeness can be guaranteed.

Real-world RDF data sources, such as DBpedia, may contain a large amount of data. Consequen-
tly, to describe their completeness one would need a large number of completeness statements. We
presented a technique for efficient completeness reasoning over large sets of statements based on
the constant-relevance principle to rule out a significant number of irrelevant statements in com-
pleteness reasoning. We developed a retrieval technique for constant-relevant statements based
on the standard hashing. From our experimental evaluations, we concluded that completeness
reasoning added only a little overhead to query evaluation.

For future work, we are interested in investigating the relationship between our completeness
reasoning framework and the OWL ontology languages. Our conjecture is that the OWL 2 RL
profile (Hitzler et al. 2012) is suitable to be integrated with our framework owing to its rule-based
axiomatization. It is also in our interest to gain deeper insights into how in practice (natural lan-
guage) completeness statements are produced and consumed by Web communities. Inspired by
such insights, we may then devise practical guidelines and workflows for a more effective and ro-
bust completeness management for RDF data sources. Moreover, to have an impact on the wider
community, another future direction is to conduct extensive case studies about the completeness
aspect of data quality in various application domains, such as life sciences, government, and media.
The main goal here would be to analyze whether our completeness framework is sufficient to sup-
port their data completeness requirements and, if not, to determine which extensions are needed.
Extending our framework to support queries with negation is also in our plan. This is especially
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important since evaluating queries with negation is usually done in a closed-world manner in con-
trast to RDF itself, which is often interpreted under the OWA. Therefore, the question is how one
can perform negation safely (in terms of query soundness) by also incorporating data complete-
ness.

APPENDIXES

A PROOF OF THEOREM 3.3

Theorem 3.3 (Completeness of Basic Queries). Let C be a set of completeness statements and

let Q = (W , P ) be a basic query. Then,

C |= Compl (Q) iff P̃ = TC (P̃ ).

Proof. “⇒” We prove the contrapositive. We show that, if P̃ � TC (P̃ ), then the incomplete data
source (TC (P̃ ), P̃ ) serves as a counterexample for the entailment C |= Compl (Q). It satisfies C by
Proposition 2.5 but does not satisfy Compl (Q ). The reason is that the freeze mapping ˜id cannot be
retrieved when evaluating P over the available graph TC (P̃ ), while it can over the ideal graph P̃ .

“⇐” Assume that P̃ = TC (P̃ ). We will now prove that, for every incomplete data source G =
(Ga ,Gi ) satisfying C, it holds that G |= Compl (Q ). It is sufficient to prove that �P�Ga = �P�G i .
Observe that �P�Ga ⊆ �P�G i follows immediately from the monotonicity of P and the fact that
Ga ⊆ Gi by definition.

Now, we prove that �P�Ga ⊇ �P�G i . Consider a mapping μ ∈ �P�G i . We want to show that
μ ∈ �P�Ga . From μ ∈ �P�G i , it follows that μP ⊆ Gi . Due to the monotonicity of TC, it is the case
thatTC ( μP ) ⊆ TC (Gi ). The inclusion can be extended toTC ( μP ) ⊆ TC (Gi ) ⊆ Ga due to (Ga ,Gi ) |=
C. From the assumption that P̃ = TC (P̃ ) and the prototypicality of P̃ , it follows that μ ˜id

−1
P̃ ⊆

TC (μ ˜id
−1
P̃ ), where ˜id

−1
is the inverse of the freeze mapping ˜id. Note that μ ˜id

−1
P̃ = μP . Thus, it

holds that μP ⊆ TC (μP ), and from TC ( μP ) ⊆ Ga , it follows that μP ⊆ Ga . Consequently, μ is also
in �P�Ga . Since μ was arbitrary, we proved that �P�Ga ⊇ �P�G i . �

B PROOF OF COROLLARY 3.4

Corollary 3.4. Deciding whether C |= Compl (Q ), given a set C of completeness statements and a

basic query Q = (W , P ), is NP-complete.

Proof. The NP-membership holds because we can verify in polynomial time that P̃ = TC (P̃ )
(see Theorem 3.3) by guessing for each triple in P̃ , the query QC , and the mapping by which it is
constructed.

The proof of NP-hardness is by a reduction of the 3-colorability problem of directed graphs,
which is NP-hard. We adopt to our setting the reduction by Chandra and Merlin (1977)) of graph-
coloring to query evaluation.

We first encode a directed graph G = (V ,E), for which we want to check whether it is
3-colorable, as a set triples(G ) of triple patterns. We associate to each vertex v ∈ V a new vari-
able ?v , and then create a new IRI edge. Then, we define triples(G ) as the set of all triple patterns
(?vi, edge, ?vj ) created from each pair (vi ,vj ) ∈ E. Next, we create the completeness statementCG :

Compl (triples(G ) ∪ { (r, edge, g), (r, edge, b), (g, edge, r ), (g, edge, b), (b, edge, r ), (b, edge, g) } | ∅).

Now, consider the query Qcol :

({ }, { (r, edge, g), (r, edge, b), (g, edge, r ), (g, edge, b), (b, edge, r ), (b, edge, g) }).
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Then, the following claim holds:

The directed graph G is 3-colorable iff {CG } |= Compl (Qcol ).

Proof of the Claim: “⇒” Suppose that G is 3-colorable. Then, there is a mapping μ from the
vertices of G to set of three colors { r ,д,b } such that no adjacent nodes have the same color. It
therefore follows that {CG } |= Compl (Qcol ) by construction.

“⇐” We will prove the contrapositive. Assume that G is not 3-colorable. Then, there is no
mapping from the vertices of G to the set { r ,д,b } such that each pair of adjacent nodes has
different colors. Consider the incomplete data source G = (Ga ,Gi ), where Ga = ∅ and Gi =

{ (r, edge, g), (r, edge, b), . . . , (b, edge, g) }. By the construction of CG and Qcol , we have that
G |= {CG }, but �Qcol �Ga � �Qcol �G i . This implies that there is a counterexample for {CG } |=
Compl (Qcol ). �

C PROOF OF THEOREM 3.6

Theorem 3.6 (Completeness of DISTINCT Queries). Let C be a set of completeness statements

and let Q = (W , P )d be a DISTINCT query. Then,

C |= Compl (Q) iff πW ( ˜id) ∈ �Q�TC (P̃ ) .

Proof. “⇒” We prove the contrapositive. We show that if πW ( ˜id) � �Q�TC (P̃ ) , then the incom-

plete data source (TC (P̃ ), P̃ ) is a counterexample for the entailment C |= Compl (Q). It satisfies C

by Proposition 2.5 but does not satisfy Compl (Q ). The reason is that the mapping πW ( ˜id) cannot
be retrieved by Q over the available graph TC (P̃ ), while it can over the ideal graph P̃ .

“⇐” Assume that πW ( ˜id) ∈ �Q�TC (P̃ ) . We will prove that, for every incomplete data source

G = (Ga ,Gi ) satisfying C, it holds that G |= Compl (Q ). Observe that �Q�Ga ⊆ �Q�G i follows im-
mediately from the monotonicity of Q and Ga ⊆ Gi .

Now, we prove that �Q�Ga ⊇ �Q�G i . Suppose that there is a mapping μ ∈ �Q�G i . We want
to show that μ ∈ �Q�Ga . From our assumption that πW ( ˜id) ∈ �Q�TC (P̃ ) , it follows that there is

a mapping μext where μ ⊆ μext and μextP ⊆ Gi such that μ ˜id
−1
πW ( ˜id) ∈ �Q�

TC (μext
˜id
−1

P̃ )
. Observe

that μ ˜id
−1
πW ( ˜id) = μ and μext

˜id
−1
P̃ = μextP . This means that we are able to preserve by TC some

graph (e.g., TC (μextP )) that contributes to the mapping μ.
Because of the monotonicity of TC, it holds that TC ( μextP ) ⊆ TC (Gi ). The inclusion can further

be extended to TC ( μextP ) ⊆ TC (Gi ) ⊆ Ga due to the assumption that (Ga ,Gi ) |= C. This means
that TC (μextP ) ⊆ Ga and, therefore, μ ∈ �Q�Ga . Since μ was arbitrary, we proved that �Q�Ga ⊇
�Q�G i . �

D PROOF OF THEOREM 3.9

For a pattern tree T = ((N ,E, r ),P ), a node n in T , and the parent node n̂ of n, we define the
operator

newvar (n) = var (P (n)) \ var (P (n̂)),

which returns all variables occurring in the BGP of n, but not in its parent. We use the following
proposition from Letelier et al. (2012) to prove the theorem.

Proposition (New Variables). Let T be a QWDPT in NR normal form. Then, for every node n
in T that is not the root, it holds that newvar (n) � ∅.

Furthermore, Letelier et al. (2012) defined the top-down evaluation �T �td
G

of a QWDPT T of a
well-designed OPT query Q and proved it to be equivalent to �Q�G .
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Definition (Top-Down Evaluation of QWDPTs). LetG be a graph, T = ((N ,E, r ),P ) be a QWDPT,
and M be a set of mappings. For n ∈ N , the evaluation of Tn (the complete subtree of T rooted at
n) with regard to M and G, written ext (M,n,G ), is defined as follows: If n is a leaf, then

ext (M,n,G ) = M � �P (n)�G ,

and, otherwise, if n1, . . . ,nk are the children of n, then

ext (M,n,G ) = M1 � M2 � . . . � Mk ,

where Mi = (M � �P (n)�G ) ext (M � �P (n)�G ,ni ,G ). The top-down evaluation of T over G,
written �T �td

G
, is defined as

�T �td
G = ext ({∅}, r ,G ).

Theorem 3.9 (Completeness of OPT Queries). Let C be a set of completeness statements, let Q
be a well-designed OPT query, and let T be an equivalent QWDPT of Q in NR normal form. Then,

C |= Compl (Q) iff C |= Compl (Qn) f orallbranchqueriesQno f T .

Proof. “⇒” We prove the contrapositive. We show that if there is a branch query Qk =

(var (Pk ), Pk ) of T where C � |= Compl (Qk ), then the incomplete data source (TC (P̃k ), P̃k ) is a coun-
terexample for C |= Compl (Q). It satisfies C by Proposition 2.5, but does not satisfy Compl (Q). The
reason is that the freeze mapping ˜idk of Pk can be retrieved by evaluating Q over the ideal graph
P̃k but not over the available graphTC (P̃k ). Note that the proposition “New Variables” and T being
a QWDPT in NR normal form prevent Q from binding the mapping ˜idk by other OPT patterns in
Q than the corresponding OPT pattern of the branch query Qk .

“⇐” We proceed by induction on the number of nodes, which is the same as the number of branch
queries:
Induction Base: Suppose that there is only one node. Thus, the implication follows immediately
from Theorem 3.3, as there is only one branch query of T .
Induction Hypothesis: The implication holds for QWDPTs with k nodes.
Induction Step: We now prove that if the number of nodes is k + 1, the implication holds: If C |=
Compl (Qi ) for all branch queries Qi of T where 1 ≤ i ≤ k + 1, then C |= Compl (Q).

Let T ′ be a QWDPT from the removal of a leaf node nl from T . From our assumption, we
have that C |= Compl (Qi ) for all branch queries Qi of T ′. Note that the number of nodes in T ′ is
k . By the induction hypothesis, this implies that C |= Compl (Q′), where Q ′ is the corresponding
query of T ′. With respect to top-down evaluation, this also means that �T ′�td

Ga = �T ′�td
G i for all

G = (Ga ,Gi ) |= C.
Note that T can be recreated by putting the node nl as a child of its respective parent n̂l in T ′.

Suppose that the children of n̂l are n1, . . . ,nl−1,nl ,nl+1 . . . ,nj . Then, given a set M of mappings
and a graph G, the evaluation of Tn̂l

is as follows:

ext (M, n̂l ,G ) = M1 � . . . � Ml−1 � Ml � Ml+1 � . . . � Mj .

From the definition of the ext operator and nl being a leaf in T , it follows that

Ml = (M � �P (n̂l )�G ) (M � �P (n̂l )�G � �P (nl )�G ).

Note that, by the definition of top-down evaluation, the set ext (M, n̂l ,G ) is the source of the dif-
ference between the top-down evaluation of T and that of T ′. The reason is that in T we have
to also consider the set Ml of mappings from the node nl . Thus, if we are complete for this, we are
complete for the whole query of the QWDPT T .

By the induction hypothesis on T ′, for all incomplete data sources (Ga ,Gi ) satisfying C, it holds
that ext (M, n̂l ,G

a ) evaluated during the computation of �T ′�td
Ga is equivalent to ext (M, n̂l ,G

i )
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evaluated during the computation of �T ′�td
G i . Note that with regard to T ′, the value of

ext (M, n̂l ,G
a ) is M1 � . . . � Ml−1 � Ml+1 � . . . � Mj , that is, there is no Ml . From our assump-

tion that C |= Compl (Qi ) for all branch queriesQi of T ′, it is also the case that M � �P (n̂l )�Ga =

M � �P (n̂l )�G i .
Recall our assumption that C |= Compl (Qi ), where 1 ≤ i ≤ k + 1. This implies that M �
�P (n̂l )�Ga � �P (nl )�Ga = M � �P (n̂l )�G i � �P (nl )�G i . Thus, it also holds that ext (M �
�P (n̂l )�Ga ,nl ,G

a ) = ext (M � �P (n̂l )�G i ,nl ,G
i ) and, therefore, we are complete for Ml . Con-

sequently, ext (M, n̂l ,G
a ) = ext (M, n̂l ,G

i ) on the top-down evaluation of T over Ga and Gi , re-
spectively. Since T ≡ Q , it is the case that we are also complete for Q . Thus, we conclude that
C |= Compl (Q). �

E PROOF OF THEOREM 3.13

Theorem 3.13 (Completeness Under RDFS). Let C be a set of completeness statements, let Q =
(W , P ) be a basic query, and let S be a schema graph. Then,

C |=S Compl (Q) iff P̃ ⊆ T S
C

(P̃ ).

Proof. “⇒” We prove the contrapositive. We show that if P̃ � T S
C

(P̃ ), then the incomplete data

source (T S
C

(P̃ ), clS (P̃ )) is a counterexample for the entailment. By the definition ofT S
C

, it satisfies C

with regard to the schema S , but does not satisfy Compl (Q ). The reason is that the freeze mapping
˜id cannot be retrieved by P over the available graphT S

C
(P̃ ), while it can over the ideal graph clS (P̃ ).

“⇐” Assume that P̃ ⊆ T S
C

(P̃ ). We will prove that, for every incomplete data source G =
(clS (Ga ), clS (Gi )) satisfying C, it holds that G |= Compl (Q ). By definition, G |= Compl (Q )
if �Q�clS (Ga ) = �Q�clS (G i ) . It is sufficient to prove that �P�clS (Ga ) = �P�clS (G i ) . Observe that
�P�clS (Ga ) ⊆ �P�clS (G i ) follows immediately from the monotonicity of P and the fact that
clS (Ga ) ⊆ clS (Gi ).

As for �P�clS (Ga ) ⊇ �P�clS (G i ) , suppose that there is a mapping μ ∈ �P�clS (G i ) . This implies
that μP ⊆ clS (Gi ). Because of the monotonicity of T S

C
, it holds that T S

C
( μP ) ⊆ T S

C
(Gi ). By defini-

tion, (clS (Ga ), clS (Gi )) |= C implies that TC (clS (Gi )) ⊆ clS (Ga ). By applying the closure clS once
again on both sides of the inclusion, we have thatT S

C
(Gi ) ⊆ clS (Ga ). Thus, we have the inclusions

T S
C

( μP ) ⊆ T S
C

(Gi ) ⊆ clS (Ga ).

From our assumption that P̃ ⊆ T S
C

(P̃ ), it follows that μ ˜id
−1
P̃ ⊆ μ ˜id

−1
T S

C
(P̃ ) ⊆ T S

C
(μ ˜id

−1
P̃ ). Since

μ ˜id
−1
P̃ = μP and T S

C
(μ ˜id

−1
P̃ ) = T S

C
(μP ) ⊆ clS (Ga ), it holds that μP ⊆ clS (Ga ). Consequently, μ is

also in �P�clS (Ga ) . Because of the arbitrariness of the mapping μ, it is the case that �P�clS (Ga ) ⊇
�P�clS (G i ) . �

F PROOF OF COROLLARY 3.14

Corollary 3.14. Deciding whether C |=S Compl (Q ), given a set C of completeness statements, a

schema graph S , and a basic query Q , is NP-complete.

Proof. From Theorem 3.13, it is the case that C |=S Compl (Q ) iff P̃ ⊆ T S
C

(P̃ ). Recall that the

operatorT S
C

(P̃ ) can be unfolded into clS (TC (clS (P̃ ))). From Muñoz et al. (2009), the closure compu-
tation can be done in PTIME, with the size of the closure growing polynomially. We now provide
an NP-procedure to check C |=S Compl (Q ). First, we compute clS (P̃ ). Then, for every triple (s,p,o)
in P̃ , we guess a mapping and a CONSTRUCT query QC over clS (P̃ ) to build a graph whose closure
computation contains the triple (s,p,o).

The NP-hardness follows immediately because completeness entailment with RDFS is a gener-
alization of the one without RDFS. �
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G PROOF OF PROPOSITION 4.9

Proposition 4.9. Let C̄ be a set of indexed completeness statements and let Q be a basic query.

Then,

C̄ |=fed Compl (Q ) iff C̄
fl |= Compl (Q ).

Proof. “⇒” Assume that C̄ |=fed Compl (Q ) holds. Consider an incomplete data source G =
(Ga ,Gi ) such that (Ga ,Gi ) |= C̄

fl . We will prove that (Ga ,Gi ) |= Compl (Q ). Let us build an in-
complete FDS (Ḡa ,Gi ) in which all graphs in Ḡa are Ga . It follows that (Ḡa ,Gi ) |=fed C̄ and, thus,
(Ḡa ,Gi ) fl |= Compl (Q ) from the assumption that C̄ |=fed Compl (Q ). Since (Ḡa ,Gi ) fl = (Ga ,Gi ) by
construction, it holds that (Ga ,Gi ) |= Compl (Q ). Therefore, C̄

fl |= Compl (Q ) is true, since G was
arbitrary.
“⇐” Assume that C̄

fl |= Compl (Q ) is true. Take any incomplete FDS Ḡ such that Ḡ |=fed C̄. We
will prove that Ḡ fl |= Compl (Q ). By the definition of flattening, if Ḡ |=fed C̄ holds, then Ḡ fl |= C̄

fl

also holds. Because of the assumption, it is the case that Ḡ fl |= Compl (Q ). Therefore, we proved
that C̄ |=fed Compl (Q ) since Ḡ was arbitrary. �

H PROOF OF PROPOSITION 4.13

Proposition 4.13. Let C̄ be a set of indexed completeness statements and letQ = (W , P ) be a basic

query. Then,

C̄ |=fed Compl (Q ) iff P̃ = (TC̄ (P̃ )) fl .

Proof. By Proposition 4.9, it is the case that C̄ |=fed Compl (Q ) iff C̄
fl |= Compl (Q ). By

Theorem 3.3, it holds that C̄
fl |= Compl (Q ) iff P̃ = TC̄ fl (P̃ ). Therefore, it is sufficient to prove that

TC̄ fl (P̃ ) = (TC̄ (P̃ )) fl . However, this follows immediately from the definition of flattening. �

I PROOF OF LEMMA 4.17

Lemma 4.17. Let C̄ be a set of indexed completeness statements and letQ = (W , P ) be a basic query

such that C̄ |=fed Compl (Q ). Moreover, let S̄ be a smart set with regard to C̄ and Q , and let PS̄ be the

SERVICE transformation from the smart set S̄ . Then,

Q̄ = (W , PS̄ ) is a smart rewriting of Q with regard to C̄ such that C̄ |=fed Compl (Q̄ ).

Proof. To prove that Q̄ is a smart rewriting, we will show that �Q̄�(j0,Ḡa ) = �Q�⋃j∈J Ga
j

for

every (Ḡa ,Gi ) satisfying C̄ and every j0 ∈ J . Consider an incomplete FDS Ḡ = (Ḡa ,Gi ) satisfying C̄

and an IRI j0 ∈ J . From the assumption that C̄ |=fed Compl (Q ), it follows that �Q�⋃
j∈J Ga

j
= �Q�G i .

This means that instead we can prove that �Q�G i = �Q̄�(j0,Ḡa ) . Moreover, it is sufficient to prove

�P�G i = �PS̄ �(j0,Ḡa ) . Note that proving this implies that C̄ |=fed Compl (Q̄ ) since (PS̄ ) fl = P is true.

Let us first prove that �P�G i ⊆ �PS̄ �(j0,Ḡa ) . By construction, it is the case that (PS̄ ) fl = P . We
will prove that, for every (SERVICE k t ) occurring in PS̄ such that k is an IRI and t is a triple pattern,
it holds that πvar (t ) (�P�G i ) ⊆ �t�Ga

k
, where �t�Ga

k
= �t�(k,Ḡa ) = �(SERVICE k t )�(j0,Ḡa ) .

Suppose that there is a mapping ν ∈ πvar (t ) (�P�G i ). Therefore, there exists a mapping νext ∈
�P�G i such that ν ⊆ νext . This means that νext (P ) ⊆ Gi . Now, to νext (P ), we apply the associated
CONSTRUCT query QC = (PC , PC ∪ P ′C ) of the completeness statementC that is the witness to gen-
erate (SERVICE k t ) from the smart set. Note that C has an index k and Ga

k
is in Ḡa . This means

that there is a mapping μC such that μC (PC ∪ P ′C ) ⊆ P̃ and t̃ ∈ μC (PC ). Thus, it follows that

• νext
˜id
−1
μC (PC ∪ P ′C ) ⊆ νext

˜id
−1

(P̃ ) = νext (P ) and

• νext
˜id
−1

(t̃ ) ∈ νext
˜id
−1
μC (PC ).
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We now have that

νext
˜id
−1

(t̃ ) ∈ νext
˜id
−1
μC (PC ) ⊆ �QC �νex t (P ) ⊆ �QC �G i ⊆ Ga

k ,

where the last inclusion is due to (Ga
k
,Gi ) |= C (recall that we assume that Ḡ |=fed C̄ holds). There-

fore, it is the case that νext
˜id
−1

(t̃ ) ∈ Ga
k

. Since π
var ( ˜id

−1
(t̃ ))

(νext ) = ν , this implies that ν (t ) ∈ Ga
k

and,

thus, ν ∈ �t�Ga
k

. As ν was arbitrary, it therefore holds that πvar (t ) (�P�G i ) ⊆ �t�Ga
k

.
Since it holds for every SERVICE pattern (SERVICE k t ) occurring in PS̄ and it is also the case that

(PS̄ ) fl = P by construction, if we then join all the mapping results from all the SERVICE patterns,
we will get that �P�G i ⊆ �PS̄ �(j0,Ḡa ) .

By considering that �P�G i = �(PS̄ ) fl�G i ⊇ �PS̄ �(j0,Ḡa ) , where the last relation holds due to the

nature of available graphs, it then holds that �P�G i = �(PS̄ ) fl�G i = �PS̄ �(j0,Ḡa ) . This proves that
Q̄ is a smart rewriting with regard to Q and C̄, and Compl (Q̄ ) is entailed by C̄. �

J PROOF OF THEOREM 4.18

Theorem 4.18. Let C̄ be a set of indexed completeness statements and let Q = (W , P ) be a basic

query. Then,

there exists a smart rewriting of Q with regard to C̄ iff C̄ |=fed Compl (Q ).

Proof. “⇒” We will prove the claim by contradiction. Suppose that there exists a smart rewrit-
ing Q̄ = (W , P̄ ) of Q , but C̄ � |=fed Compl (Q ). Consider a witness for the nonentailment, that is,
Ḡ = (Ḡa ,Gi ) satisfying C̄, but �Q�⋃

j∈J Ga
j
� �Q�G i . In other words, there is a mapping μ ∈ �P�G i

such that μ � �P�⋃
j∈J Ga

j
. This means that μ (P ) ⊆ Gi but μ (P ) �

⋃
j ∈J G

a
j . Thus, there must be

some triple pattern t ∈ P such that μ (t ) �
⋃

j ∈J G
a
j . Since Q̄ is a smart rewriting of Q , this implies

that μ � �P̄�(j0,Ḡa ) . This means that in the SERVICE pattern (SERVICE k t ) in Q̄ , it is the case that
πvar (t ) (μ ) � �t�Ga

k
or, equivalently, μ (t ) � Ga

k
.

Now, let l be another source index in J . Introduce a new incomplete FDS (H̄a ,Gi ) such
that Ha

l
:= Gi , and let the other components in H̄a equal to those of Ḡa . It easily follows that

(H̄a ,Gi ) |=fed C̄. However, it is the case that μ ∈ �P�⋃
j∈J H a

j
but μ � �P̄�(j0,H̄ a ) , because it still holds

that πvar (t ) (μ ) � �t�H a
k

. Thus, �P�⋃
j∈J H a

j
� �P̄�(j0,H̄ a ) in contradiction to our assumption that Q̄

is a smart rewriting.
“⇐” It follows immediately from Lemma 4.17. �

K PROOF OF LEMMA 5.6

Lemma 5.6 (Entailment of Query Completeness at a Date). Let Ĉ be a set of timestamped

completeness statements, let Q = (W , P ) be a query, and let d be a date. Then,

Ĉ |= Compl (Q,d ) iff P̃ ⊆ T
Ĉ≥d

(P̃ ).

Proof. “⇒” We prove by contrapositive. We first consider the case in which d ∈ N. Assume
that P̃ � T

Ĉ≥d
(P̃ ). We show that Ĉ � |= Compl (Q,d ) by giving a counterexample series S such that

S |= Ĉ but S �|= Compl (Q,d ), which can be constructed as follows:

S = (Ga
now, (∅, . . . , ∅,Gi

d ,G
i
d+1, . . .)),

where now is any date such that now ≥ max(date(Ĉ) \ { ∞ }), Ga
now = TĈ≥d

(P̃ ), and Gi
d
= Gi

d+1 =

· · · = P̃ . By construction, we have that S |= Ĉ. However, by the assumption that P̃ � T
Ĉ≥d

(P̃ ), it
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is the case that �Q�G i
d
= �Q�P̃ � �Q�T

Ĉ≥d
(P̃ ) = �Q�Ga

now
because the freeze mapping ˜id in �P�P̃ is

missing in �P�T
Ĉ≥d

(P̃ ) . Therefore, S �|= Compl (Q,d ).

The proof for the case in which d = ∞ can be done analogously. In this case, we take a date
now > max(date(Ĉ) \ { ∞ }) to show that Ĉ � |= Compl (Q,d ).
“⇐” We first prove the case in which d ∈ N. Assume that P̃ ⊆ T

Ĉ≥d
(P̃ ). We will show that Ĉ |=

Compl (Q,d ).
Take a seriesS |= Ĉ. We have to show thatS |= Compl (Q,d ), that is, �Q�G i

d
⊆ �Q�Ga

now
. Suppose

there is a mapping μ ∈ �Q�G i
d

. Thus, there must be a mapping μext ⊇ μ, where μext ∈ �P�G i
d

. We

will prove that μext ∈ �P�Ga
now

. By the assumption that P̃ ⊆ T
Ĉ≥d

(P̃ ) and the prototypicality of P̃ , it

holds that μext
˜id
−1

(P̃ ) ⊆ T
Ĉ≥d

(μext
˜id
−1

(P̃ )). The inclusion can be further extended to μext
˜id
−1

(P̃ ) ⊆
T

Ĉ≥d
(μext

˜id
−1

(P̃ )) ⊆ T
Ĉ≥d

(Gi
d

), where the last subsumption holds due to μext ∈ �P�G i
d

. By S |= Ĉ,

it must be the case thatT
Ĉ≥d

(Gi
d

) ⊆ Ga
now . Therefore, μext

˜id
−1

(P̃ ) ⊆ Ga
now , which implies that μext ∈

�P�Ga
now

.
The proof for the case in which d = ∞ can be done analogously. In this case, the assumption

P̃ ⊆ T
Ĉ≥∞

(P̃ ) is used to show that Ĉ |= Compl (Q,d ) for any date d ∈ N. �

L PROOF OF COROLLARY 5.10

Corollary 5.10 (Complexity of Deciding the Guaranteed Completeness Date). Deciding

whether gcd (Q, Ĉ) ≥ d , given a queryQ , a set Ĉ of timestamped completeness statements, and a date

d , is NP-complete.

Proof. From Theorem 5.8, there exists an NP procedure to check if gcd (Q, Ĉ) ≥ d . It is NP-hard
by reduction from the problem of completeness entailment for basic queries. �
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