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Abstract Conjunctive databasequeries havebeen extended
with a mechanism for object creation to capture important
applications such as data exchange, data integration, and
ontology-based data access. Object creation generates new
object identifiers in the result that do not belong to the set
of constants in the source database. The new object identi-
fiers can be also seen asSkolem terms.Hence, object-creating
conjunctive queries can also be regarded as restricted second-
order tuple-generating dependencies (SO-tgds), considered
in the data exchange literature. In this paper, we focus on the
class of single-function object-creating conjunctive queries,
or sifo CQs for short. The single-function symbol can be used
only once in the head of the query. We give a new character-
ization for oid-equivalence of sifo CQs that is simpler than
the one given by Hull and Yoshikawa and places the prob-
lem in the complexity class NP. Our characterization is based
on Cohen’s equivalence notions for conjunctive queries with
multiplicities. We also solve the logical entailment problem
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for sifo CQs, showing that also this problem belongs to NP.
Results by Pichler et al. have shown that logical equivalence
for more general classes of SO-tgds is either undecidable or
decidable with as yet unknown complexity upper bounds.
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1 Introduction

Conjunctive queries (CQs) form a natural class of database
queries, which can be defined by combinations of selection,
renaming, natural join, and projection. Much of the research
on database query processing is focused on CQs; more-
over, these queries are amenable to advanced optimizations
because containment of CQs is decidable (though NP-
complete). In this paper, we are interested in CQs extended
with a facility for object creation.

Object creation, also called oid generation or value inven-
tion, has been repeatedly proposed and investigated as a
feature of query languages. This has happened in several
contexts: high expressiveness [4,5,11]; object orientation
[3,10,22,24,29]; data integration [21]; semi-structured data
and XML [1]; and data exchange [8,16,18]. In a logic-based
approach, object creation is typically achieved through the
use of Skolem functions [22,24,29].

In the present paper, we consider CQs extended with
object creation through the use of a single Skolem func-
tion, which can be used only once in the head of the query.
We refer to such a query as a ‘sifo CQ’ (for single-function
object-creating). The following example of a sifo CQ uses a
Skolem function f :
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Q : Family(c, f (x, y)) ← Mother(c, x),Father(c, y).

The query introduces a new oid f (x, y) for every pair (x, y)
of a woman x and a man y who have at least one child
together; all children c of x and y are linked to the new
oid in the result of the query (a relation called Family). As an
example, ifMother(beth, anne) and Father(beth, adam) are
two facts in the underlying database, then the result of the
query includes the fact Family(beth, f (anne, adam)), where
f (anne, adam) is the newly created oid. This oid will be
shared by all the children having anne and adam as parents.

In this paper, we first revisit the problem of checking oid-
equivalence of sifo CQs. Oid-equivalence has its origins in
the theory of object-creating queries introduced byAbiteboul
and Kanellakis [3]; it is the natural generalization of query
equivalence in the presence of object creation.

Consider for instance the following sifo CQ:

Q′ : Family(c, g(x, y, x)) ← Mother(c, x),Father(c, y).

It is not hard to see that the result of Q′ has the same
structure as the result of the query Q above. The query Q′
links all children c of the parents x and y to the oid g(x, y, x)
that depends exactly on x and y. That is, two children in the
result of Q are connected to the same oid if and only if they
are connected to same oid in Q′, although the oids will be
syntactically different. Therefore, we can conclude that Q
and Q′ are oid-equivalent, which means that their results are
identical on any input up to a simple isomorphism mapping
the oids in one result to those in the other.

Hull and Yoshikawa [23] studied oid-equivalence (they
called it ‘obscured equivalence’) for non-recursive ILOG
programs; the decidability of this problem is a long-standing
open question. Nevertheless, for the case of ‘isolated oid cre-
ation,’ to which sifo CQs belong, they have given a decidable
characterization.

We give a new result relating oid-equivalence to equiv-
alence of classical conjunctive queries under ‘combined’
bag–set semantics [14], which models the evaluation of CQs
when query results and relations may contain duplicates of
tuples. As a corollary, we obtain that oid-equivalence for
sifo CQs belongs to NP, which does not follow from the
Hull–Yoshikawa test. Obviously, then, oid-equivalence for
sifo CQs is NP-complete, since equivalence of classical CQs
without object creation is already NP-complete.

Object creation is receiving renewed interest in the context
of schemamappings [8,18], which are formalisms describing
how data structured under a source schema are to be trans-
formed into data structured under a target schema. Hence,
it is instructive to view sifo CQs as schema mappings, sim-
ply by interpreting them as implicational statements. As an
example, we may view query Q above as an implicational
statement that relates a query over relations Mother and

Father in the source schema to the relation Family in the
target schema.

For standard CQs without object creation, two queries
are equivalent if and only if they are logically equivalent
as schema mappings [17]. For sifo CQs, we show that oid-
equivalence implies logical equivalence, while the converse
is not true.

Sifo CQs viewed as schema mappings belong to the class
of so-called ‘nested dependencies’ [8], which belong in turn
to the class of formulas called second-order tuple-generating
dependencies (SO-tgds [18]). For instance, consider again
the sifo CQ Q above: It can be rewritten into the following
SO-tgd:

∃ f ∀x∀y∀c (Mother(c, x) ∧ Father(c, y)

→ Family(c, f (x, y))) ,

which is of second order because the function f is existen-
tially quantified.

Although logical equivalence of SO-tgds is undecidable
[19], logical implication of nested dependencies has recently
been shown to be decidable [26].We give a novel and elegant
characterization of logical implication for sifo CQs which is
simpler than the general implication test for nested depen-
dencies. It turns out that the problem belongs to NP. Hence,
logical implication for sifo CQs has no worse complexity
than containment for standard CQs without object creation.

Summarizing, in this paper we provide the following con-
tributions in the area of query languages with object creation:

1. We clarify the relationship between sifo CQs and other
formalisms in the literature, notably the language ILOG
[22], second-order tuple-generating dependencies [18],
and nested tuple-generating dependencies [8].

2. We relate the problem of oid-equivalence for sifo CQs
to the equivalence of classical conjunctive queries under
combined bag–set semantics, which implies its NP-
completeness.

3. We show that when sifo CQs are interpreted as schema
mappings, oid-equivalence implies logical equivalence
but not vice versa.

4. We provide a new characterization of logical implication
for sifo CQs as object-creating queries showing that this
problem has the same complexity as deciding contain-
ment for classical CQs.

This paper is organized as follows. In Sect. 2, we review
some practical applications of sifo CQs. In Sect. 3, we for-
mally define object-creating conjunctive queries. Section 4 is
devoted to the results on oid equivalence. Section 5 is devoted
to the results on logical entailment. In Sect. 6, we conclude
by discussing related work and topics for further research.
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2 Applications of sifo CQs

In this section, we discuss further applications of sifo
CQs, which may constitute important components of many
advanced database systems, spanning from information inte-
gration, and schema mapping engines along with their
benchmarks, to several semantic Web tools. We believe this
shows that the results in this article on equivalence and logi-
cal implication of sifo CQs are relevant and contribute to our
understanding of how solutions for these applications can be
optimized.

Global-as-view (GAV) schemamappings [20,27,33] relate
a query over the source schema, represented by a body B of a
CQ, to an atomic element of the global schema, represented
by a head atom H of a CQ. More precisely, a GAV mapping
can be written as follows:

T (x̄) ← B

where we use a relation symbol T as the atomic head predi-
cate.

GAV schema mappings have been used already in the
1990s in mediator systems like Tsimmis [30,33] or informa-
tion manifold [28] for the integration of heterogeneous data
sources. In both systems, source facts are related to facts over
the global schema by means of queries.

Sifo CQs can naturally be seen as extensions of GAVmap-
pings, when one of the attributes of the global schema carries
newly created identifiers.

For instance, the sifo CQ Q from Sect. 1 can express
a mapping from a source schema containing two relations
Mother andFather to one relationFamily of a global schema,
with created identifiers for families appearing in the tuples
in the result of the mapping. Thus, we can also interpret Q
as an extended GAV schema mapping.

Another important application of sifo CQs is schemamap-
ping benchmarks allowing the users to compare and evaluate
schema mapping systems. In particular, the flexibility of the
arguments of the Skolem functions used for object creation
has been advocated as one of the desirable features in recent
benchmarks for schema mapping and information integra-
tion, such as STBenchmark [6] and iBench [9].

More precisely, in the mapping primitives of iBench [9],
an extension of STBenchmark [6] that supports SO-tgds, the
users can choose among two different skolemization strate-
gies to fill the arguments of the Skolem functions: fixed,
where the arguments of the function are pre-defined in a
native mapping primitive, or variable, where one can fur-
ther choose among the options All, Key, and Random, which
generate mappings where all variables, the variables in the
positions of the primary key, or a random set of variables,
respectively, are used as arguments of the function.

These skolemization strategies can be captured by sifo
CQs as follows.

In the query below:

T (x, y, f (x, y, z, w)) ← B(x, y, z, w)

we can observe that the Skolem term uses all the source
variables in the body B (option All). If the attribute in the
position of x is a primary key for B, then the application of
the option Key generates a mapping that can be expressed by
the sifo CQ

T (x, y, f (x)) ← B(x, y, z, w).

Alternatively, choosing the option Random may lead the
iBench to randomly select the attributes in the positions of x
and z and then to generate the mapping represented by

T (x, y, f (x, z)) ← B(x, y, z, w).

It is also worth highlighting that three out of the seven
mapping primitives in iBench that are novel with respect to
STBenchmark, namely ADD (copy a relation and ADD new
attributes), ADL (copy a relation, Add and DeLete attributes
in tandem), and MA (merge and add new attributes) contain
single Skolem functions. They correspond to the following
sifo CQs, respectively:

T (x, y, f (x, y)) ← B(x, y)

T (x, f (x)) ← B(x, y)

T (x, y, z, f (x, y, z)) ← B(x, y), T (y, z).

A third significant application of sifo CQs is the Seman-
tic Web, where sifo CQs can be envisioned in at least two
scenarios, namely in systems for ontology-based data access
(OBDA) and in direct mappings from the relational to the
RDF data format, under development at W3C.1 Indeed,
newly created identifiers in the head of a sifo CQ can serve as
generated keys, or simply as newly invented values needed
to fill an attribute of a relation in the global schema. As such,
sifo CQs can be seen as examples ofmapping assertions from
source schemas to a global ontology in OBDA [31]. Typ-
ically, OBDA mapping assertions relate facts in relational
source schemas to RDF triples in a global ontology. The
newly generated IRIs2 in the RDF triples can be interpreted
as skolemized values in the global ontology.

1 http://www.w3.org/TR/rdb-direct-mapping/.
2 IRIs stand for internationalized resource identifiers and extend the
syntax of uniform resource identifiers (URIs) to amuchwider repertoire
of characters. They naturally embody global identifiers that refer to the
same resource on the Web and can be used across different mapping
assertions to refer to that resource.
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A related application is the direct translation of a relational
schema intoOWL,which uses as an important building block
the creation of IRIs [32]. In contrast to the previous applica-
tion, this application handles relational schemas that are not
known in advance. For each relation r in a database schema,
Datalog-like rules can be used to generate an IRI for the rela-
tion r and an IRI for each attribute a in r .We take an example
of a translation from a relational schema into OWL, and we
show that, actually, these Datalog-like rules can be viewed as
sifo CQs, since they employ a single concatenation function
to obtain such IRIs (exemplified as f ). The corresponding
sifo CQs are reported below:

T1(r, f (b, r)) ← B1(r)

T2(a, r, f (b, r, a)) ← B2(r, a),

where B1 and B2 are conjunctive query (CQ) bodies retriev-
ing relation names r and attribute names a from the data
dictionary of an underlying relational database and where
b is a string representing a given IRI base (e.g., the string
‘http://example.edu/db’) for the same database to be trans-
lated. Thus, the first query creates a new IRI for the relation
r , by concatenating b with the relation symbol r , while the
second query returns the set of IRIs of the attributes a of r , by
concatenating b with the relation symbol r and its attribute
symbols a.

3 Preliminaries

In this section, we introduce our formalism for dealing
with conjunctive queries and introduce the notion of object-
creating CQ, adapted from the language ILOG [22].

3.1 Databases and conjunctive queries

From the outset, we assume a supply of relation names,
where each relation name R has an associated arity ar(R).We
also assume an infinite domain dom of atomic data elements
called constants. A fact is of the form R(a1, . . . , ak) where
a1, . . . , ak are constants and R is a k-ary relation name. We
call R the predicate of the fact.

A database schema S is a finite set of relation names. An
instance of S is a finite set of facts with predicates from S.
The set of all constants appearing in an instance I is called
the active domain of I and denoted by adom(I ).

We further assume an infinite supply of variables, dis-
joint from dom. An atom is of the form R(x1, . . . , xk)where
x1, . . . , xk are variables and R is a k-ary relation name. As
with facts, we call R the predicate of the atom.

We can now recall the classical notion of CQ [2,13]. Syn-
tactically, a CQ over a database schema S is of the form

H ← B,

where B is a finite set of atoms with predicates from S and
H is an atom with a predicate not in S. The set B is called
the body, and H is called the head. It is required that every
variable occurring in the head also occurs in the body. We
denote the set of variables occurring in a set of atoms B (or
a single atom A) by var(B) (or var(A)).

The semantics of CQs is defined in terms of valuations. A
valuation is a mapping α : X → dom on some finite set of
variables X . When A is an atom with var(A) ⊆ X , we can
apply α to A simply by applying α to every variable in A.
This results in a fact and is denoted by α(A). When B is a
set of atoms and α is a valuation on var(B), we can apply
α to B by applying α to every atom in B. Formally, α(B) is
defined as the instance {α(A) | A ∈ B}.

When I is an instance and α is a valuation on var(B) such
that α(B) ⊆ I , we say that α is a matching of B in I , and
denote this by α : B → I . Now when Q is a CQ H ← B
and I is an instance, the result of Q on I is defined as

Q(I ) := {α(H) | α : B → I } .

3.2 Object-creating conjunctive queries

Assume a finite vocabulary of function symbols of various
arities. As with relation names, the arity of a function symbol
f is denoted by ar( f ).
Data terms are syntactical expressions built up from con-

stants using function symbols. Formally, data terms are
inductively defined as follows:

1. Every constant is a data term;
2. If f is a k-ary function symbol and d1, . . . , dk are data

terms, then the expression f (d1, . . . , dk) is also a data
term.3

An extended fact is defined just like a fact, except that
it may contain data terms rather than only constants. For-
mally, an extended fact is of the form R(d1, . . . , dk), where
d1, . . . , dk are data terms and R is a k-ary relation name.
The active domain of an extended fact e = R(d1, . . . , dk) is
defined as

adom(e) := {d1, . . . , dk}.

3 Since constants are atomic data elements, no constant is allowed to
be of the form f (d1, . . . , dk).
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Table 1 Instances used in Example 1

Mother
beth anne
ben anne
eric claire
emma diana
dave diana

Father
beth adam
ben adam
eric carl
emma carl

Family
beth f(anne, adam)
ben f(anne, adam)
eric f(claire, carl)
emma f(diana, carl)

An extended instance is a finite set of extended facts. The
active domain of an extended instance J is defined as

adom(J ) :=
⋃

e∈J

adom(e).

Formula terms are defined in the same way as data terms,
but are built up fromvariables rather than constants.Extended
atoms are defined like atoms, but can contain formula terms in
addition to variables. If t is a formula term andα is a valuation
defined on all variables occurring in t , we can applyα to every
variable occurrence in t , obtaining a data termα(t). Likewise,
we can apply a valuation to an extended atom, resulting in
an extended fact.

We are now ready to define the syntax and semantics of
object-creating conjunctive queries (oCQ). Like a classical
CQ, an oCQ is of the form H ← B. The only difference
with a classical CQ is that H can be an extended atom; in
particular, B is still a finite set of ‘flat’ atoms, not extended
atoms. It is still required that var(H) ⊆ var(B). The result of
an oCQ Q = H ← B on an instance I is now an extended
instance, defined as

Q(I ) := {α(H) | α : B → I } .

Example 1 Recall the oCQ Q from Sect. 1:

Family(c, f (x, y)) ← Mother(c, x),Father(c, y).

If I is the instance consisting of the Mother and Father facts
listed in Table 1, then Q(I ) is the extended instance consist-
ing of the extended Family facts listed in the same table.

Example 2 For a more abstract example, consider the fol-
lowing oCQ Q:

T (x, f (y)) ← R(x, y, z).

If I is the instance consisting of the R-facts listed in Table 2,
then Q(I ) consists of the extended T -facts listed in the same
table.

Table 2 Instances used in Example 2

R

a b c
a b d
c b d
d c a

T

a f(b)
c f(b)
d f(c)

3.3 The single-function case

In this paper, we focus on single-function oCQs (sifo CQs)
that have exactly one occurrence of a function symbol in the
head.Without loss of generality,we always place the function
term in the last position of the head.

Definition 1 A sifo CQ over a database schema S is an oCQ
over S of the form

T (x̄, f (z̄)) ← B,

where T is the head predicate, f is a function symbol, B is
the body, x̄ is a tuple of (not necessarily distinct) variables
from var(B), called the distinguished variables, z̄ is a tuple
of (not necessarily distinct) variables from var(B), called the
creation variables; some creation variables may be distin-
guished; the elements of var(B) that are not distinguished
are called the non-distinguished variables.

Example 3 The queries in Examples 1 and 2 are both exam-
ples of sifo CQs.

3.4 Comparison with ILOG

Object-creating CQs can be considered to be the conjunc-
tive query fragment of non-recursive ILOG [22]; our syntax
exposes the Skolem functions, which are normally obscured
in the standard ILOG syntax, and our semantics corre-
sponds to what is called the ‘exposed semantics’ by Hull
and Yoshikawa. Nevertheless, in the following section, we
will consider oid-equivalence of sifo CQs, which does corre-
spond to what has been called ‘obscured equivalence’ [23].

4 Characterization of oid-equivalence for sifo CQs

4.1 Oid-equivalence of oCQs

The result Q(I ) of an oCQ Q applied to an instance I is
an extended instance. The data terms in adom(Q(I )) that
are not constants play the role of created oids (also called
invented values). Intuitively, it is clear that the actual form of
the created oids does not matter.

Example 4 Recall the query Q from Example 1:

Family(c, f (x, y)) ← Mother(c, x),Father(c, y).
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Table 3 Instance used in Example 4

Family
beth g(anne, adam, anne)
ben g(anne, adam, anne)
eric g(claire, carl, claire)
emma g(diane, carl,diane)

Asmentioned in Sect. 1, we could have used equivalently the
following query Q′:

Family(c, g(x, y, x)) ← Mother(c, x),Father(c, y).

Applying the above query to the mother and father facts from
Table 1, results in the instance given in Table 3. Intuitively,
this instance has exactly the same relevant properties as the
family instance from Table 1: beth and ben are linked to the
same family oid; eric is linked to another oid and emma to
still another one.

We formalize this intuition in the following definitions.

Definition 2 Let J be an extended instance.

– The set adom(J ) − dom is denoted by oids(J );
– The set adom(J ) ∩ dom is denoted by consts(J ).

Definition 3 Let J be an extended instance and let ρ be a
mapping from adom(J ) to the set of data terms. For any
extended fact e = R(d1, . . . , dk) in J , we define ρ(e) to
be the extended fact R(ρ(d1), . . . , ρ(dk)). We then define
ρ(J ) := {ρ(e) | e ∈ J }.
Definition 4 Let J1 and J2 be extended instances. Then J1
and J2 are called oid-isomorphic if there exists a bijection
ρ : adom(J1) → adom(J2) such that

– ρ is the identity on consts(J1);
– ρ maps oids(J1) to oids(J2);
– ρ(J1) = J2.

Such a bijection ρ is called an oid-isomorphism from J1 to
J2.

The abovedefinition implies that oid-isomorphic instances
have the same constants. Formally, if J1 and J2 are oid-
isomorphic, then consts(J1) = consts(J2).

Definition 5 Let Q and Q′ be two oCQs with the same head
predicate and over the same database schema S. Then Q and
Q′ are called oid-equivalent if for every instance I over S;
the results Q(I ) and Q′(I ) are oid-isomorphic.

Example 5 The queries in Example 4 are oid-equivalent. For
example, for the instance I of Table 1, the oid-isomorphism
from Q(I ) to Q′(I ) is as follows:

Table 4 Instances used in Example 6

I

a b c
d b e

Q(I)
a f(b)
d f(b)

Q (I)
a f(a, b)
d f(d, b)

Table 5 Instances used in Example 7

I

a b c
a d e

Q(I)
a f(a)

Q (I)
a f(a, b, c)
a f(a, d, e)

f (anne, adam) �→ g(anne, adam, anne)
f (claire, carl) �→ g(claire, carl, claire)
f (diane, carl) �→ g(diane, carl, diane).

Example 6 Recall the query Q from Example 2:

T (x, f (y)) ← R(x, y, z)

Also consider the following variation Q′ of Q:

T (x, f (x, y)) ← R(x, y, z)

Then Q and Q′ are not oid-equivalent, as given by the
simple instances in Table 4. Indeed, there cannot be an oid-
isomorphism from Q(I ) to Q′(I ) because Q(I ) contains
only one distinct oid while Q′(I ) contains two distinct oids.

Example 7 As a variant of Example 6, consider the following
two oCQs:

Q = T (x, f (x)) ← R(x, y, z)

Q′ = T (x, f (x, y, z)) ← R(x, y, z)

Again these two oCQs are not oid-equivalent, as shown by
the counterexample instances in Table 5.

4.2 Homomorphisms and containment of conjunctive
queries

The characterizations we will give for oid-equivalence of
sifo CQs depend on the classical notions of homomorphism
and containment between conjunctive queries. Let us briefly
recall these notions now [2,13].

A variable mapping is a mapping h from a finite set X of
variables to another finite set Y of variables. If A is an atom
with variables in X , then we can apply h to each variable
occurrence in A to obtain an atom with variables in Y , which
we denote by h(A). If B is a set of atoms with var(B) ⊆ X ,
then we naturally define h(B) := {h(A) | A ∈ B}.

For two sets B and B ′ of atoms, a variable mapping h :
var(B) → var(B ′) is called a homomorphism from B to B ′
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if h(B) ⊆ B ′. This is denoted by h : B → B ′. The notion
of homomorphism is extended to conjunctive queries Q =
H ← B and Q′ = H ′ ← B ′ as follows. A homomorphism
from Q to Q′ is a homomorphism h : B → B ′ such that
h(H) = H ′. This is denoted by h : Q → Q′.

A classical result relates homomorphisms between con-
junctive queries to containment. Let Q and Q′ be two
conjunctive queries over a common database schema S. We
say that Q′ is contained in Q if for every instance I of S,
we have Q′(I ) ⊆ Q(I ). The classical result states that Q′ is
contained in Q if and only if there exists a homomorphism
h : Q → Q′.

Two queries Q and Q′ are equivalent if for every instance
I ofS, we have Q(I ) = Q′(I ). Since equivalence amounts to
containment in both directions, two conjunctive queries are
equivalent if and only if there exist homomorphisms between
them in both directions.

4.3 A normal form for oid-equivalence problems

In this subsection, we consider two arbitrary sifo CQs Q, Q′
with the same head predicate:

Q = T (x̄, f (z̄)) ← B

Q′ = T
(
x̄ ′, f ′ (z̄′

)) ← B ′.

Then x̄ and x̄ ′ have equal length. Note that x̄ and z̄ as well
as x̄ ′ and z̄′ may have variables in common.

Our aim is to show that oid-equivalence between arbitrary
sifo CQs Q and Q′ can be reduced to the case where the
heads

T (x̄, f (z̄)) and T
(
x̄ ′, f ′ (z̄′

))

have identical arguments, that is, where x̄ = x̄ ′ and z̄ = z̄′.
As a first lemma, we state that rearranging the creation

variables of a query does not affect oid-equivalence.

Lemma 1 (Rearranging creation variables) Let Q be a sifo
CQ written as above. Let ū be a tuple with exactly the same
variables as z̄, but possibly with different repetitions and
a different ordering, and let g be a function symbol whose
arity is equal to the length of ū. Then the sifo CQ P =
T (x̄, g(ū)) ← B is oid-equivalent to Q.

Proof Let I be an instance. We define an oid-isomorphism
from Q(I ) to P(I ) as follows. Any oid o in Q(I ) is of the
form f (α(z̄)) for some matching α : B → I ; we define
ρ(o) := g(α(ū)). This iswell defined, i.e., independent of the
choice of α. Indeed, if the data terms f (α1(z̄)) and f (α2(z̄))
are equal, then the tuples α1(z̄) and α2(z̄) are equal, which
implies that α1 and α2 agree on every variable appearing in z̄.
Since exactly the same variables appear in ū, also the tuples
α1(ū) and α2(ū) are equal, whence g(α1(ū)) = g(α2(ū)).

That ρ : oids(Q(I )) → oids(P(I )) is injective is shown
by an analogous argument. The surjectivity of ρ, as well as
the equality ρ(Q(I )) = P(I ), is clear. �

By the above lemma, we can remove all duplicates from z̄
and z̄′ in the heads of Q and Q′, respectively. So, from now
on we may assume z̄ and z̄′ have no duplicates.

In the following, let Z equal the set of variables occurring
in z̄, let X equal the set of variables occurring in x̄ , and let
Z ′ and X ′ be defined similarly.

Wenext show that two sifoCQs can only be oid-equivalent
if they have identical patterns of distinguished variables, up
to renaming.

Lemma 2 (Renaming distinguished variables) If Q and Q′
are oid-equivalent, then there exists a bijective variable map-
ping σ : X → X ′ such that σ(x̄) = x̄ ′.

Proof Certainly, if Q and Q′ are oid-equivalent, then the
conjunctive queries Q0 = T0(x̄) ← B and Q′

0 = T0(x̄ ′) ←
B ′, where T0 is a new predicate symbol, are equivalent. So,
there are homomorphisms h : Q0 → Q′

0 and h
′ : Q′

0 → Q0.
In particular, h(x̄) = x̄ ′ and h′(x̄ ′) = x̄ .We define σ to be the
restriction of h to X . The claimσ(x̄) = x̄ ′ and the surjectivity
of σ are then clear. So it remains to show that σ is injective.
Thereto, consider h′(σ (x̄)) = h′(h(x̄)) = h′(x̄ ′) = x̄ . We
see that h′ ◦ σ is the identity on X and thus injective. Hence,
σ must be injective as well. �

By the above lemma, if there does not exist a renaming σ

as in the lemma, certainly Q and Q′ are not oid-equivalent. If
there exists such a renaming, then by renaming the variables
in one of the two queries; we can now assume without loss
of generality that x̄ = x̄ ′ and in particular that X = X ′.

The next step is to show that oid-equivalent queries must
have the same distinguished variables among the creation
variables, that is, X ∩ Z = X ∩ Z ′.

Lemma 3 (Distinguished creation variables) If X ∩ Z �=
X ∩ Z ′, then Q and Q′ are not oid-equivalent.

Proof Either there exists some x ∈ X ∩ Z but not in Z ′ or
vice versa. By symmetry, wemay assume the first possibility.

We construct an instance I from B ′. In doing this, to keep
our notation simple, we consider the variables in B ′ to be
constants. The instance I is obtained from B ′ by duplicating
x to some new element x2. Formally, consider the mapping
d on var(B ′) that is the identity everywhere except that x is
mapped to x2; then I = B ′ ∪ d(B ′).

First, let us look at Q′(I ). Using the identity matching
that maps every variable to itself, we obtain the extended fact
T (x̄, f ′(z̄′)) ∈ Q′(I ). Using the matching d defined above,
we obtain the extended fact T (x̄2, f ′(d(z̄′))) in Q′(I ). Here,
x̄2 denotes d(x̄), i.e., x̄2 is obtained from x̄ by replacing x
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with x2. Since x does not belong to Z ′, we have d(z̄′) = z̄′,
so T (x̄2, f ′(z̄′)) ∈ Q′(I ).

On the other hand, in Q(I ) consider any two extended
facts T (α1(x̄), f (α1(z̄))) and T (α2(x̄), f (α2(z̄))), with
matchings α1 : B → I and α2 : B → I , such that α1(x̄) = x̄
and α2(x̄) = x̄2. Then in particular α1(x) = x and α2(x) =
x2. Since α1 and α2 differ on x and x is in Z , also α1(z̄) and
α2(z̄) are different. Hence, the two last components f (α1(z̄))
and f (α2(z̄)) are different. Thus, we see that in Q(I ) it is
impossible to have two extended atoms T (x̄, o) and T (x̄2, o)
with the same oid o. But we have seen this is possible in
Q′(I ), so Q(I ) and Q′(I ) are not oid-isomorphic and Q and
Q′ cannot be oid-equivalent. �

By the above lemma, we now assume X ∩ Z = X ∩ Z ′.
The last step is to show that Z − X and Z ′ − X , the sets of
non-distinguished creation variables, need to have the same
cardinality.

Lemma 4 (Non-distinguished creation variables) If Z − X
and Z ′ − X have different cardinality, then Q and Q′ are not
oid-equivalent.

Proof As in the proof of Lemma 3, we consider B as an
instance, viewing variables as constants.

Let k and k′ be the cardinalities of Z − X and Z − X ′,
respectively. By symmetry, wemay assume that k > k′. Now,
for any natural number n, let In be the instance obtained from
B by independently multiplying each variable z ∈ Z − X
into n fresh copies z(1), . . . , z(n). Formally, for any function
d : Z − X → {1, . . . , n}, let d̂ be the valuation on var(B)

that maps each z ∈ Z − X to z(d(z)) and that is the identity
on all other variables. Then

In =
⋃

d:Z−X→{1,...,n}
d̂(B).

There are nk different functions d : Z − X → {1, . . . ,
n}. Each corresponding valuation d̂ is a matching of B in
In ; all these matchings are the identity on x̄ but are pairwise
different on z̄. Thus, there are at least nk different extended
facts in Q(In) of the form T (x̄, o).

On the other hand, consider any set S of valuations from
X ∪ Z ′ to adom(In) that are pairwise different on Z ′ − X
but that all agree on X . The cardinality of Z ′ − X is k′. The
cardinality of adom(In) is O(n) (although the cardinality of
In itself is larger). Hence, such a set S can be of cardinality at
most O(nk

′
). Consequently, since k > k′, for n large enough,

Q′(In) cannot possibly contain nk different extended facts of
the form T (x̄, o). But we saw that this is possible in Q(In).
So, Q(In) and Q′(In) are not oid-isomorphic and Q and Q′
cannot be oid-equivalent. �

By the above lemma and after renaming the variables in
Z ′−X and reordering the variables in z̄′, wemay now indeed
assume that z̄ and z̄′ are identical.

4.4 Characterization of oid-equivalence

According to the results of the preceding subsection, we are
now given two sifo CQs as follows:

Q = T (x̄, f (z̄)) ← B (1)

Q′ = T
(
x̄, f ′ (z̄)

) ← B ′. (2)

Note that Q and Q′ have identical tuples x̄ and z̄ of dis-
tinguished and creation variables; moreover, z̄ contains no
variable more than once. As before, we denote the sets of
distinguished and creation variables as X and Z , respectively.

We will show that Q and Q′ are oid-equivalent if and
only if there are homomorphisms between B and B ′ in both
directions that (i) keep x̄ fixed and (ii) possibly permute the
variables in z̄. To make this formal, we associate with each
query a classical CQ without function symbols.

Definition 6 Fix a new relation symbol T̊ of arity the sum
of the lengths of x̄ and z̄. The flattening of Q is the query
Q̊ = T̊ (x̄, z̄) ← B. The query Q̊′ is defined similarly.

Let π be a permutation of the set Z − X . We extend π to
var(B) by defining it to be the identity outside Z − X . We
now define Q̊π to be the CQ obtained from Q̊ by permuting
the variables in z̄, that is

Q̊π = T̊ (x̄, π (z̄)) ← B.

This notion allows us to formulate the following natural
sufficient condition for oid-equivalence.

Proposition 1 If there exists a permutation π of Z − X such
that Q̊π and Q̊′ are equivalent, then Q and Q′ are oid-
equivalent.

Proof Let I be an instance. We define an oid-isomorphism
ρ from Q(I ) to Q′(I ) as follows. Any oid o in Q(I ) is of
the form f (α(z̄)) for some matching α : B → I ; we define
ρ(o) := f ′(α(π(z̄))). This is well defined, i.e., indepen-
dent of the choice of α. Indeed, if the data terms f (α1(z̄))
and f (α2(z̄)) are equal, then the tuples α1(z̄) and α2(z̄) are
equal, and consequently, the permuted tuples α1(π(z̄)) and
α2(π(z̄)) are equal. Hence, f ′(α1(π(z̄))) = f ′(α2(π(z̄))).

The injectivity of ρ : oids(Q(I )) → oids(Q′(I )) is
shown by an analogous argument. The surjectivity of ρ and
the equality ρ(Q(I )) = Q′(I ) follow readily from the equal-
ity Q̊π (I ) = Q̊′(I ). �

We next prove that the sufficient condition given by
the above Proposition is actually also necessary for oid-
equivalence. The key idea for proving this is to show that
oid-equivalence of sifo CQs depends only on the number of
oids generated for any binding of the distinguished variables.

123



Mapping-equivalence and oid-equivalence of single-function object-creating conjunctive queries 389

Formally, for any instance I and any tuple c̄ of elements
from adom(I ), we define

#c̄(Q, I ) := #{ o | T (c̄, o) ∈ Q(I ) },

that is, #c̄(Q, I ) denotes the number of distinct oids o that
occur together with c̄ in Q(I ). We will show that Q and
Q′ are oid-equivalent if and only if #c̄(Q, I ) = #c̄(Q′, I )
for all instances I and tuples c̄. The only-if direction of this
statement is obvious, but the if-direction is not so obvious.

For our proof, we rely on work by Cohen [14] who studied
queries with multiset variables that are evaluated under so-
called combined semantics, a semantics that combines set
and multiset semantics. Cohen characterized equivalence of
such queries in terms of homomorphisms.

Queries with multiset variables (MV queries) have the
form Q0, M where Q0 is a standard CQ and M is some set
of variables of Q0 that do not appear in the head of Q0. The
elements of M are called the multiset variables. Evaluating
an MV query Q0, M on an instance I results in a multiset
(bag) of facts, where the number of times a fact occurs is
related to the number of different possible assignments of
values to the multiset variables.

Let us define the combined semantics formally. Let Q0 be
of the form H0 ← B0 and let I be an input instance. Recall
that Q0(I ) according to the classical semantics equals

{α(H0) | α : B0 → I } .

LetW be the set of variables appearing in H0. Then the result
of evaluating the MV query Q0, M on instance I is defined
to be the multiset with ground set Q0(I ), where for each fact
e ∈ Q0(I ); the multiplicity of e in the multiset is defined to
be

# {γ |M | γ : B0 → I and γ (H0) = e} .

That is, given a fact α(H0) ∈ Q0(I ), there may be many dif-
ferent matchings γ that agree with α on H0. The multiplicity
of α(H0) is defined to be not the total number of different
such matchings γ , but rather the number of different restric-
tions one obtains when restricting these matchings γ to M .4

Two MV queries are equivalent if they evaluate to the
same multiset on every input instance. Equivalence of MV
queries can be characterized using the notion of multiset
homomorphism [14]. A multiset homomorphism from MV
query Q0, M to MV query Q′

0, M
′ is a homomorphism

4 Themotivation forMVquerieswas tomodel the semantics of positive
SQL queries with nested EXISTS subqueries. While queries under
standard SQL semantics return multisets of tuples, only the relations
mentioned in the top level SQL block contribute to the multiplicities of
answers, whereas relations mentioned in the subquery do not.

h : Q0 → Q′
0 such that h is injective on M and h(M) ⊆ M ′.

Cohen showed the following:

Theorem 1 ([14, Thm 5.3]) Two MV queries are equivalent
if and only if there are multiset homomorphisms between
them in both directions.

To leverage this result on MV equivalence, we associate
two MV queries with our given sifo CQs in the following
way.

Definition 7 Fix a new relation symbol T0 of arity the length
of x̄ . The MV queries Q̃ and Q̃′ are defined as Q0, (Z − X)

and Q′
0, (Z − X), respectively, where

Q0 = T0 (x̄) ← B

Q′
0 = T0 (x̄) ← B ′

The following proposition now relates oid-equivalence to
MV equivalence:

Proposition 2 If Q and Q′ are oid-equivalent, then the MV
queries Q̃ and Q̃′ are equivalent.

Proof Let I be an instance. We must show that the multisets
Q̃(I ) and Q̃′(I ) are equal. Since Q and Q′ are oid-equivalent,
the ground sets Q0(I ) and Q′

0(I ) of Q̃(I ) and Q̃′(I ) are
already equal. We must show that the element multiplicities
are the same as well.

Let T0(c̄) be an arbitrary element of Q0(I ). By the seman-
tics of oCQs, we have the following equalities:

#c̄(Q, I ) = # {γ |X∪Z | γ : B → I and γ (x̄) = c̄}
#c̄

(
Q′, I

) = #
{
γ |X∪Z | γ : B ′ → I and γ (x̄) = c̄

}

Since Q(I ) and Q′(I ) are oid-isomorphic, the left-hand sides
of the above two equalities are equal. Hence, the right-hand
sides are equal as well. But these are precisely the multiplic-
ities of T0(c̄) in Q̃(I ) and Q̃′(I ), respectively. �

The following proposition further relatesMV equivalence
to equivalence of the flattenings up to permutation:

Proposition 3 If the MV queries Q̃ and Q̃′ are equivalent,
then there exists a permutation π of Z − X such that Q̊π and
Q̊′ are equivalent.

Proof By Theorem 1, there exist a multiset homomorphism
h from Q̃ to Q̃′ and a multiset homomorphism h′ from Q̃′ to
Q̃. Since Theorem 1 also implies that h is injective on Z − X
and that h(Z − X) ⊆ Z − X , we can conclude that h acts as
a permutation on Z − X . Moreover, h is the identity on X .
The same two properties hold for h′.

Now put π = (h|Z−X )−1. Then h : Q̊π → Q̊′. So it
remains to find a homomorphism h′′ : Q̊′ → Q̊π . Thereto,
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note that h′h acts as a permutation on Z − X . Since Z − X
is finite, there exists a nonzero natural number m such that
(h′h)m is the identity on Z − X . Equivalently, (h′h)m−1h′
equals π on Z − X . We conclude that (h′h)m−1h′ is the
desired homomorphism h′′. �

We summarize the three preceding Propositions in the fol-
lowing.

Theorem 2 Consider two sifo CQs

Q = T (x̄, f (z̄)) ← B (3)

Q′ = T (x̄, f ′ (z̄)) ← B′ (4)

where Q and Q′have identical tuples x̄ and z̄ of distinguished
and creation variables andwhere z̄ contains no variablemore
than once. Denote the sets of distinguished and creation vari-
ables by X and Z, respectively.

The following are equivalent:

1. The sifo CQs Q and Q′ are oid-equivalent;
2. The MV queries Q̃ and Q̃′ are equivalent;
3. There is a permutation π of Z − X such that the classical

CQs Q̊π and Q̊′ are equivalent.

4.5 Computational complexity

The results of this section imply the following:

Corollary 1 Testing oid-equivalence of sifo CQs is NP-
complete.

Proof Assume given sifo CQs Q and Q′ with the same head
predicate:

Q = T (x̄, f (z̄)) ← B

Q′ = T
(
x̄ ′, f ′ (z̄′

)) ← B ′.

Let X , X ′, Z , and Z ′ denote the sets of variables occurring
in x̄ , x̄ ′, z̄ and z̄′, respectively.

To test oid-equivalence, we begin by removing duplicates
in z̄ and z̄′, as justified by Lemma 1. Note that x̄ and x̄ ′ have
the same length k, because of the fixed arity of T . So we
can write x̄ = x1, . . . , xk and x̄ ′ = x ′

1, . . . , x
′
k . Consider

the mapping σ = {(x1, x ′
1), . . . , (xk, x

′
k)}. We test whether

σ is a bijection from X to X ′; if not, then Q and Q′ are not
oid-equivalent by Lemma 2. If σ is a bijection, we can safely
replace every variable x ′ in X ′ by σ−1(x ′), which yields a
sifo CQ that is oid-equivalent to Q′. Hence, from now on we
may assume that x̄ = x̄ ′ and in particular X = X ′.

Next, we test whether X∩Z = X∩Z ′ and whether Z−X
and Z ′ − X have the same cardinality; if one of the two tests
fails then Q and Q′ are not oid-equivalent by Lemmas 3 and

4. Otherwise, we can rename the variables in Z ′ − X , so that
we may assume that z̄ = z̄′.

We are now left in the situation where Q and Q′ are in the
general forms (3) and (4) from Sect. 4.4, to which Theorem 2
applies. By the third statement of this theorem, we can test
oid-equivalence of Q and Q′ inNPbyguessing a permutation
π and two homomorphisms between Q̊π and Q̊′ in both
directions.

NP-hardness follows immediately because the problem
has equivalence of classical CQs as a special case, which is
well known to be NP-hard. Indeed, oid-equivalence of sifo
CQs Q and Q′ in the special casewhere the creation functions
are nullary amounts to classical equivalence when we ignore
the function terms in the heads.

5 Logical entailment of sifo CQs interpreted
as schema mappings

Object-creating CQs, and sifo CQs in particular, can also be
interpreted alternatively as schema mappings rather than as
queries. Specifically, consider a sifo CQ Q of the general
form T (x̄, f (z̄)) ← B over the database schema S. Let v̄

be the sequence of all variables used in B. Then we may
view Q as a second-order implicational statement over the
augmented schema S ∪ {T }, as follows:

∃ f ∀v̄(B → H)

where H is the head and B is conveniently used to stand for
the conjunction of its elements. Note that this formula is sec-
ond order because it existentially quantifies a function f ; we
denote the above formula by sotgd(Q). This formula belongs
to the well-known class of second-order tuple-generating
dependencies (SO-tgds). More specifically, it is a plain SO-
tgd [7].

Syntactically, the plain SO-tgds coming from sifo CQs in
this manner form a restricted class of SO-tgds, defined by the
following restrictions:

– Plain SO-tgd may consist of multiple rules; sifo CQs con-
sist of a single rule.

– The head of a plain SO-tgdmay consist of multiple atoms;
the head of a sifo CQ consists of a single atom (this is
similar to GAV mappings [12,27], although the classical
notion of GAV mapping does not use function symbols).

– There is only one function symbol, which moreover can
be applied only once in the head.

When interpreting a sifoCQQ as anSO-tgd, the semantics
becomes that of a schema mapping. Specifically, let I be
an instance over S, considered as a source instance, and let
J be an instance over {T }, considered as a target instance.
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Table 6 Instances J1 and J2 from Example 8

Family
beth jones
ben jones
eric simpson
emma smith

Family
beth jones
ben jones
eric jones
emma jones

Table 7 Instance J3 from Example 8

Family
beth jones
ben murphy
eric simpson
emma smith

Then (I, J ) together form an instance over the augmented
schema S∪{T }. Now we say that (I, J ) satisfies Q, denoted
by (I, J ) |� Q, if the structure (adom(I ) ∪ adom(J ), I, J )

satisfies sotgd(Q) under the standard semantics of second-
order logic, using adom(I )∪ adom(J ) as the universe of the
structure.

The following example and remark illustrate that the
semantics of sifo CQs as SO-tgds is quite different from their
semantics as object-creating queries.

Example 8 Let us consider again our query from Example 1.
As we have mentioned in Sect. 1, we can now write it as an
SO-tgd as follows:

∃ f ∀x∀y∀c (Mother(c, x) ∧ Father(c, y)

→ Family(c, f (x, y)))

Take the instance I consisting of the Mother and Father
facts listed in Table 1, and take the instances J1 and J2 con-
sisting of the Family facts listed in Table 6 left and right,
respectively. Then both pairs (I, J1) and (I, J2) satisfy the
SO-tgd. For J1, this is witnessed by the following function
f :

x y f (x, y)
anne adam jones
claire carl simpson
diana carl smith

For J2, this is witnessed by the function that simply maps
everything to jones.

In contrast, for J3 consisting of the Family facts listed in
Table 7, the pair (I, J3) does not satisfy the SO-tgd. Indeed,
suppose there would exist a function f witnessing the truth
of the formula on (I, J3). Since beth has anne as mother and
adam as father, the fact

Family(beth, f (anne, adam))

must belong to J3. The only family fact with beth in the first
position is

Family(beth, jones),

so we conclude

f (anne, adam) = jones.

Furthermore, since ben also has anne as mother and adam as
father, the fact

Family(ben, f (anne, adam))

must be in J3. The only family fact with ben in the first
position is

Family(ben,murphy),

however, we must conclude that

f (anne, adam) = murphy,

which is in contradiction with the previous conclusion.

Remark 1 Note that, by the purely implicational nature of
SO-tgds, if (I, J ) satisfies an SO-tgd and J ⊆ J ′, then also
(I, J ′) satisfies the SO-tgd. Hence, continuing the previous
example, for any instance J ′ obtained by J1 or J2 by adding
some more Family facts, the pair (I, J ′) would still satisfy
the SO-tgd from the example.

The above example and remark show that given a source
instance I , there are in general multiple possible target
instances J such that (I, J ) |� Q. This is in contrast to
the semantics of Q as an oCQ, where Q(I ) is an extended
instance that is uniquely defined. Still, there is a connec-
tion between the oCQ semantics and the SO-tgd semantics.
Specifically, Q(I ) can be viewed as a target instance in a
canonical manner, using oid-to-constant assignments (oc-
assignments for short) defined as follows.

Definition 8 Let I be a source instance and let J be an
extended instance over {T } such that consts(J ) ⊆ adom(I ).
An oc-assignment for J with respect to I is an injective map-
ping ρ : oids(J ) → dom so that the image of ρ is disjoint
from adom(I ).

Thus, ρ assigns to each non-constant data term from J a
different constant that is not in adom(I ).

We now observe the following obvious property giving
a connection between the oCQ semantics and the SO-tgd
semantics:
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Proposition 4 Let I be a source instance and let ρ be an oc-
assignment for Q(I )with respect to I . Then (I, ρ(Q(I ))) |�
Q.

In fact, Q(I ) corresponds to what Fagin et al. [18] call the
chase of I with sotgd(Q).

5.1 Nested dependencies

We have introduced sifo CQs as a restricted class of plain
SO-tgds. But actually, sifo CQs can also be considered as a
restricted form of so-called nested tgds [8]. Thereto, consider
again a sifo CQ of the general form T (x̄, f (z̄)) ← B. Let
ū be the sequence of all variables from B, except for the
creation variables (the variables from z̄). Furthermore, let w
be a fresh variable not occurring in B, and let H ′ be the
atom T (x̄, w). We can now associate with Q the following
implicational statement, denoted by ntgd(Q):

∀z̄∃w∀ū (
B → H ′)

Note that ntgd(Q) is now a first-order formula, but it is clear
that ntgd(Q) is logically equivalent to sotgd(Q). Hence, the
schema mappings arising from sifo CQs are not essentially
second order in nature.

5.2 Logical entailment

In Sect. 4, we have shown that equivalence of sifo CQs as
object-creating queries is decidable. Now that we have seen
that sifo CQs can also be given a semantics as schema map-
pings; we may again ask if equivalence under this alternative
semantics is decidable. The answer is affirmative; we have
seen in the previous subsection that sifo CQmappings belong
to the class of nested dependencies, and logical implication of
nested dependencies has recently been shown to be decidable
[26].When this general implication test for nested dependen-
cies is applied specifically to sifo CQ schema mappings, it
can be implemented in non-deterministic polynomial time.
Hence, logical entailment (and also logical equivalence) of
sifo CQ schema mappings is NP-complete.

In the present section, we present a specialized logical
entailment test for sifo CQ schema mappings which is much
simpler and more elegant and provides more insight into the
problem by relating it to testing implication of a join depen-
dency by a CQ (Theorem 3). Interestingly, there is a striking
correspondence between the general implication test when
applied to sifo CQs and the strategy we use to prove our the-
orem. An in-depth comparison will be given in Sect. 6, after
we have stated the theorem formally and have seen its proof.

Formally, given two schema mappings M and M′ from
a source schema S to a target schema {T }, we say that M
logically entails M′ if the following implication holds for

Table 8 Instances used in Example 9

I

a1 b c
a2 b c

J

a1 d1
a2 d2

every instance I over S and every instance J over {T }:

(I, J ) satisfies M ⇒ (I, J ) satisfies M′.

Referring to the view of sifo CQs as SO-tgds introduced
above, we now define:

Definition 9 Let Q and Q′ be two sifo CQs with the same
head predicate and over the same database schema. We
say that Q logically entails Q′ if sotgd(Q) logically entails
sotgd(Q′).

Example 9 Recall the sifo CQs Q and Q′ from Example 6:

Q = T (x, f (y)) ← R(x, y, z)

Q′ = T
(
x, f ′(x, y)

) ← R(x, y, z)

It is clear that Q logically entails Q′. Indeed, if there exists
a function f witnessing the truth of sotgd(Q), then we can
easily define a function f ′ witnessing the truth of sotgd(Q′)
by defining f ′(x, y) := f (y).

Conversely, however, Q′ does not logically entail Q.
Indeed,Table 8 shows (I, J )where (I, J ) |� Q′ but (I, J ) �|�
Q.

Example 10 Recall the sifo CQs Q and Q′ from Example 7:

Q = T (x, f (x)) ← R(x, y, z)

Q′ = T
(
x, f ′(x, y, z)

) ← R(x, y, z)

Although Q and Q′ are not oid-equivalent, they are logi-
cally equivalent: They logically entail each other. The logical
entailment of Q′ by Q is again clear. To see the converse
direction, assume f ′ witnesses the truth of sotgd(Q′). Then
we define f (x) for any x as follows: If there exists a pair
(y, z) such that R(x, y, z) holds, we fix one such pair (y, z)
arbitrarily and define f (x) := f ′(x, y, z). If no such y and
z exist, we may define f (x) arbitrarily. It is now clear that
this f witnesses the truth of sotgd(Q).

Example 11 Consider the sifo CQs:

Q = T (x, f (z1)) ← R(z1, x), R(z1, z2)

Q′ = T
(
x, f ′(z1, z2)

) ← R(z1, x), R(z1, z2)

Also here, Q and Q′ logically entail each other. The logi-
cal entailment of Q′ by Q is again clear. To see the converse
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direction,wecanuse a reasoning similar to that used inExam-
ple 10. Assume f ′ witnesses the truth of sotgd(Q′). Then we
define f (z1) for any z1 as follows: If there exists z2 such
that R(z1, z2) holds, we fix one such z2 arbitrarily and define
f (z1) := f ′(z1, z2). If no such z2 exists, we may define
f (z1) arbitrarily. The function f thus defined witnesses the
truth of sotgd(Q).

Note that the kind of reasoning used here and in Exam-
ple 10 does not work in the case of Example 9. In Theorem 3,
we will characterize formally when this kind of reasoning is
correct.

Example 10 shows that logical equivalence (logical entail-
ment in both directions) does not imply oid-equivalence of
sifo CQs. We will see in Theorem 4 that the other direction
does hold.

5.3 Join dependencies and tableau queries

In our characterization of sifoCQ logical entailment,we use a
number of concepts from classical relational database theory
[2], which we recall here briefly.

Recall that a relation scheme is a finite set of elements
called attributes. It is customary to denote the union of two
relation schemes X and Y by juxtaposition, thus writing XY
for X ∪ Y .

A tuple over a relation scheme U is a function from U to
dom. A relation over U is a finite set of tuples over U .

Let t be a tuple over U and let X ⊆ U . The restriction of
t to X is denoted by t[X ]. The projection πX (r) of a relation
r over U equals { t[X ] | t ∈ r }.

We now turn to tableau queries, which are an alternative
formalization of conjunctive queries so that the result of a
query is a set of tuples rather than a set of facts. Let S be
a database schema, and let B be a finite set of atoms with
predicates from S, as would be the body of a CQ over S. Let
V = var(B). For any U ⊆ V , the pair (B,U ) is called a
tableau query over S. When applied to an instance I over S,
this tableau query returns a relation over U in the following
manner. Let Mat(B, I ) be the set of all matchings of B in I .
Using variables for attributes, V can be viewed as a relation
scheme. Under this view, every valuation on V is a tuple over
V , and thus, Mat(B, I ) is a relation over V . We now define
the result of (B,U ) on input I to be πU (Mat(B, I )). This
result is denoted by (B,U )(I ).

We finally recall join dependencies. Let t1 and t2 be tuples
over the relation schemesU1 andU2, respectively. If t1 and t2
agree onU1∩U2, the union t1∪t2 (wherewe take the union of
two functions, viewed as sets of pairs) is a well-defined tuple
over the relation schemeU1U2. The natural join r1 �� r2, for
relations r1 and r2 over U1 and U2, respectively, then equals

{t1 ∪ t2 | t1 ∈ r1 & t2 ∈ r2 & t1 [U1 ∩U2] = t2 [U1 ∩U2]} .

Consider now any relation r over some relation schemeU .
LetU1 andU2 be subsets ofU (not necessarily disjoint) such
that U = U1U2. Then r satisfies the join dependency (JD)
U1 �� U2 if r = πU1(r) �� πU2(r). Note that the containment
from left to right is trivial, so one only needs to verify the
containment πU1(r) �� πU2(r) ⊆ r .

The logical implication of JDs by tableau queries is well
understood and can be solved by the chase procedurewithNP
complexity [2,25]. Formally, a tableau query Q = (B,U )

over S is said to imply a JD over U if for every instance I
over S, the relation Q(I ) satisfies this JD.

5.4 Decidability of sifo CQ logical entailment

We consider two sifo CQs Q and Q′ with the same head
predicate:

Q = T (x̄, f (z̄)) ← B

Q′ = T
(
x̄ ′, f ′ (z̄′

)) ← B ′

Remark 2 We assume Q and Q′ to have their function sym-
bol in the same position in the head (here taken to be the last
position). This is justified because otherwise Q could never
logically entail Q′. In proof, suppose the function symbol in
the head of Q′ would not be in the last position. Then we
have a variable x ′ from B ′ in the last position. Now consider
an instance I such that both Q(I ) and Q′(I ) are non-empty
(such an instance could be constructed by taking the disjoint
union of B and B ′ and substituting constants for variables).
Let ρ by an oc-assignment for Q(I ) with respect to I . By
Proposition 4, we have (I, ρ(Q(I ))) |� Q. In ρ(Q(I )), none
of the elements in the last position of a T -fact belongs to
adom(I ). But then (I, ρ(Q(I ))) cannot satisfy Q′. Indeed,
since Q′(I ) is non-empty, there is a matching α′ : B ′ → I .
In any J ′ such that (I, J ′) |� Q′, there needs to be a T -fact
with α′(x ′) in the last position, and α′(x ′) ∈ adom(I ). We
conclude that Q does not logically entail Q′.

In what follows we use X , Z and Z ′ to denote the sets of
variables appearing in the tuples x̄ , z̄ and z̄′, respectively.

We establish:

Theorem 3 Q logically entails Q′ if and only if there exists
a homomorphism h : B → B ′ satisfying the following con-
ditions:

1. h(x̄) = x̄ ′;
2. h(X ∩ Z) ⊆ Z ′;
3. Let Yh := h−1(Z ′), i.e.,

Yh = {
y ∈ var(B) | h(y) ∈ Z ′} .

Then the tableauquery (B,XYh Z) implies the join depen-
dency XYh �� Yh Z.
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5.4.1 Proof of sufficiency

Let (I, J ) |� Q, witnessed by the function f . We must show
(I, J ) |� Q′. This means finding a function f ′ witnessing
the truth of sotgd(Q′) in (I, J ).

Call any two matchings α1, α2 ∈ Mat(B, I ) equivalent if
they agree on Yh . This is denoted by α1 ≡ α2. Let ρ be any
function from Mat(B, I ) to Mat(B, I ) with the two proper-
ties, first, that ρ(α) ≡ α and, second, that α1 ≡ α2 implies
ρ(α1) = ρ(α2). Thus, ρ amounts to choosing a representa-
tive out of each equivalence class. We denote the application
of ρ by subscripting, writing ρ(α) as ρα .

Let us define f ′ as follows. Take any matching β : B ′ →
I . Then we put f ′(β(z̄′)) := f (ρβ◦h(z̄)). To see that this is
well defined, recall that h(Yh) ⊆ Z ′. Hence, β1(z̄′) = β2(z̄′)
implies that β1 ◦ h ≡ β2 ◦ h, so ρβ1◦h = ρβ2◦h .

We now show that this interpretation of f ′ satisfies the
requirements. Specifically, let β : B ′ → I be a match-
ing. We must show that T (β(x̄ ′), f ′(β(z̄′))) ∈ J . Consider
the valuations β1 = β ◦ h and β2 = ρβ◦h , both belong-
ing to Mat(B, I ), and viewed as tuples over the relation
scheme var(B). Since these two tuples agree on Yh , also the
two restrictions β1[Yh X ] and β2[Yh Z ] agree on Yh . Since
X ∩ Z ⊆ Yh , the union β1[Yh X ] ∪ β2[Yh Z ] is a well-
defined tuple over XYh Z . Since πXYh Z (Mat(B, I )) satisfies
the JD Yh X �� Yh Z , the union belongs to πXYh Z (Mat(B, I )).
Hence, there exists a valuation γ ∈ Mat(B, I ) that agrees
with β ◦ h on X , and with ρβ◦h on Z . Since (I, J ) |� Q,
we have T (γ (x̄), f (γ (z̄))) ∈ J . By the preceding, γ (x̄) =
β(h(x̄)) and γ (z̄) = ρβ◦h(z̄) = g(β(z̄′)). We conclude that
T (β(x̄ ′), g(β(z̄′))) ∈ J as desired.

5.4.2 Proof of necessity

Let V ′ = var(B ′), and let n be the arity of f . For each
l ∈ {0, 1, . . . , n} and each u ∈ V ′ − Z ′, we introduce a
fresh copy of u, denoted by ul . We say that this fresh copy is
‘colored’ with color l. For each variable u ∈ Z ′, we simply
define ul to be u itself. We say that the variables in Z ′ are
‘colored white.’

For any tuple of variables ū = (u1, . . . , u p) in V ′, we
denote the tuple (ul1, . . . , u

l
p) by ūl . In this tuple, all vari-

ables are colored l or white. We then define B ′l = { R(ūl) |
R(ū) ∈ B ′ } and view it as an instance, i.e., the variables ul

are considered to be constants.
Now define the instance I = ⋃n

l=0 B
′l , and construct the

instance J = Q(I ). By Proposition 4, (I, J ) |� Q, where
we omit the oc-assignment for the sake of clarity. Since Q
logically entails Q′, also (I, J ) |� Q′. Hence, there exists a
function f ′ such that for each color l, using thematching idl :
B ′ → I , u �→ ul , the fact T (x̄ ′l , f ′(z̄′l )) = T (x̄ ′l , f ′(z̄′))
belongs to J .

Since J = Q(I ), we have f ′(z̄′) = f (w̄) for some tuple
w̄ of colored variables in V ′. Since the arity of f is n and
there are n+ 1 distinct colors, some color does not appear in
w̄. Without loss of generality we may assume that this is the
color 0.

Let us now focus on the fact T (x̄ ′0 , f (w̄)) in J . Like any
T -fact in J , this fact has been produced by some matching
k : B → I such that T (x̄ ′0 , f (w̄)) = k(T (x̄, f (z̄))), so

(a) k(x̄) = x̄ ′0 and
(b) k(z̄) = w̄.

Let s denote themapping that removes colors, i.e., s(ul) =
u for every u ∈ V ′ and every l ∈ {0, 1, . . . , n}. Since s(I ) ⊆
B ′, we have a homomorphism s ◦ k : B → B ′. We now
define h := s ◦ k and show that it satisfies the conditions
required by the Theorem. The first condition is clear since
h(x̄) = s(k(x̄)) = s(x̄ ′0) = x̄ ′.

For the second condition, let x ∈ X ∩ Z . By (a), k(x) is
colored 0 or white. By (b), k(x) is colored nonzero or white.
Hence, k(x) is colored white, i.e., k(x) ∈ Z ′, so h(x) =
s(k(x)) = k(x) ∈ Z ′ as desired.

Finally, to show that (B,XYh Z) implies XYh �� Yh Z , we
must establish the query containment

(B,XYh) �� (B,Yh Z) ⊆ (B,XYh Z) .

Treating tableau queries as conjunctive queries and using the
well-known containment criterion for conjunctive queries,
this amounts to showing the existence of a certain homomor-
phism. More specifically, we express the query (B,XYh) ��

(B,Yh Z) by the CQ with the body B2 = B0 ∪ B1 defined as
follows. The body B0 is obtained from B by replacing each
variable u not in Yh by a fresh copy u0. For each u ∈ Yh , we
define u0 simply as u itself. The body B1 is obtained from
B by replacing each variable not in Yh by a fresh copy u1.
Again, for each u ∈ Yh we define u1 simply as u itself. To
show the containment, we now must find a homomorphism
m from B to B2 such that each u ∈ X − Yh is mapped to u0;
each u ∈ Yh is mapped to u; and each u ∈ Z −Yh is mapped
to u1.

Thereto, we define the following mapping m:

– if k(u) is colored 0, then m(u) := u0;
– if k(u) is colored l for some l > 0, then m(u) := u1;
– if k(u) is colored white, then m(u) := u.

Let us verify thatm : B → B2 is a homomorphism. Consider
an atom R(ū) in B; we must show R(m(ū)) ∈ B2. Since
k : B → I , we know that R(k(ū)) ∈ I . By definition of I ,
this means that R(k(ū)) = R(v̄l) for some atom R(v̄) in B ′
and some color l. So, for each variable u in ū, the color of
k(u) is either l or white. We now distinguish two cases.
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– If k(u) is colored white, then h(u) = k(u) ∈ Z ′ so u ∈
Yh . Hence, in this case, m(u) = u = u0 = u1.

– If k(u) is colored l, then by definition m(u) = u0 when
l = 0, and m(u) = u1 when l > 0.

We conclude that R(m(ū)) = R(ū0) ∈ B0 when l = 0,
and R(m(ū)) = R(ū1) ∈ B1 when l > 0. Hence, since
B2 = B0 ∪ B1, we always have R(m(ū)) ∈ B2 as desired.

It remains to verify that m maps the variables in XYh Z
correctly. If u ∈ Yh , then h(u) = k(u) ∈ Z ′ so k(u) is
colored white and m(u) = u as desired. If u ∈ X − Yh , then
by (a), k(u) is colored 0 so m(u) = u0 as desired. Finally, if
u ∈ Z −Yh , then by (b), k(u) is colored l > 0 so m(u) = u1

as desired.
As a corollary, we obtain that the complexity of decid-

ing logical entailment for sifo CQs is not worse than that of
deciding containment for classical CQs:

Corollary 2 Testing logical entailment of sifo CQs is NP-
complete.

Proof Membership in NP follows from Theorem 3; as a wit-
ness for logical entailment, we can use a homomorphism h
satisfying the first two conditions of the theorem, together
with a homomorphism h0 from the query (B,XYh Z) to the
query (B,XYh) �� (B,Yh Z) witnessing the third condition
of the theorem. NP-hardness follows because the problem
has containment of classical CQs as a special case, which is
well known to be NP-hard. Indeed, logical entailment of a
sifo Q′ by a sifo Q, in the special case where the creation
functions of Q and Q′ are nullary, amounts to classical con-
tainment of Q in Q′ when we ignore the function terms in
the heads. �

5.5 From oid-equivalence to logical entailment

Let Q and Q′ be sifo CQs of the general forms (3) and (4)
from Sect. 4.4. From our main Theorems 2 and 3, we can
conclude the following.

Theorem 4 If Q and Q′ are oid-equivalent, then Q logically
entails Q′.

Proof By Theorem 2, there exists a permutation π of Z − X
such that Q̊π and Q̊′ are equivalent. Hence there is a homo-
morphism h : Q̊π → Q̊′. Clearly h : B → B ′. We verify
that h satisfies the conditions of Theorem 3, thus showing
that Q logically entails Q′.

1. Since h maps the head of Q̊π to the head of Q̊′, we have
h(x̄) = x̄ and h(π(z̄)) = z̄. Since x̄ ′ = x̄ , we have
h(x̄) = x̄ ′ as desired.

2. Since h is the identity on X , we have h(X∩Z) = X∩Z ⊆
Z = Z ′ as desired.

3. Since h(π(z̄)) = z̄ and π(Z) = Z , we have h(Z) =
Z = Z ′. Hence, Z ⊆ Yh . But then the join dependency
XYh �� Yh Z becomes XYh �� Yh which trivially holds.

6 Discussion

The results in this paper provide an understanding of the
notions of oid-equivalence and logical entailment for sifo
CQs. Sifo CQs, however, form a very simple subclass of
oCQs. Moreover, oCQs themselves are rather limited; for
example, they consist of a single rule and the rule can have
only one atom in the head.Thus, there are at least three natural
directions for further research: (i) allowing more than one
function in the head; (ii) allowing more than one atom in the
head; (iii) allowing more than one rule.

6.1 Containment

Furthermore, in addition to oid equivalence of oCQs, itwould
be natural to also investigate a notion of oid-containment.
There are actually at least two reasonable ways to define such
a notion. The situation is similar to that in research on CQs
with counting or bag semantics [14,15]. Most of the known
results are for equivalence only,with the extension to contain-
ment typically an open problem. Indeed, our characterization
of oid-equivalence for sifo CQs relies on equivalence of CQs
with bag semantics. An extension to oid-containment will
likely need a similar advance on containment of CQs with
bag semantics.

6.2 Sifo CQs and ILOG

In the introduction, we mentioned that sifo CQs, and oCQs
in general, are a fragment of ILOG without recursion [22].
Sifo CQs belong to the subclass of the class of recursion-free
ILOG programs ‘with isolated oid creation’ [23]. For this
class, oid-equivalence was already known to be decidable.
This was shown by checking all finite instances up to some
exponential size. Hence, our NP-completeness result for oid-
equivalence of sifo CQs does not follow from the previous
work.More generally, the decidability of oid-equivalence for
general recursion-free ILOG programs, or already of oCQs
for that matter, is a long-standing open question. Various
interesting examples showing the intricacies of this problem
have already been given by Hull and Yoshikawa [23].

6.3 Sifo CQs and nested dependencies

In Sect. 5.1, we also presented sifo CQs, now viewed as
schema mappings, as a very simple subclass of nested
tgds. The implication problem for general nested tgds was
shown to be decidable by Kolaitis et al. [26] in work done
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independently from the present paper.Nevertheless, our char-
acterization of implication for sifo CQs, given by Theorem 3,
does not follow from the general decision procedure for
nested tgds. Instead, the general procedure, when applied
to two sifo CQs, is strikingly similar to our proof of neces-
sity of our theorem. Using the notation from that proof, the
general procedure applied to test implication of sifo CQ Q′
by sifo CQ Q would amount to testing for the existence of
a homomorphism h from {T (x̄ ′l , f ′(z̄′)) | l = 0, . . . , n} to
Q(I ). Since Q(I ) = {T (α(x̄), f (α(z̄))) | α : B → I }, this
can be implemented by guessing h and n + 1 matchings αl :
B → I such that (h(x̄ ′l ), f ′(h(z̄′))) = (αl(x̄), f (αl(z̄)))
for l = 0, . . . , n. In contrast, as explained in Corollary 2, our
characterization involves guessing just two homomorphisms.

6.4 Sifo CQs and plain SO-tgds

As described in Sect. 5, sifo CQs are a very simple sub-
class of plain SO-tgds. For plain SO-tgds, deciding logical
equivalence is again an open problem. Also, the notion of
oid-equivalence, defined in this paper for oCQs, can be
readily extended to plain SO-tgds. We illustrate some dif-
ficulties involved in allowing multiple functions in the head,
which is indeed allowed in plain SO-tgds. First, consider
the oid-equivalence problem. For sifo CQs, we have shown
in Sect. 4.4 of this paper that as far as oid-equivalence is
concerned, only the counts of generated oids per tuple are
important. Now consider the following pair of oCQs:

Q = T (x, f (y), g(x, z)) ← R(x, y), R(x, z)

Q′ = T (x, f (y), g(x, y)) ← R(x, y), R(x, z)

Both queries create the same number of new f - and g-oids
per x-value, but now it also becomes important how these
oids are paired. In Q, more pairs are generated for each x ,
and the two queries are not oid-equivalent. So, in the case of
multiple functions, also the interaction between the multiple
terms needs to be taken into account in some way.

A similar comment applies to the problemof logical equiv-
alence. It is not immediately clear how the join dependency
condition of Theorem3 should be generalized in the presence
of multiple functions. Consider, for example, the following:

Q = T (x, f1 (z1, y1) , f2 (z2, y2))

← R (x, z1, z2) , S (z1, y1) , S (z2, y2)

Q′ = T (x, g1(u), g2(u))

← R(x, u, x), R(x, x, u), S(u, v1), S(x, v2)

The f1-part of Q (ignoring the third component in the head)
logically entails the g1-part of Q′, and likewise, the f2-part
of Q (ignoring the second component in the head) logically

Table 9 Instances used to illustrate logical entailment in the presence
of multiple functions

R

2 1 2
2 2 1
3 1 3
3 3 1

S

1 4
2 5
3 6

T

2 7 8
2 8 7
3 7 9
3 9 7

entails the g2-part of Q′. Globally, however, Q does not log-
ically entail Q′; this can be seen by the instances given in
Table 9, which satisfy Q but not Q′.

A related interesting question then is whether Theorem 4
that oid-equivalence implies logical entailment, still holds
for plain SO-tgds. When we allow nested function terms in
the head (which goes beyond plain SO-tgds) the implica-
tion breaks down, as shown by the following example [17,
Example3.8]:

Q = T (x, f (x), g( f (x))) ← S(x)

Q′ = T (x, f (x), g(x)) ← S(x)

where Q and Q′ are oid-equivalent, and Q logically entails
Q′, but Q′ does not logically entail Q.
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