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ABSTRACT
Data completeness is commonly regarded as one of the key aspects
of data quality. With this paper we make two main contributions:
(i) we develop techniques to reason about the completeness of a
query answer over a partially complete database, taking into ac-
count constraints that hold over the database, and (ii) we imple-
ment them by an encoding into logic programming paradigms. As
constraints we consider primary and foreign keys as well as finite
domain constraints. In this way we can identify more situations in
which a query is complete than was possible with previous work.
For each combination of constraints, we establish characterizations
of the completeness reasoning and we show how to translate them
into logic programs. As a proof of concept we ran our encodings
against test cases that capture characteristics of a real-world sce-
nario.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration—Re-
pository, Data warehouse, Security, integrity, and protection

Keywords
Data Quality; Data Completeness; Answer Set Programming

1. INTRODUCTION
In database applications such as information integration and de-

cision support, one is interested in data sets that are complete, in
the sense that the data represent all relevant facts that hold in the
real world. In many situations, though, it is only possible to guar-
antee partial completeness of the data, which means that for certain
aspects of the application domain the data are complete, but not for
others. In such a situation, one would like to know at least whether
the available data are sufficient to answer a given query completely,
that is, whether the answers to the query over the available data are
the same as if the data set were complete [5, 6, 8, 9].

School Information System. A typical scenario is the manage-
ment of administrative data that are contributed by people. An ex-
ample is the management of school data in the province of Bolzano,
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which motivated the work reported here. Data in the school infor-
mation system of the province are often incomplete because each
school is individually responsible for inserting its data into the sys-
tem and because for certain kinds of data the contribution is op-
tional. Decision makers, however, need to know whether or not the
statistics on which they base the allocation of resources to schools
are derived from complete data. As often some parts of the data
are complete, one would like to automatically provide guarantees
that some query answers are guarantees and hint at those that need
further checks.

Example. Consider the following example of a partially com-
plete school database. Among other data, the database contains
facts about pupils and classes, e.g., “John belongs to class a1 at
Newton school”, pupil(john,a1,newton), or “Class a1 at Newton
school is at level 1 and it belongs to the science branch”, class(a1,
newton,1,sci).

Assume we know that we have all pupils from class a1 and all
pupils from class b2 at Newton school. Thus, the query that asks for
“all pupils in class a1 at Newton school”, Qa1n(N)← pupil(N,a1,
newton), has a complete answer. However, if we consider the query
that asks for “all science pupils at Newton school”, Qsn(N) ←
pupil(N,C,newton), class(C,newton,L,sci), then under the com-
pleteness assumptions above we cannot say whether the query an-
swer of Qsn is complete. Note that, in principle, there can be other
classes different from a1 and b2.

Databases typically come with integrity constraints such as pri-
mary and foreign keys. But there can be also other kinds of con-
straints that restrict the domains of attributes.

Example (cont’d). Continuing the example, assume that there is
a constraint on the class relation, saying that “if a class at Newton
school belongs to the science branch then that class has a class
code among a1 and b2”, expressed with class{school = newton,
branch = sci}[ccode] = {a1,b2}. We call this a conditional finite
domain constraint.

Now we can reason in the following way. The query Qsn selects
Newton pupils from the science branch. Since the above constraint
holds for the class relation, and pupil is joined with class, pupils
in Qsn must be either from class a1 or b2. Considering that we are
complete for a1 and b2, as assumed above, we conclude that we are
complete for all pupils selected by Qsn. Assume further that there
exists a foreign key from pupil to class in our database, pupil[ccode,
sname] ⊆ class[ccode,sname]. Then we have all records of class
that can be joined with pupil, i.e. we have all class records selected
by Qsn. Overall, assuming the constraint and the foreign key, we
can conclude that the answer to Qsn is complete.

Related Work. Motro [17] was the first to formalize incomplete
databases and completeness of queries. Levy [15], in addition, in-



troduced a format for assertions that say which parts of a relational
database are complete. We call these assertions table complete-
ness or TC statements. He raised the problem to determine whether
a set of such TC statements imply that some given query can be
answered completely. Razniewski and Nutt [20] showed how to re-
duce this completeness reasoning problem to containment of con-
junctive queries [4] and gave a comprehensive analysis of its com-
plexity, considering several variants of queries and assertions. In
particular, they showed that for the most expressive queries and as-
sertions they considered, completeness reasoning is ΠP

2 -complete.
Such a degree of difficulty is reached, for instance, if queries and
assertions are expressed by conjunctive queries and if finite-domain
constraints hold over the database.

Contributions. In this work, we consider databases that are in-
complete in that entire tuples are missing. We address the problem
of completeness reasoning for conjunctive queries and for TC state-
ments in the presence of constraints. We generalize the previously
investigated problem by taking into consideration two kinds of con-
straints. The first are primary and foreign key constraints, the sec-
ond one are a new kind of constraints, that we call conditional finite
domain constraints (CFDCs), which restrict the domain of relation
attributes depending on the values of other attributes. CFDCs are
more expressive than classical finite domains constraints (FDCs).
On the other hand, if we have a database instance at disposal, rea-
soning about completeness with a database instance is typically in-
tractable [20], and therefore not feasible for large instances in real-
istic scenarios. In this respect, we expect that CFDCs offer a good
trade-off that allows for feasible running times while still carrying
more information than FDCs.

Further, we provide a new approach to completeness reasoning
which gives rise to an implementation technique of the problem that
was not obvious from previous work [19]. A demonstrator system,
MAGIK, which realizes our approach and which is publicly acces-
sible on the Web1 has been implemented based on the techniques
in this paper and was presented in [21] and [22].

Our approach consists of two steps. First, we develop theorems
that provide a syntactic characterization of the reasoning tasks for
each combination of constraints. Based on these, we develop en-
codings of the problems into logic programming formalisms, where
disjunction occurs in the head of the rules that encode CFDCs.
One can run such encodings using Answer Set Programming (ASP)
solvers (or Prolog engines if there are no CFDCs) such that the re-
sulting program under cautious reasoning entails a test fact if and
only if the original problem has the answer “yes”. While logic pro-
gramming is conceptually close to the characterizations, they can in
principle also be used to establish encodings into other paradigms.

In the paper we present some of the proofs. For more technical
ones we only provide the intuition, due to the space limitations.
Complete proofs can be found in [18].

We tested our encoding using two state-of-the-art ASP solvers,
dlv2 [14] and clingo3 [10], and one Prolog implementation,
swi4. The obtained results show that our encoding is able to pro-
cess inputs that mirror the requirements of real world systems.

The remainder of the paper is organized as follows. In Section 2,
we recall basic definitions from database theory and fix our nota-
tion. Section 3 formally introduces completeness reasoning. In
Section 4, we characterize completeness reasoning in the absence
of constraints and present our encoding for this case. Characteri-

1http://magik-demo.inf.unibz.it
2http://www.dlvsystem.com
3http://potassco.sourceforge.net
4http://www.swi-prolog.org

zation and encoding are generalized in Section 5 to take account
of key and foreign key constraints, and in Section 6 to conditional
finite domain constraints into account, while the combination of
both is studied in Section 7. Section 8 investigates the problem of
finding a complete generalization of an incomplete query. Section
9 reports on our experiments and Section 10 concludes.

2. PRELIMINARIES
Relational Databases and Conjunctive Queries. We assume an
infinite set of constants, dom, and a database schema, Σ, with an
infinite set of relations. Each relation is identified by a relation
name, e.g., R, and a list of attributes, att(R). We use ary(R) to
denote the arity of R. In the following, we assume the schema to
be fixed. For a relation R with arity n, an atom is an expression
R(t1, . . . , tn), where t1 . . . tn are either elements of dom or variables.
We denote constants with lower-case and variables with upper-case
letters. A database instance D is a finite set of ground atoms, that
is, atoms that contain only constants. We sometimes refer to the
atoms in an instance as facts. For a relation R, we denote as R(D)
the set {t̄ | R(t̄) ∈ D} of all tuples occurring in an R-atom in D. A
condition is a set of atoms.

A conjunctive query is written as Q(X̄)← B, where B is a con-
dition and X̄ is a tuple of variables, each of which occurs also in B.
We call B the body of Q, the variables in X̄ the distinguished vari-
ables and the other variables in B the nondistinguished variables.
Given a conjunctive query Q(X̄)← B and an instance D, an answer
to Q is a tuple αX̄ , where α is an assignment of domain values to
variables such that αB ⊆ D. The set of all answers to Q over D is
written as Qs(D). Similarly, we define Qb(D) as the bag of answers
that contains as many copies of a tuple as there are assignments re-
turning it. We say that Q is evaluated under set or bag semantics,
respectively, if we refer to the set or bag of answers.

Constraints. Database systems allow one to formulate condi-
tions, so-called (integrity) constraints, that all instances of a data-
base have to satisfy. Many of them can be captured in logic and
allow for more inferences when reasoning about instances and que-
ries. In this paper, we consider key constraints, foreign key con-
straints, and conditional finite domain constraints.

A primary key (PK) constraint has the form Key(R,A), where R
is a relation symbol and A is a sublist of att(R). A foreign key (FK)
constraint has the form R[A] ⊆ S[B], where R, S, are relations, A is
a sublist of att(R), and B is from Key(S,B). Satisfaction of PK and
FK constraints are defined as usual (cf. [1]).

In this paper, we also consider weakly acyclic sets of FK con-
straints, which have been introduced by Fagin et al. For the defini-
tion, we refer to their paper [7].

A conditional finite domain (CFD) constraint has the form R{A=
v̄}[a] =W , where R is a relation, A is a sublist of att(R), v̄ is a list of
constants of the same length as A, a is an attribute from att(R) that
is not in A, and W is a set of constants. An instance D satisfies such
a constraint if for every fact R(t̄) ∈ D we have that if R(t̄)[A] = v̄
then R(t̄)[a] ∈W , where R(t̄)[A] is the projection of the values of
R(t̄) at the attribute places from A and R(t̄)[a] ∈W is defined sim-
ilarly. Alternatively, if A = a1, . . . ,an and v̄ = v1, . . . ,vn, we write
the condition A = v̄ as a list of equalities, a1 = v1, . . . ,an = vn. For
example, the CFD constraint that states “a class at Newton school
from the science branch has as code either a1 or b2”, is expressed
as class{school = newton,branch = sci}[ccode] = {a1,b2}. If A
and v̄ are empty in a CFD constraint, we simply write R[a] = W
and call this a finite domain (FD) constraint.

We will use K and F generically to denote sets of FK, and CFD
constraints, respectively.



Logic Programming. A disjunctive rule has the form

A1 | . . . | Ak← B1, . . . ,Bn,

where the A’s and B’s are atoms (see [11]). If k = 1, that is, the head
consists of a single atom, we say that the rule is a Horn rule. A fact
is a Horn rule with empty body (we omit “←”). A rule with empty
head (the empty disjunction) is a denial. (We avoid the common
term “integrity constraint” in this paper to avoid confusion with
integrity constraints over databases.) An answer-set program is a
finite set of disjunctive rules. For the theory of answer set programs
we refer to [23] and [3]. A positive logic program contains only
Horn rules. Positive logic programs can be executed under SLD
resolution as implemented in Prolog [2].

3. DATA COMPLETENESS
Running Example. Our examples build upon a toy schema from
the school world with the three relations

pupil(name,ccode,sname),

class(ccode,sname, level,branch),

takes(name,activity).

Here, pupil(fred,a1,newton) means that Fred is a pupil of class
a1 at Newton school; class(a1,newton,1,sci) means that class a1
at Newton school is a 1st level class that belongs to the science
branch; and takes(fred,chess) means that Fred is taking chess as an
extracurricular activity.

Underlined attributes indicate the primary key, which in our no-
tation can be expressed as the key constraints Key(pupil,{name}),
Key(class,{ccode,sname}), and Key(takes,{name,activity}). We
also consider two FK constraints, which say that every class, iden-
tified by class code and school name, referred to by a pupil tuple
occurs in the class relation, and every pupil name referred to by a
takes tuple occurs in the pupil relation. Formally, this is expressed
as pupil[ccode,sname] ⊆ class[ccode,sname] and takes[name] ⊆
pupil[name]. Finally, we consider a CFD constraint that restricts
classes at Newton school to belong either to the science or the hu-
manities branch, expressed as class{sname = newton}[branch] =
{sci,hum}.

The conjunctive query Qs1n, defined by the rule

Qs1n(N)← pupil(N,C,newton),class(C,newton,1,sci) (1)

asks for “the names of all pupils from Newton school of the 1st level
that attend a class from the science branch”.

Query and Table Completeness. When stating that data is in-
complete, one must have a conceptual complete reference. We
model an incomplete database in the style of [17] as a pair of
database instancesD= (Di,Da), where Da ⊆Di. Here, Di is called
the ideal state and Da the available state. In an application, the state
stored in a DBMS is the available state, which often represents only
a part of the facts that hold in reality. The facts holding in reality
constitute the ideal state, which however is unknown. (Later on we
will introduce table completeness statements as a way to express
meta-information about the extent to which the available state cap-
tures the ideal state.)

Data are accessed by posing queries. We would like to know
whether a database has sufficient information to answer a query
completely, that is, whether the query is complete. If we can infer
from meta-information that a query is complete, we know that the
answer we receive over the available database is the same as the
one we would get over the (hypothetical) ideal database.

We write Compl s(Q) and Compl b(Q), respectively, to indicate
that Q is complete under set or bag semantics. The first state-
ment is satisfied by an incomplete database D = (Di,Da), written
D |= Compl s(Q), if Qs(Di) = Qs(Da). Analogously, the second is
satisfied if Qb(Di) = Qb(Da).

With table completeness (TC) statements we specify that parts
of a table are complete. A TC statement, written Compl(R(s̄); G),
has two components, a relational atom R(s̄) and a condition G. In
the sequel, we will denote a TC statement generically as C. As an
example, consider

Csci = Compl(pupil(N,C,S); class(C,S,L,sci)) (2)
Clev1 = Compl(class(C,S,1,B); true). (3)

The first statement asserts that the table pupil contains all records of
pupils from science classes, while the second asserts that the table
class contains all records of classes at level 1.

To define the semantics of a TC statement C, we associate a
query QC(s̄)← R(s̄),G to it. Then C is satisfied by D = (Di,Da),
writtenD |= Compl(R(s̄); G), if QC(Di)⊆ R(Da). This means that
the ideal instance Di is used to determine those tuples in the ideal
version R(Di) that satisfy G, and that the statement C is satisfied if
these tuples are present in the available version R(Da). We refer to
the query associated to C as QC. For instance, the query associated
to Csci is QCsci(N,C,S)← pupil(N,C,S),class(C,S,L,sci).

To reason about completeness, we define for every set C of TC
statements the operator TC that maps database instances to database
instances. If C is a TC statement about R, then we define TC(D) :=
{R(t̄) | t̄ ∈ QC(D)}. For C we define

TC(D) :=
⋃

C∈C TC(D). (4)

The operator TC is monotonic, and for every instance D, the pair
(D,TC(D)) is an incomplete database satisfying C, and TC(D) is the
smallest set (wrt set inclusion) for which this holds. We formalize
this with the following claim that we need for the proofs later on.

PROPOSITION 1 ([20]). Let C be a set of TC statements. Then

a) TC(D)⊆ D, for all database instances D;

b) (Di,Da) |= C iff TC(Di)⊆ Da, for all Da ⊆ Di.

We say that C entails the completeness of Q with respect to set
semantics, written C |=Compl s(Q), if every incomplete databaseD
that satisfies the statements in C, also satisfies Compl s(Q). The
meaning of “C |= Compl b(Q)” is defined analogously.

The completeness reasoning problem is to check, given C and Q,
whether the entailments above hold. An instance of this problem
for set semantics is to check whether {Csci,Clev1} |=Compl s(Qs1n)
(which intuitively holds and which we prove to hold in Section 4).

Let F be a set of CFD constraints and K be a set of key and FK
constraints. We say that D = (Di,Da) satisfies F (resp., K) if Di

satisfies F (resp., K). Note that, due to Da ⊆ Di, this implies that
also Da satisfies F and that Da satisfies the key constraints in K.
We say that K is enforced over D if both Di and Da satisfy K. If
D satisfies K, this means that in the real world, represented by the
ideal database, the FK constraints hold. If K is enforced over D,
then the constraints of K hold also over the available database. For
instance, we may know that all pupils at our school belong to a class
(because there are no external pupils), but the information about the
levels and branches of classes contained in the relation class has not
been entered into the available database. In that case, D satisfies
pupil[ccode,sname]⊆ class[ccode,sname], but the constraint is not
enforced.



We say that C entails the completeness of Q wrt F , and write
C |=F Compl s(Q), if every D that satisfies both C and F , also
satisfies Compl s(Q). Analogously, we define “|=K”, while “|=e

K”
means that only such D’s are considered where K is enforced.

From [20] we know that the completeness reasoning problem,
both for set and bag semantics, can be reduced to query contain-
ment (cf. [4] and [13]). Reasoning in the presence of FD constraints
can be reduced to containment with respect to FD constraints [19].

4. PLAIN COMPLETENESS REASONING
In previous work, Razniewski and Nutt reduced completeness

reasoning to query containment by which they readily obtained
complexity results [20]. However, the reduction did not give rise
to an implementation technique. In this paper, we will reduce com-
pleteness checking to the question whether a test query returns a
specific result over a test database. We will then use these char-
acterizations to translate completeness checks into logic programs
that can be executed by ASP or Prolog engines.

In the rest of the paper, we always consider a set of TC state-
ments C and a conjunctive query Q defined by the rule Q(X̄)←
R1(t̄1), . . . ,Rn(t̄n).

Characterizing Completeness Reasoning. While developing
our approach, we illustrate it with an example. Consider the query
Qs1n in (1) and the set Csci,lev1 = {Csci,Clev1} comprising the TC
statements in (2) and (3). Suppose D = (Di,Da) satisfies Csci,lev1.
Consider an answer, say n′, returned by Qs1n over the ideal instance
Di. Then Di contains two atoms of the form pupil(n′,c′,newton)
and class(c′,newton,1,sci). Now, due to Csci, also Da contains
pupil(n′,c′,newton), and due to Clev1, the atom class(c′,newton,1,
sci) is in Da, too. Consequently, Qs1n returns n′ also over Da. Since
Di and Da were arbitrary, this shows that Csci,lev1 |= Compl s(Qs1n).

Using the TC transformation in (4), we can generalize this ap-
proach to a completeness test. We define the set of facts DQ, which
we call the canonical database of Q, obtained by freezing the atoms
in the body of Q. (“Freezing” variables is a well-known concept in
logic programming and database theory, which allows one to treat
a variable like a constant.) Thus,

DQ = {R1(θ t̄1), . . . ,Rn(θ t̄n)},

where θ is the substitution that maps each variable X to the “frozen
version” θX of X .

To check whether Q is complete we apply TC to DQ and check
whether Q can retrieve the frozen tuple of distinguished variables.

THEOREM 2 (CHARACTERIZATION SET SEMANTICS). Let
C be a set of TC statements, and Q(X̄)← B be a conjunctive query.
Then

C |= Compl s(Q) ⇐⇒ θ X̄ ∈ Q(TC(DQ)).

PROOF. (⇒) Suppose that C |= Compl s(Q). To show that θ X̄ ∈
Q(TC(DQ)), we construct the pair DQ = (DQ,TC(DQ)), which is
an incomplete database according to Proposition 1 a). Obviously,
it holds that TC(DQ)⊆ TC(DQ), and thus from Proposition 1 b) we
conclude that DQ |= C. Hence, DQ |= Compl s(Q) and Q(DQ) =
Q(TC(DQ)). Further, DQ is the frozen version of the body of Q,
where the output variables X̄ have been substituted with θ X̄ . Thus
θ X̄ ∈ Q(DQ), and it follows that θ X̄ ∈ Q(TC(DQ)).

(⇐) Suppose that θ X̄ ∈ Q(TC(DQ)). We want to show that
C |= Compl s(Q). To this end let D = (Di,Da) be an incomplete
database such that D |= C. Suppose that c̄ ∈ Q(Di). We show that
c̄ ∈ Q(Da). Let α be an assignment satisfying Q over Di that re-
trieves c̄. Then αX̄ = c̄ and αB ⊆ Di, where B is the body of Q.

Since C |= Compl s(Q), it follows that TC(αB)⊆Da. Now, let β be
a satisfying assignment for Q over TC(DQ) that retrieves θ X̄ . Then
β X̄ = θ X̄ and βB ⊆ TC(DQ) = TC(θB). Consider the composed
assignment αθ−1β . Because of the inclusion just derived, it holds
that αθ−1βB ⊆ αθ−1TC(θB). It also holds that αθ−1TC(θB) ⊆
TC(αθ−1θB), since α may map a variable to a constant appearing
in C, or may map distinct variables to the same constant, thus en-
abling more TC statements in C to be applied. Moreover, we have
that TC(αθ−1θB) = TC(αB) ⊆ Da, where the last inclusion has
been derived above. In summary, we have shown that αθ−1β sat-
isfies Q over Da. We verify that c̄ = αX̄ = αθ−1θ X̄ = αθ−1β X̄ ,
which implies that c̄ is the result retrieved by Q over Da with the
assignment αθ−1β , so that c̄ ∈ Q(Da).

Encoding Completeness Reasoning. For any Q and C, the check
whether θ X̄ ∈Q(TC(DQ)) can be encoded into a positive logic pro-
gram. As a set of facts, the program contains the atoms in DQ. Then
we extend our signature by two additional relation symbols Ri and
Ra for every R in Σ, to be able to reason about the ideal and avail-
able instances. We also introduce a copy rule rR : Ri(X̄)← R(X̄)
for every relation and denote the set of all such copy rules as PΣ.
Thus, any model of DQ and PΣ contains an “ideal” copy of DQ.

Next, to capture the reasoning with TC statements, we introduce
for each C ∈ C, C = Compl(R(s̄); G), the rule rC, defined as:

Ra(s̄)← Ri(s̄),Gi,

where the i in Gi indicates that all relation symbols are replaced by
their ideal version. For example, rCsci is the rule pupila(N,C,S)←
pupili(N,C,S),classi(C,S,L,sci) and rClev1 the rule classa(C,S,1,
B)← classi(C,S,1,B). The set of all rules for statements in C is

PC = {rC |C ∈ C}.

Intuitively, DQ is a prototypical instance where Q returns an an-
swer, namely, the prototypical answer θ X̄ . Applying the copy rules
in PΣ turns DQ into an ideal database Di

Q. In the following, we
use ideal(D) or Di (resp., avail(D) or Da) to denote the ideal copy
(resp., the available copy) of the instance D. The application of
the statement rules in PC then amounts to computing the available
instance avail(TC(Di

Q)). It remains to check whether Q returns the
answer θ X̄ also over avail(TC(Di

Q)).
To this end, we introduce the boolean test query Qs, which is

obtained from Q by replacing each relation symbol by its avail-
able version and freezing the distinguished variables. Formally,
Qs is defined by the rule rQs = Qs← Ra

1(θ t̄1), . . . ,Ra
n(θ t̄n), where

θ is the substitution that maps every distinguished variable to its
frozen version. In our example, the test query is Qs

s1n← pupila(n′,
C,newton), classa(C,newton,1,sci).

In addition to the program PC , encoding C, we define Ps
Q :=DQ∪

PΣ∪{rQs}, as the program encoding Q.

THEOREM 3 (SET ENCODING). Let Q be a conjunctive query
and C be a set of TC statements. Then C |= Compl s(Q) iff

1. the atom Qs is in the answer set of PC ∪Ps
Q, or

2. the goal Qs succeeds with PC ∪Ps
Q under SLD resolution.

PROOF. 1. To prove the claim it is sufficient to show that θ X̄ ∈
Q(TC(DQ)) if and only if the atom Qs is in the answer set of PC ∪
Ps

Q. From this and Theorem 2 the claim follows directly. Since
PC ∪Ps

Q is a positive program, it has a unique answer set that cor-
responds to the least fixed point (LFP) of the program. By the pro-
gram definition, the LFP of the program is consists of the facts in



(i) DQ, (ii) the ideal copy Di
Q produced by PΣ, (iii) the available

version avail(TC(DQ)) of TC(DQ), obtained by applying the pro-
gram PC on Di

Q, and (iv) possibly the ground atom Qs that can be
produced by the rule rQs over the facts from avail(TC(DQ)). Thus,
we have that Qs is in the LFP of the encoding program if and only
if θ X̄ ∈ Q(TC(DQ)).

2. For SLD resolution it holds that each SLD-provable ground
atom of a program belongs to the least Herbrand model (LHM) of
the program. Since, in our case, the LFP of the answer set program
is the same as the LHM of the Prolog program, the claim follows
from Case 1.

Recall that in the definition of the test query, we freeze the dis-
tinguished variables because we want to test whether Q returns θ X̄ ,
and we do not freeze the non-distinguished variables because we do
not want to impose constraints on how θ X̄ is retrieved. To see why
this definition works, consider the query

Qcht(N)← takes(N,chess), takes(N,A), (5)

which asks for “all pupils that take chess, which in addition take
some activity” (which may be chess). Suppose, our data are com-
plete for all pupils that take chess, expressed by the TC statement
Cch, that has rule form takesa(N,chess)← takesi(N,chess). The
ideal copy of the canonical database DQcht is Di

Qcht
= {takesi(n′,

chess), takesi(n′,a′)}. With our TC rule, we can derive the fact
takesa(n′,chess), but not takesa(n′,a′). Still, this is enough to suc-
ceed for our test query Qs

cht← takesa(n′,chess), takesa(c′,A), since
the variable A can be bound to chess. Thus, the check in Theorem 3
returns the intuitively expected answer “yes”.

Completeness Under Bag Semantics. Under bag semantics, a
query returns an answer tuple as many times as there are satisfying
assignments for that tuple. Thus, a set C may entail completeness
of Q under set, but not under bag semantics. The query Qcht in (5)
returns each pupil that takes chess as many times as there are activ-
ities taken by that pupil. Thus, under bag semantics the additional
atom takes(N,A) makes sense, as it does not change the answers as
such, but the multiplicity with which they appear. The query now
asks, “How many activities does each chess taker take?”

For reasoning under bag semantics, it no longer suffices to check
whether each answer of Q over Di is also an answer over Da, but
whether each satisfying assignment for Q over Di is retained over
Da. Intuitively, the freezing assignment θ is a prototypical satis-
fying assignment for Q over the prototypical ideal database DQ.
The minimal available database that, together with DQ, satisfies C,
is TC(DQ). To test whether θ is also a satisfying assignment over
TC(DQ), we simply check whether DQ ⊆ TC(DQ).

THEOREM 4 (CHARACTERIZATION BAG SEMANTICS). Let
C be a set of TC statements, and Q be a conjunctive query. Then

C |= Compl b(Q) ⇐⇒ DQ ⊆ TC(DQ).

PROOF. (⇒) As in the proof of Theorem 2, we observe that
(DQ,TC(DQ)) |= C. Hence, (DQ,TC(DQ)) |= Compl b(Q), that is,
the number of times a tuple occurs as an answer of Q over TC(DQ)
is the same it occurs over DQ. Since TC(DQ) ⊆ DQ, this is only
possible if every assignment that satisfies Q over DQ also satisfies
Q over TC(DQ). In particular, the freezing mapping θ is an as-
signment that satisfies Q over DQ = θB where B is the body of Q.
By the argument above, θ also satisfies Q over TC(DQ), and hence
θB⊆ TC(DQ), that is, DQ ⊆ TC(DQ).

(⇐) Suppose DQ ⊆ TC(DQ). Let D = (Di,Da) |= C for an in-
complete databaseD and let c̄∈Q(Di). We show that c̄ appears the

same number of times as answer to Q over Da as it does over Di.
Since Da ⊆Di, it suffices to show that each assignment α returning
c̄ over Di also returns c̄ over Da. Similar to the proof for the case
of set semantics, one can show that TC(αB) ⊆ Da. Further, from
DQ ⊆ TC(DQ) it follows that αθ−1(θB) ⊆ αθ−1TC(θB). Next,
αθ−1TC(θB) ⊆ TC(αθ−1θB) = TC(αB) for the same reasons as
in the proof of Theorem 2. Altogether, αB⊆ TC(αB). Then, from
αB⊆ TC(αB)⊆ Da we conclude αB⊆ Da. This implies that α is
also a satisfying assignment for Q over Da, which returns c̄.

This characterization can be readily encoded into a logic pro-
gram. Instead of freezing only the distinguished variables of Q,
we freeze all variables in Q. We thus define Qb by the rule rQb =

Qb ← Ra
1(θ t̄1), . . . ,Ra

n(θ t̄n), where now θ is the substitution that
maps every variable to its frozen version. The encoding of Q is
now Pb

Q := DQ∪PΣ∪{rQb}.

THEOREM 5 (BAG ENCODING). Let Q be a conjunctive que-
ry and C be a set of TC statements. Then C |= Compl b(Q) iff

1. the atom Qb is in the answer set of PC ∪Pb
Q, or

2. the goal Qb succeeds with PC ∪Pb
Q under SLD resolution.

PROOF SKETCH. 1. Due to Theorem 4, it suffices to prove that
the atom Qb is in the answer set of PC ∪Pb

Q iff DQ ⊆ TC(DQ). Sim-
ilarly to the case of set semantics, this can be proved by showing
that the test DQ ⊆ TC(DQ) succeeds if and only if the rule rQb fires.

2. As for Theorem 3, the claim follows from the fact that a
ground atom can be SLD-resolved iff it belongs to the least Her-
brand model (LHM) of the program. In our encoding, the LHM
corresponds to least fixed point of the program. Thus, the claim
follows from Claim 1.

The tests in Theorems 2 and 4 can be performed in nondetermin-
istic polynomial time, which complies with the overall complexity
of the problems, which are NP-complete.

5. REASONING UNDER FOREIGN KEYS
Foreign keys can help us draw additional conclusions about que-

ry completeness. We provide an example for both the effects of
unenforced and enforced FKs.

Example. Consider the query Qn(N)← pupil(N,C,newton). Re-
call that for each class, identified by its code and the name of its
school, the relation class records the level and branch of that class.
Assume that our database is “complete for those pupils at Newton
school that attend a class that belongs to some level and branch,”
expressed as Compl(pupil(N,C,newton); class(C,newton,L,B)).
If there may exist classes at Newton school present in the pupil
relation but not in class relation, then the completeness of Qn does
not follow. However, if we know that every class in the application
domain has a level and belongs to a branch, we can express this by
stating that the FK pupil[ccode,sname]⊆ class[ccode,sname] holds
(without being enforced). In this case, for every pupil record there
exists a corresponding class record in the ideal database, hence the
above TC statement is enough to guarantee the completeness of Qn.

However, if we ask for all pupils attending a class of the science
branch at Newton school, Qsn(N)← pupil(N,C,newton),class(C,
newton,L,sci), then the non-enforced FK does not guarantee com-
pleteness, since then for every pupil record a corresponding class
record exists in the ideal database, representing the state of the real
world, but such class records may not be present in the available
database so that we cannot identify classes of the science branch. If



the FK holds and is enforced, then all such records must be present,
and the completeness of Qsn is ensured.

We will characterize query completeness in the presence of key
and weakly acyclic FK constraints, both for non-enforced and en-
forced semantics. We assume that the bodies of the conjunctive
queries to be checked for completeness satisfy the key constraints,
that is, if A is the list of key attributes of R and if R(s̄) and R(t̄) are
two atoms in R such that R(s̄)[A] = R(t̄)[A], then s̄ = t̄. Satisfaction
of key constraints can be achieved efficiently by chasing the body
with the key constraints (see [12]).

The conceptual tool needed for foreign key reasoning is the chase
with inclusion dependencies (IDs), which generalize foreign-key
constraints. Johnson and Klug defined two versions, the oblivious
chase, which introduces a new atom whenever an ID is “applica-
ble,” and the restricted or standard chase, which only introduces a
new atom for an applicable ID if the ID is not yet satisfied [12].
We will use an intermediate chase version, introduced by Mar-
nette [16], the oblivious Skolem chase, which generates atoms with
Skolem terms whenever an ID is applicable, and the atom to be gen-
erated does not exist yet. The oblivious Skolem chase bears some
similarity with the restricted chase in that a chase step is blocked if
the corresponding ID is satisfied by an atom with Skolem terms.

To apply this chase, IDs are translated into rules with Skolem
terms in the head. For instance, the foreign key from pupil to class
is translated into the rule

class(C,S, fclass,level(C,S), fclass,branch(C,S)) ←
pupil(N,C,S), (6)

which introduces a new class atom for every pupil atom, with a new
level and branch generated by two Skolem functions that take the
keys of the class atom as arguments. Let K be a set of FKs. We
denote the result of chasing a set of (ground) atoms D with the rules
obtained from K as ChK(D). If K is clear from the context, we
drop the subscript and write Ch(D). In general, chase termination
is not guaranteed for FKs.

From now on, we consider only weakly acyclic sets of FKs [7].
Weakly acyclic tuple generating dependencies (which are more gen-
eral constraints than FKs) have been introduced in the context of
data exchange as syntactic class that ensures termination of the re-
stricted chase for every instance [7]. Marnette extended this re-
sult to the oblivious Skolem chase [16]. Under this assumption,
ChK(D) is always finite for a finite D.

Now, we can formulate a result for non-enforced FKs that gener-
alizes Theorems 2 and 4 by replacing the prototypical database DQ
with the chase of DQ.

THEOREM 6 (CHARACTERIZATION NON-ENFORCED FKS).
Let C be a set of TC statements, K be a weakly acyclic set of FKs,
and Q be a conjunctive query. Then

1. C |=K Compl s(Q) ⇐⇒ θ X̄ ∈ Q(TC(ChK(DQ)))

2. C |=K Compl b(Q) ⇐⇒ DQ ⊆ TC(ChK(DQ)).
PROOF IDEA. 1. (⇒) The proof is based on a similar construc-

tion as the one for Theorem 2. In this case we takeDQ = (Ch(DQ),
TC(Ch(DQ))) as an incomplete database.

(⇐) This direction is more involved. We have to cope with the
difficulty that applying our chase to a database instance that satis-
fies the key constraints in K may result in an instance that no more
satisfies the keys because of additional atoms with Skolem terms.
For instance, chasing {pupil(fred,a1,newton), class(a1,newton,1,
sci)} with rule (6) adds the atom class(a1,newton, fclass,level(a1,
newton), fclass,branch(a1,newton)), so that the key constraint for
class is violated.

We compensate this proliferation of atoms by introducing forK a
new set inclusion relation⊆K (and based on that an equivalence re-
lation ≡K) that regards atoms as identical if the keys implies they
are the same. With respect to this inclusion relation, the opera-
tor ChK() is idempotent and monotonic. Moreover, for any con-
stant tuple c̄, query Q, and database instances D, D′, possibly with
Skolem terms, we have that c̄ ∈ Q(D) implies c̄ ∈ Q(D), whenever
D ⊆K D′. Then the proof of Theorem 2 can be generalized to the
new setting, replacing set inclusion and equality with ⊆K and ≡K.

2. Can be shown in the similar way as Claim 1 by generalizing
the ideas in the proof of Theorem 2.

If the FKs are enforced, we also need to extend the available
database obtained by applying TC to the chase of DQ to satisfy K.
However, this cannot be done by chasing this result a second time.
To see this, consider the query Qsn from above and the TC state-
ment Cp = Compl(pupil(N,C,S); true), which states that the table
pupil is complete. Together with the enforced FK from pupil to
class this implies completeness of Qsn, since then any available
database must contain (i) all pupils and (ii) the class of each pupil.
Let us try to reach this consequence by reasoning about the pro-
totypical database for Qsn. Clearly, DQsn = {pupil(n,c,newton),
class(c,newton, l,sci)} and ChK(DQsn) = DQsn , since there is al-
ready a class for the pupil in DQsn . Applying TC yields
TC(ChK(DQsn)) = {pupil(n,c,newton)}, since we are complete for
pupil, but not for class. The chase would add a new class atom, say,
class(c,newton, l′,b′). However, Qsn will not retrieve the pupil n
over the database {pupil(n,c,newton), class(c,newton, l′,b′)}, be-
cause it looks for pupils in a science class.

Clearly, instead of generating a new class atom, we should have
copied the atom class(c,newton, l,sci) from the ideal db to sat-
isfy the FK. To achieve this, we define the chase operator Ch a

K(·),
which, given an incomplete database (Di,Da) where Di satisfiesK,
extends Da to satisfy K by copying atoms from Di. Formally, if
R(s̄)∈Da and if R[A]⊆ S[B]∈K, we add all atoms S(t̄)∈Di to Da

where S(t̄)[B] = R(s̄)[A]. The result is denoted as Ch a
K(D

i,Da).
To formalize the reasoning performed in the previous example,

we combine the two chase operators and the TC operator to a new
operator KC , defined as KC(D) = Ch a

K(Ch(D),TC(Ch(D))). This
means that (i) we chase D to obtain an ideal db that satisfies the for-
eign keys in K, (ii) apply TC , and (iii) extend the result by copying
atoms from ChK(D).

THEOREM 7 (CHARACTERIZATION ENFORCED FKS). Let
C be a set of TC statements, K be a weakly acyclic set of FKs,
and Q be a conjunctive query. Then

1. C |=e
K Compl s(Q) ⇐⇒ θ X̄ ∈ Q(KC(DQ))

2. C |=e
K Compl b(Q) ⇐⇒ DQ ⊆KC(DQ).

The proof generalizes the techniques for showing Theorem 6.

Now we extend our encoding so that it supports reasoning under
FKs. Since a partial database satisfies an FK constraint if the ideal
database satisfies it, we introduce for every FK constraint a rule
like the one in (6), albeit for the ideal version of the relations in-
volved. For instance, instead of (6), we introduce the rule classi(C,
S, fclass,level(C,S), fclass,branch(C,S))← pupili(N,C,S). We denote
the set of all FK rules obtained from K as Pi

K, where ·i indicates
that the rules create atoms for the ideal instance.

Finally, to model reasoning about enforced foreign keys, we in-
troduce rules that copy foreign key atoms from the ideal to the
available database. For example, the rule for the FK from pupil



to class is

classa(C,S,L,B) ← pupila(N,C,S),classi(C,S,L,B).

We denote the set of all such rules obtained from K as Pe
K, where

·e indicates enforcement.
We are now ready to state the encoding theorems for reasoning

about FKs, whose proofs are consequences of the Characterization
Theorems 6 and 7.

THEOREM 8 (SET ENCODING FOR NON-ENFORCED FKS).
Let Q and C be as previously. Let K be a weakly acyclic set of FK
constraints. Then C |=K Compl s(Q) iff

1. the atom Qs is in the answer set of PC ∪Pi
K∪Ps

Q, or

2. Qs succeeds with PC ∪Pi
K∪Ps

Q under SLD resolution.

Similar Encoding Theorems hold for any combination of set/bag
semantics and non-enforced/enforced semantics. For bag seman-
tics, we have to replace the rule set Ps

Q by Pb
Q and for enforced

semantics we have to add the rule set Pe
K.

6. REASONING UNDER CONDITIONAL
FINITE DOMAIN CONSTRAINTS

Finite domain constraints make it necessary to reason by cases.

Example. We take up again the example from the introduction,
with the query

Qsn(N)← pupil(N,C,newton),class(C,newton,L,sci),

asking for the pupils from the science branch at Newton
school, the CFDC Fsn = class{school = newton,branch = sci}
[ccode] = {a1,b2}, stating that the only science classes at Newton
school are a1 and b2, and the TC statements Ca1n =Compl(pupil(N,
a1,newton); true) and Cb2n = Compl(pupil(N,b2,newton); true),
stating completeness for the pupils of classes a1 and b2. The TC
statements alone do not entail completeness of Qsn, because in prin-
ciple there could be other science classes. However, together with
the CFDC, they do imply completeness.

The characterization in Theorem 2, though, does not apply here
because the operators TCa1n and TCb2n map the frozen body of Qsn to
the empty set. They transfer pupil atoms where the class code is a1
or b2. Therefore, a reasoning procedure has to instantiate the codes
in all ways permitted by the CFDC before applying the TC operator.
If the test of Theorem 2 succeeds for all such instantiations, then
we can conclude completeness.

In the following, we develop concepts that allow us to character-
ize completeness wrt CFDCs and then provide an encoding of the
characterizing condition. Since CFDCs are essentially disjunctive,
we encode reasoning only into answer set programming, which
supports disjunctive rules, while Prolog does not.

Let F be a fixed set of CFDCs. Suppose B is a conjunction of
atoms. Let γ be a substitution that maps each variable Y of B either
to a constant occurring in F (a proper constant) or to the frozen
version of Y . We say that γ satisfies B and F if the instance γB
satisfies F . We say that a substitution γ ′ is at least as general as γ ,
written γ ′ � γ , if for all variables Y in B and all proper constants c
we have that γ ′Y = c implies γY = c. We say that γ is an F-case
of C if γ is maximally general among all substitutions satisfying
B and F . For instance, the body of the query Qsn has two {Fsn}-
cases, γa1, which substitutes the variable C with a1 and freezes all
other variables, and γb2, which is analogously defined. By ΓF ,B we
denote the set of all F-cases of B.

We remark that by a reduction of the 3-colorability problem one
can construct a setF3col of CFDCs such that it is NP-hard to decide
whether ΓF3col,B 6= /0 for a conjunction B. It is also not difficult to
see that in polynomial time one can verify whether a substitution is
an F-case of B. Thus, checking whether ΓF ,B 6= /0 is NP-complete.
We now generalize Theorem 2 to CFD constraints. We drop the
analogous generalization of Theorem 4 due to the limited space.

THEOREM 9 (CHARACTERIZATION CFD CONSTRAINTS).
Let C be a set of TC statements, F be a set of CFD constraints, and
Q(X̄)← B be a conjunctive query. Then

C |=F Compl s(Q) ⇐⇒
γX̄ ∈ Q(TC(γB)) for every case γ in ΓF ,B. (7)

PROOF IDEA. For γ ∈ΓF ,B we define the substitution γ̃ as γ̃Y =
γY if γY is a constant, and γ̃Y = Y otherwise. That is, γ̃ sub-
stitutes variables that are subject to a CFD constraint by one of
the possible values and leaves the other variables as they are. The
proof then exploits the fact that over any database satisfying F , a
query Q(X̄)← B is equivalent to the union of conjunctive queries⋃

γ∈ΓF ,B
Qγ , where each Qγ is defined as Qγ (γ̃X̄)← γ̃B.

Condition (7) stipulates a test comprising the following steps:
(i) Instantiate the query body B in all possible ways permitted by
the CFD constraints. This amounts to considering all possible ways
in which an answer to Q can be retrieved. (ii) For each such instan-
tiation γB, compute TC(γB), the set of atoms that must be present in
any available database if the ideal database contains γB. (iii) Eval-
uate Q over TC(γB) and check whether the result contains γX̄ , the
prototypical answer to Q over γB. We now show how to encode
(i) F-cases, (ii) the operator TC , and (iii) the final test into disjunc-
tive rules.

The starting point is again the canonical database DQ. Since DQ
consists of ground atoms, which cannot be instantiated, we have
to mimic the instantiation by cases. To this end, we introduce a
new binary predicate val, where intuitively val(t,v) indicates that
the term t is instantiated by the value v. To achieve modularity, we
keep the encodings of Q, F , and C independent from each other.
Therefore, no information as to which variable can be instantiated
by which value should influence the encoding of Q. We achieve
this by introducing val(t, t) for each term in DQ both for original
constants and for frozen variables. The set of all such facts is de-
noted as ValQ. Then we require that every term can have at most
one val-value other than itself, which can be seen as a requirement
for val to be functional. This can be expressed by the denial rfun:

← val(X ,Y ), val(X ,Z), X 6= Y, X 6= Z, Y 6= Z.

To mimic the instantiation of the query body by cases, we introduce
for each CFD constraint F =R{a1 = v1, . . . ,an = vn}[a] = {w1, . . . ,
wm} the disjunctive rule rF as

val(Xa,w1) | · · · | val(Xa,wm)←

Ri(X1, . . . ,Xa, . . .Xn),val(Xa1 ,v1), . . . ,val(Xan ,vn),

which nondeterministically binds the term in attribute position a
to one of the values in {w1, . . . ,wm}, provided the attribute po-
sitions a1, . . . ,an are bound to v1, . . . ,vn, respectively. Thus, the
CFD constraint Fsn is translated into the rule val(C,a1) | val(C,
b2)← class(C,S,L,B),val(S,newton),val(B,sci). We collect the
rules encoding F into the program PF := {rF | F ∈ F}∪{rfun}.

We keep the rules PΣ that copy DQ into the ideal database Di
Q.

However, to make the TC rules applicable to facts with val-bind-
ings, we need to unfold them. For an atom A = R(t1, . . . , tn), the



unfolding consists of the atom Au = R(Y1, . . . ,Yn), where each ar-
gument is replaced by a fresh variable, and the set of val-bindings
UA = {val(Y1, t1), . . . ,val(Yn, tn)}. Earlier, we have shown how
to translate a TC statement C into the rule rC : Ra(t1, . . . , tn) ←
Ri(t1, . . . , tn),Gi. The unfolded rule for C is then

ru
C : Ra(Y1, . . . ,Yn)← Ri(Y1, . . . ,Yn),URi(t1,...,tn),

(Gi)
u
,UGi

,

where the unfolding (Gi)u of the condition Gi and the set of value
atoms UGi

are defined analogously to the case of single atoms. For
example the rule ru

Csci
for Csci in (2) is

pupila(N1,C1,S1)←

pupili(N1,C1,S1),val(N1,N),val(C1,C),val(S1,S),

classi(C2,S2,L2,B2),val(C2,C),val(S2,S),val(L2,L),val(B2,sci).

The program consisting of the unfolded rules is denoted as Pu
C =

{ru
C |C ∈ C}.
Let Q(X1, . . . ,Xn)← B be the query which we want to check for

completeness. We have to modify the test query in two ways, first
by unfolding, and second by adding val-atoms to encode the check
whether Q returns γX̄ over TC(γB). Thus, the rule rQu

s
for the test

query Qu
s is

Qu
s ← (Ba)u,UBa

,val(x1,X1), . . . ,val(xn,Xn),

where the x j are the frozen versions of the X j . For example, the test
query for Qsn in (7) is

Qu
sn← pupila(N1,C1,S1),classa(C2,S2,L2,B2),val(N1,N),

val(n′,N),val(C1,C),val(S1,newton),val(C2,C),

val(S2,newton),val(L2,L),val(B2,sci),

where n′ is the frozen version of N. Let Ps,u
Q := Di

Q∪ValQ∪{rQu
s
}

be the set of rules about Q.

THEOREM 10 (ASP ENCODING OF CFDCS). Let Q be a con-
junctive query, C a set of TC statements, and F a set of CFD con-
straints. Then

C |=F Compl s(Q) ⇐⇒
Qu

s is in every answer set of Pu
C ∪PF ∪Ps,u

Q .

As in Theorem 5, we obtain an analogous encoding of bag com-
pleteness checks by modifying the rule for the test query. In order
to ensure that no assignment is lost, we add to the body of the rule
for Qu

b for every variable Y in Q an atom val(y,Y ) with the frozen
version y of Y .

7. FOREIGN KEYS AND CFDCS
Foreign keys, in particular combined with conditional finite do-

mains, allow for a larger set of inferences.

Example. Consider Qn(N) ← pupil(N,C,newton), which asks
for the names of all pupils at Newton school, and assume the FK
and CFD constraints from our running example hold. Consider as
well the TC statement Csci in (2) and an analogous statement Chum,
which asserts completeness for pupils in humanities classes. Now,
Qn is complete because every pupil of Newton school belongs to a
class of some branch (by the FKs), the only possible branches are
sci and hum (by the CFDCs), and we are complete for each by Csci
and Chum. Note that we arrived at this conclusion without assuming
that the FKs are enforced.

We now sketch how the constructions in Sections 5 and 6 can be
combined to reasoning about CFDCs and FKs in conjunction. First
we provide a characterization of completeness under set semantics.
The difference with respect to Theorem 9 is now that we have to
consider all cases of the chase of the body B of Q instead of B
alone. One can show that it still does not matter which version of
the chase is used.

THEOREM 11 (CHARACTERIZATION). Let C be a set of TC
statements,K be a weakly acyclic set of FKs, F be a set of CFDCs,
and Q(X̄)← B be a conjunctive query. Then

C |=K,F Compl s(Q) ⇐⇒
γX̄ ∈ Q(TC(γ(ChK(B)))) for every case γ in ΓF ,ChK(B).

The characterization theorem for enforced FKs is a modifica-
tion of Theorem 7 where Cha is to be applied to (γ(ChK(B)),
TC(γ(ChK(B)))) for every γ in ΓF ,ChK(B).

For the encoding, there are now two modifications with respect
to the case of plain FKs. The first is that every new term that is
created by a chase rule must be a value of itself. The second is
that the copy rules for enforced semantics need to be unfolded. For
example, for the FK from pupil to class, we have to add the rule

val( fclass,level(C,S), fclass,level(C,S))← pupili(N,C,S),

which makes every new level term a value of itself. A similar rule
is also needed for the branch of a class.

Let K be a set of FKs. We denote the extension of PK by these
rules as Pu

K. Similarly, we denote the set of unfolded versions of the
copy rules as Pe,u

K . With these rules we can now encode complete-
ness reasoning that considers both FKs and CFDCs into answer set
programming.

THEOREM 12 (ASP ENCODING). Let Q, C, and F as before
and let K be a weakly acyclic set FK constraints. Then

1. C |=F ,K Compl s(Q) ⇐⇒
Qu

s is in every answer set of Pu
C ∪PF ∪Pi,u

K ∪Ps,u
Q ;

2. C |=e
F ,K Compl s(Q) ⇐⇒

Qu
s is in every answer set of Pu

C ∪PF ∪Pi,u
K ∪Pe,u

K ∪Ps,u
Q .

An analogous result holds for bag semantics.

8. EXPERIMENTS
We performed experiments to find out what is the maximal size

of problems that can be solved with our encodings on standard Pro-
log and Answer Set Programming (ASP) platforms and how the
running time depends on the input. Since we expect that in applica-
tions there are many constraints that are not relevant to a reasoning
problem, we also explored how the performance is influenced by
irrelevant information.

We performed four tests and ran them on two state-of-the-art
ASP reasoners, dlv and clingo. We also ran the first test on the
swi Prolog implementation. The experiments were executed on
a desktop machine with an Intel i5 3.40GHz CPU and 8GB mem-
ory. Each experiment was repeated ten times and since the time
measurements were close, we show here average running times.

For the tests, we extended our schema with two relations: school
(sname,scluster, type) and schoolcluster(scluster,district,status),
which model that every school belongs to some school cluster and
is of a certain type, e.g., school(newton,cluster5,middle), and that
each school cluster is in some district and has the status public or
private, e.g., schoolcluster(cluster5,north,pub).



Test 1. We studied the cost of reasoning with FKs with the query

Q1pub(N) ← pupil(N,C,S),class(C,S,1,B),

school(S,SC,T ),schoolcluster(SC,D,pub),

which asks for “all 1st level pupils from public clusters.” We as-
serted that we are complete for pupils, expressed by pupila(N,C,
S)← pupili(N,C,S), and that we enforced the FKs pupil[ccode,
sname] ⊆ class[ccode,sname], class[sname] ⊆ school[sname], and
school[scluster] ⊆ schoolcluster[scluster]. So, Q1pub is complete
under these assertions.

To simulate reasoning in the presence of irrelevant information,
we added TC statements of the form

pupila(N,$c,$s)← pupili(N,$c,$s),

where $c ranged over {1,10,102} and $s ranged over {1,10, . . . ,
105}, which gave rise to 8 test cases with 100 to 107 irrelevant TC
statements.

The results in Figure 1 show that all systems could deal with
sets of up to 106 TC statements. While swi Prolog could deal
also with the largest input, the ASP reasoners timed out after 30
minutes. Moreover, for small and large sets of TC statements, swi
was one order of magnitude faster than the ASP reasoners.

Test 2. We wanted to assess the cost of reasoning with CFDCs.
We ran this test only on ASP reasoners, since implementing CFD
reasoning in Prolog requires the usage of meta-programming pred-
icates to cope with disjunctive rules. We reasoned about the query

Qhigh(N) ← pupil(N,C,S),class(C,S,L,B),

school(S,SC,high),

which asks for “all pupils from a class at a high school.”
We enumerated all possible schools, class levels, and class

branches with FDCS of the form class{}[sname] = {s1, . . . ,sk},
class{}[level] = {l1, . . . , lm}, and class{}[branch] = {b1, . . . ,bn}.
In addition, we asserted that we have complete information about
all schools, Compl(school(S,SC,T ); true), all school classes,
Compl(class(C,$S,L,B); true), and all pupils in all classes,
Compl(pupil(N,C,$S); class(C,$S,$L,$B)), where $S, $L, and $B
range over all school names, class levels, and branches, resp. The
combination of the CFD constraints and the TC statements entail
that Qhigh is complete. To conclude completeness, all possible
cases combining school name, class level, and branch must be ex-
plored. We varied the sizes of these three domains in such a way
that the number of cases (and the number of TC statements for
class) ranged from 1 to 106.

From the results in Figure 2 we observe that for both clingo
and dlv the running times were linear in the size of the input. Both
reasoners could cope with up to 1 mio cases. The fastest reasoner,
dlv, could process 104 cases within less than 1 second, which we
deem acceptable.

Test 3. We wanted to check whether the running time observed in
Test 2 depended on the size of the input or on the number of cases.
We constructed an extreme setup where we had a small input, but
a large number of cases, and where completeness of the query fol-
lowed already from few TC statements, while the case analysis was
not needed to conclude completeness. We reasoned about the query

Qpub(N) ← pupil(N,C,S),class(C,S,L,B),

school(S,SC,T ),schoolcluster(SC,D,pub),

which asks for “all pupils from public clusters,” in the presence of
TC statements that assert the completeness of each of the relations
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Figure 1: Test 1

in the query, such as Compl(pupil(N,C,S); true), etc. Together,
these TCSs guaranteed the completeness of Qpub.

Additionally, we asserted a chain of CFDCs that did not con-
tribute to the completeness of Qpub, but made the reasoning more
complicated. Specifically, we stated that there are i different dis-
tricts, schoolcluster[district] = {d1, . . . ,di}, that for every such
district d there are j different public school clusters,
schoolcluster{district= d,status= pub}[scluster] = {sc1, . . . ,sc j},
and that for each such cluster there are m different schools, while
for each school, there are n different levels.

We varied the parameters i, j, m, n and k to be 1 or 10 (i could
be also 100) to obtain different sizes of CFDCs, which gave rise to
problems with 10p answer sets, where p = 0, . . . ,6.

Figure 3 displays the running times as depending on the number
of answer sets, instead on the input size, which is logarithmically
smaller. We observed running times linear in the number of an-
swer sets, which correspond to the number of possible cases, but
exponential in the size of the input. The running time, measured
in this way, is approximately 10 times faster, than in Test 2, where
the case analysis was actually needed. We conclude that reasoning
about irrelevant cases takes time, but less than about relevant cases.

Test 4. We wanted to assess the cost of reasoning jointly about
FKs and CFDCs. To this end, we slightly modified the setup of
Test 3: (i) we dropped the TC statement asserting the completeness
of class, and (ii) added the enforced FK constraint pupil[ccode,
sname] ⊆ class[ccode,sname], which ensures the presence of all
class information needed for the query.

The results in Figure 4 show that the number of answer sets that
reasoners could cope with before the 30 minutes timeout dropped
from 106 to 104 and that the running time was no more linear in the
number of cases.

In summary, our encoding of completeness reasoning allows for
efficient reasoning with foreign keys in the presence of large num-
bers of TC statements, while reasoning about CFDCs depends in
the first place on the number of cases covered by a set of CFDCs,
rather than the input size. For combinations of FKs and CFDCs,
the performance is not yet fully satisfactory.

9. CONCLUSION
We presented techniques to reason about query completeness

over partially complete databases satisfying primary and foreign
key constraints as well as conditional finite domain constraints.
This generalizes previous work on query completeness and allows
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Figure 2: Test 2
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Figure 3: Test 3
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Figure 4: Test 4

one to identify more situations in which queries are complete than
was possible before. Our approach also provides a basis for the im-
plementation of these reasoning techniques. We provided syntactic
characterizations of completeness reasoning tasks which are inde-
pendent of any implementation. In a second step, we used them to
develop provably correct encodings into logic programming, with
and without disjunctive rules, depending on the constraints involed.
The encodings can be executed immediately by Prolog engines or
ASP solvers.

As a proof of concept, we tested these encodings in a scenario
that reflects the requirements of an administrative information sys-
tem. The results suggest that the encodings are adequate for medi-
um-sized data sets, as they may occur in the administration of a
cluster of schools or a university. Currently, we are working on
the integration of completeness management into the research in-
formation system of a university.
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