
Long-term Optimization of Update Frequencies for
Decaying Information

Simon Razniewski
Free University of Bozen-Bolzano

razniewski@inf.unibz.it

Werner Nutt
Free University of Bozen-Bolzano

nutt@inf.unibz.it

ABSTRACT
Many kinds of information, such as addresses, crawls of webpages,
or academic affiliations, are prone to becoming outdated over time.
Therefore, in some applications, updates are performed periodi-
cally in order to keep the correctness and usefulness of such in-
formation high. As refreshing information usually has a cost, e.g.
computation time, network bandwidth or human work time, a prob-
lem is to find the right update frequency depending on the benefit
gained from the information and on the speed with which the infor-
mation is expected to get outdated.

This is especially important since often entities exhibit a dif-
ferent speed of getting outdated, as, e.g., addresses of students
change more frequently than addresses of pensionists, or news por-
tals change more frequently than personal homepages. Thus, there
is no uniform best update frequency for all entities.

Previous work [5] on data freshness has focused on the question
of how to best distribute a fixed budget for updates among various
entities, which is of interest in the short-term, when resources are
fixed and cannot be adjusted.

In the long-term, many businesses are able to adjust their re-
sources in order to optimize their gain. Then, the problem is not
one of distributing a fixed number of updates but one of determin-
ing the frequency of updates that optimizes the overall gain from
the information.

In this paper, we investigate how the optimal update frequency
for decaying information can be determined. We show that the op-
timal update frequency is independent for each entity, and how sim-
ple iteration can be used to find the optimal update frequency. An
implementation of our solution for exponential decay is available
online.

1. INTRODUCTION
In many applications such as address management or website

crawling, information gets outdated over time and periodical re-
freshes are needed in order to ensure that the information remains
useful. Refreshing information usually has a cost, e.g., computa-
tion time, network bandwidth or human work time. For instance, a
company doing web indexing wants to revisit websites neither too

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WebDB’15, May 31 - June 04 2015, Melbourne, VIC, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3627-7/15/05 $15.00.
http://dx.doi.org/10.1145/2767109.2767113.

seldom, as this leads to the stored information being outdated and
thus to unsatisfied customers, nor too often, as this leads to too high
computation and networking costs. The same holds for an adver-
tising company that has a database of addresses: If the addresses
are updated too seldom, much advertisement will not reach its des-
tination. If they are updated too often, the cost of the updates will
outweigh the revenue from the advertisement.

Therefore, it is important to neither refresh information too of-
ten nor too seldom, but to find the optimal update frequency that
maximizes the ratio between information usefulness and update ex-
penses. We identify two particular problems.

Short-term Optimization. The first problem, which we call
the short-term optimization problem, is, how to distribute the avail-
able update resources best, that is, how to optimize the usefulness
(weighted freshness) of the information given a fixed amount of up-
date resources. In its core, it is a question of resource distribution
("Should I better use an update for website A or website B?").

While in the short-term, companies have to deal with the avail-
able resources, in the long term, resources often can be adjusted to
needs. This holds especially for computational resources given to-
day’s cloud technologies. A problem is therefore to determine the
optimal number of resources to use.

Long-term Optimization. As updates usually have a cost as-
sociated, while correct information brings a benefit, the problem
of long-term optimization asks for the update frequency that max-
imizes the net income, that is, the benefit from correct information
minus the cost for the updates. In its core it is a problem of opti-
mization ("How often should I update website A?")

In this problem, no interaction between entities occurs, as the
optimal update frequency of an entity only depends on its decay
behaviour, the cost of an update, and the benefit of being correct.
The resources that the company should ideally have available are
then computed as the sum of the resources needed for achieving
the optimal update frequency for each individual entity.

Example. Let us make the distinction concrete. Consider a web
crawling company that indexes two webpages, A and B. Suppose
that A and B have a linear probability of getting outdated within
0 and 10, and within 0 and 20 days, respectively (this implies e.g.
that after 5 days, the chance for A to still be correct is 50% and for
B 75%, and after 8 days, 20% and 60%, and so on).

Regarding the problem of short-term optimization, suppose that
the company has resources to perform 3 updates per 10 days. Then
the best distribution of these updates is to update A twice (every 5
days), and B once (every 10 days), because this implies that each of
the pages has an average probability of 0.75 to be up-to date, which

Figure 1: Correctness probability as a function of time, upper
graph without updates, lower graph with updates for A every 5
days, for B every 10 days.

also gives the best average for both pages (0.75). The probability of
correctness as function of time of each entity is shown in Figure 1.
If e.g. we would invert the frequencies and update A only once but
B twice, this would give the average correctness of 0.5 and 0.875,
respectively, and thus a lower average of 0.6875.

On the other hand, suppose that each update has a cost of 1 unit,
and that the daily gain from a correct entity is 1 unit, too. Then
we can ask for the optimal update resource allocation for A and B,
that is, the number of updates that maximizes the gain minus the
update costs. It turns out that for A, the optimal update frequency
is every 4.5 days (2.2 updates per 10 days), which yield an average
correctness of 0.78, an update cost of 2.2, a gain of 7.8 and a net
income of 7.8− 2.2 = 5.6 per 10 days. Making available more
resources, e.g. 3 updates per 10 days, leads to a higher average
correctness of 0.83, and thus also to a higher gain of 8.3, however,
the higher update cost outweighs this, leading to an overall income
of 8.3−3 = 5.3. Similarly, fewer resources, e.g., 2 updates per 10
days, are not optimal, as this leads to a net income of only 5.5.

Using the same analysis, we find that the optimal update fre-
quency for B is every 6.3 days (1.6 updates per 10 days), which
leads to an average correctness of 0.83 and a net income of 6.8,
compared with a net income of 6.5 when updating once every 10
days. We conclude that in the long term, in order to maximize its
income, the company should adjust their resources to be able to do
1.6+ 2.2 = 3.8 updates instead of 3 per 10 days, as this improves
the net income by 3.3% from 12 to 12.4.

Previous work by Cho and Garcia-Molina [5] has provided a so-
lution to the problem of short-term optimization by reducing it to a
problem of linear optimization.

We believe that the problem of long-term optimization has sim-
ilar relevance, as, in order to stay competitive, companies in the
service sector are usually quick in adapting to the optimal market
needs, and because this holds in particular for computational re-
sources due to the scalable cloud resources available today.

Contribution. Our contribution in this paper is to give a gen-
eral solution to the problem of long-term optimization of update
frequencies for entities when there is a cost associated to an update
and a benefit associated to up-to-date information.

Our solution is independent of the chosen decay function and
applies to any domain where the cost of checking whether an entity
got updated is the same as the cost of pulling the update.

We illustrate the benefit of our solution in two use cases, namely
address data maintenance [16] and web crawling [5].

2. MOTIVATING SCENARIOS
We next discuss two concrete scenarios where short-term and

long-term optimization play a role.

Medical Advertisement. Consider an address reselling com-
pany in the medical domain. Its business model consists of main-
taining a high-quality database of specialist doctors and selling the
contact information to suppliers of medical technology and to phar-
maceutical companies. As medical equipment can be expensive,
suppliers are willing to pay considerable amounts for addresses of
specialists that they intend to target with advertisement.

The main activity of the address reselling company is therefore
the acquisition of information about new specialists, and the main-
tenance of existing information. For both tasks, it uses mainly two
techniques, namely web search on hospital homepages, on doctor
homepages and in social networks, and phone calls to hospitals.

Information about doctors shows different decay rates. Younger
doctors are more likely to move than older doctors, and similar dif-
ferences exist also between doctors in the countryside versus doc-
tors in big cities.

If the company has a fixed set of employees, its problem is one
of short-term optimization. Given fixed resources, it has to decide
in which order to check/update the information about each doctor.
In the long-term, the company is however interested in adjusting its
resources in such a way that it optimizes its net income. Thus, the
company also faces the problem of long-term optimization, where
it has to decide for each record the update frequency that optimizes
the benefit from the achieved currency minus the update cost to
achieve that currency.

Web Crawling. In web crawling, companies are providing large-
scale service based on web information. Due to its large scale, for
such services, the web cannot be visited live when serving user re-
quests, but instead crawled versions of the web are used. Example
services are search, price comparison sites or news aggregators. A
commonality is that the quality of the provided service is highly
dependent on the crawling frequency.

A current estimate for the cost of a crawl is 0.0002 Cents, based
on the pricing of $2 per 1 Million crawls of the crawl provider
80legs12.

Webpages may exhibit very different frequencies with which they
get outdated. While e.g. newspages can change minutely, per-
sonal homepages often change even less frequently than once per
month. From past crawls, website attributes and website content,
crawlers can well estimate the likelihood of change of a given web-
page. Given this, they have to decide how often to recrawl a given
webpage.

If their resources are fixed (i.e., they have a fixed number of
servers and no or flat network fees), the problem is one of short-
term optimization. They have to determine how to best distribute
their available crawls among webpages. This problem has been
extensively investigated (see e.g. [5, 14, 17]).

If their resources are not fixed however, e.g. if they are able to
use more computing capacity from cloud providers, are able to buy
more servers for future use, or are charged depending on their net-
work usage, the problem becomes one of long-term optimization.

1http://80legs.com
2For historic values, see e.g. http://research.microsoft.com/en-
us/um/people/nickcr/pubs/craswell_adc04.pdf, which re-
ported 0.05 ct/crawl (network cost) in 2004, and
http://www.michaelnielsen.org/ddi/how-to-crawl-a-quarter-
billion-webpages-in-40-hours/, which reported 0.0023 ct/crawl in
2012.

They have to decide on the best update frequency for each web-
site, that is, the frequency that maximizes the net income from the
freshness of that site minus the update costs. The individual update
frequencies for the webpages then constitute the resources that the
company should acquire for future use.

3. RELATED WORK
In many domains, information is subject to change over time.

Currency (or freshness) as a dimension of data quality is used to
describe the extent to which information captures the current state
of the modelled domain. Analyses of currency can be found e.g.
in [10, 7] and [2], with the latter also investigating how to measure
currency.

Cho and Garcia-Molina [5] investigated the problem of short-
term optimization for information subject to decay. They show that
an optimal policy for update distribution can significantly outper-
form random, uniform and proportional update distribution, and
described a methodology to compute the optimal update distribu-
tion. There has been considerable follow-up work regarding op-
timal crawling strategies under various constraints, e.g. [14], or
[17]. Other work on crawling has focused on how to determine the
change frequency of web pages [6].

Similar problems with decaying information occur also in data
delivery on the web, as discussed in [12, 3, 10], for stream data
warehouses [9], or for distributed databases [4].

An overview of decay functions can be found in [10], where
the authors discuss linear, exponential, geometric, Weibull, and
Gamma distributions for describing decay rates, and describe a
methodology to measure the currency of information.

Information decay is also known in other domains such as rec-
ommender systems [11], where it is called drift in user interest, and
describes the observation that the longer ago a user was found to
have an interest in a certain record, the higher the chance that that
interest may have changed.

Decay is also known in entity matching and data cleaning [13,
8], where newer attribute correspondences are better indicators for
the equivalence between entities than older correspondences.

Finally, decay is also a frequent issue for storage media. There
decay, often called data degradation or data rot, refers to the physi-
cal processes that make data unreadable over time [15, 1]. Since
different storage media show different decay rates, our analysis
may also be relevant for refresh policies for degrading storage me-
dia.

4. INFORMATION DECAY
Decay is a well-known concept in physics and chemistry, for

instance in radioactive decay or chemical reactions, where it de-
scribes the quantitative degradation of substances over time. In IT,
data itself, when properly stored, is not subject to decay, however,
as the real-world changes, the information value of the stored data
may degrade. We therefore label this phenomenon as information
decay.

Decay Function. To describe decay mathematically, one needs
a function over time which describes the probability that an entity
is up-to-date. We call this function the decay function z. In general,
any function z with z(0) = 1 and which is monotonically decreasing
can occur as decay function, which describes the following:

P(correctness at time t) = z(t).

Various classes of decay functions such as linear, exponential
and geometric decay are discussed in [10]. Linear decay, which

Figure 2: Probability of correctness as a function of time for
information under exponential decay.

Figure 3: Illustration of varying decay rates. The probability
of a person in the taxpayer dataset [16] to move varies with the
person’s age.

is mathematically easy to describe, was already used in the intro-
ductory example. In [5] it was shown that the update behaviour of
webpages follows an exponential behaviour. We therefore in the
following focus on linear and exponential decay.

Both classes of functions use a decay rate λ as parameter. The
decay rate describes the velocity with which entities get outdated.

The probability of correctness for an entity under linear decay is

zlin(t) = max(1−λlint,0).

Linear decay can also be characterized by the maximal lifetime
tmax of an entity, which is calculated as tmax =

1
λlin

.
Under exponential decay, the probability of correctness for an

entity is

zexp(t) = e−λexpt .

The shape of zexp(t) is shown in Fig. 2. Often exponential decay
is described in terms of the so-called half-time t 1

2
. The half-time is

the time after which the probability of an entity to still be valid is
0.5. Given λexp, the half-time t 1

2
is calculated as ln(2)

λexp
. Furthermore,

the mean lifetime of an entity can be computed as 1
λexp

.

Example 1 (Decay Coefficients) As we do not have data about
doctors, we use here the UCI dataset about Californian taxpay-
ers [16] to illustrate varying decay rates. The tax payer dataset
contains 200k records of Californian residents, and contains 42
attributes describing socioeconomic features of the taxpayers. In
particular, one of the attributes is called "lived in this house 1 year
ago", and describes whether the person changed residence within
the last year. We aggregated this attribute by person age, obtain-
ing moving probabilities per age as shown in Fig. 3. It is interest-
ing to see that newborns are more likely to move than older chil-
dren, probably because their parents are likely to move to places

Age P(Move
within

last year)

P(No move
within last

year)

λlin λexp t 1
2

(years)

25 36.7% 63.3% 0.37 0.457 1.52

30 27.1% 72.9% 0.27 0.316 2.19

40 15.0% 85.0% 0.15 0.163 4.25

50 9.3% 90.7% 0.09 0.098 7.07

Table 1: Decay rates λ for linear decay, for exponential decay,
and half-time for exponential decay for persons of age 25, 30,
40 and 50 in the UCI dataset.

Figure 4: Calculating the average freshness.

accommodating the bigger family. Less surprising is that the mov-
ing probability peaks at age 25, before it continuously decreases.

While we do not know the true decay function for residences, if
we assume that it follows linear or exponential decay, we can com-
pute the corresponding decay coefficients from the moving proba-
bility within one year. The results for persons of age 25, 30, 40 and
50 are shown in Table 1.

Since without interventions, the probability of correctness would
steadily decrease towards zero, updates may be used to obtain fresh
information. The abstract update operation that we consider here
retrieves the current correct value for a given entity, thus yielding
again a correctness probability of 100% for the updated entity. Sub-
sequently, the updated information is subject to decay and the cor-
rectness probability decreases again over time.

Repeated updates of an entity could in principle be executed us-
ing arbitrary patterns, however, if the decay rate is constant, a uni-
form distribution of updates leads to a better average correctness.
We therefore next investigate the impact of a uniform update fre-
quency U onto the average freshness of the entity.

Relation of Update Frequency and Average Freshness.
Given a decay function z, a decay rate λ and an update frequency
U , the average correctness F(λ ,U) of any entity with that decay
rate under this update frequency corresponds to the area under the
curve z from zero to U divided by the update frequency U (see
Fig. 4 for an illustration):

F(λ ,U) =

´U
0 z(t)dt

U
.

For linear decay with U ≤ λ , this becomes

Flin(λ ,U) = 1− λU
2

. (1)

For exponential decay, this becomes

Fexp(λ ,U) =
eλU −1
λUeλU

. (2)

Age λ
Update frequency U (in years)

0.25 0.5 1 2 5 10

25 0.457 94% 89% 80% 66% 39% 22%

30 0.316 96% 93% 86% 74% 50% 30%

40 0.163 98% 96% 92% 85% 68% 49%

50 0.098 99% 98% 95% 91% 79% 64%

Table 2: Average correctness of information for persons of age
25, 30, 40 and 50 in the UCI dataset for various update frequen-
cies, assuming exponential decay.

Example 2 (Updating Addresses) In Table 2, we show the aver-
age freshness of address information of persons of various age de-
pending on the update frequency, assuming exponential decay. As
we can see, an update frequency of once a year for 25-year olds
yields nearly the same average freshness as an update frequency
of once every five years for 50-year olds, and an update frequency
of once every two years for the former nearly the same average
freshness as a frequency of once every ten years for the latter.

It is clear that higher update frequencies increase the average
freshness. However, from a certain update frequency on, it may be
questionable whether the marginal increase of the average fresh-
ness obtained by further updates is worth its costs. Therefore, we
investigate in the next section the question of what the optimal up-
date frequency is and how it can be computed.

5. COMPUTING THE OPTIMAL UPDATE
FREQUENCY

To determine the optimal update frequency, we have to fix a goal.
The goal to optimize in our case is the net income that can be de-
rived from an entity. The net income from an entity depends on two
factors: The expenses spent for updating the entity, and the benefit
derived from the average freshness of the entity. To determine both
values, we need to know the values of the following two constants:

1. Update cost (C): The update cost describes the cost of an
update operation. Depending on the application, this cost
may contain e.g. human work time, computational resources
or network utilization.

2. Benefit per time from up-to-date entities (B): The benefit
describes the economic value per time unit that is derived
from a correct entity. It may e.g. describe the yearly benefit
derived from being able to send advertisement to a person, or
the daily value of good answers to queries of services relying
on crawled data.

Net Income Calculation. Given values for B, C and λ , we can
compute the net income NI(U) wrt. an update frequency U as:

NI(U) = B ·F(λ ,U)− C
U
. (3)

Without loss of generality, we assume in the following that the up-
date cost C is always 1, therefore, the benefit B expresses multiples
of the update cost. Then, the net income under linear decay with
U ≤ λ , can be calculated by plugging Eq. 1 into Eq. 3 as:

NIlin(U) = B− B ·λ ·U
2

− 1
U
. (4)

Note that the best update frequency U is always either ≤ λ , or
infinity. The latter is a special case which occurs when entities
change too fast, such that the benefit of any update frequency is
too small to outweigh the costs. This case is treated below ("futile
entities"), here we can therefore safely assume that U ≤ λ .

Under exponential decay we similarly calculate NI(U) by plug-
ging Eq. 2 into Eq. 3 as:

NIexp(U) = B
eλU −1
λUeλU

− 1
U
. (5)

Optimal Update Frequency. To find the optimal value for
NIlin(U), by common calculus we take the derivative of 4 and set it
to zero. For linear decay, the derivative is:

NI′lin(U) =−Bλ

2
+

1
U2 .

The maximum of NIlin(U) is therefore at U =
√

2
Bλ

.
For exponential decay, the derivative of Eq. 5 is:

NI′exp(U) =
e−λU (−BeλU +BλU +λeλU)

λU2

We find that NI′exp(U) = 0 at the following position:

U =
−W (λ−B

Be)−1
λ

, (6)

where W is the Lambert W or product log function.3 While there
is no symbolic way to find U , the value can be found with iterative
methods (we used bisection).

Example 3 (Optimal Update Frequencies) Consider again the
person groups of various age as shown in Table 1. In Fig. 5, we
show the yearly net income for various person groups depending
on the update frequency. Yearly benefit B and update cost C are
both 1. As we can see, the net income is negative for very high
update frequencies, reaches a positive maximum at roughly 3 to 5
years, and then drops gradually. We also see that the maximal net
income for the 50-year olds (~0.6) is much higher than the maximal
net income for the 25-year olds (~0.2). Furthermore, we see that
the position of the maximum for the former is at around 5 years,
while for the latter it is at around 3 years. Below we report the
numeric values of the maxima:

Group Optimal update
frequency U

(in years)

Maximal
yearly net
income NI

25-year olds 3.38 0.21

30-year olds 3.61 0.32

40-year olds 4.42 0.49

50-year olds 5.36 0.59

If we take the average of the yearly update frequencies reported
above, we would update all entities uniformly every 4.06 years,
yielding an average gain of 0.3973. Using the optimal update fre-
quencies for each group, the average gain becomes 0.4026, which
is an increase of 1.3% over the uniform update frequency.

We can make two observations. First, the maximal possible gain
for entities whose freshness is decaying slower can be consider-
ably higher than that for entities decaying faster. Second, in order
3http://en.wikipedia.org/wiki/Lambert_W_function

Figure 5: Net income NI per year for various person groups
wrt. different update frequencies. Yearly benefit B and update
cost C are both 1.

to achieve the maximal possible gain over all entities, the update
frequency should be adjusted separately for each group of items of
different decay rate.

Futile Entities. Entities may get outdated so fast that it is better
to not update them at all. For linear decay, the maximal benefit that
can be achieved by one update is the area under the decay curve
z(t) = max(1−λlint,0), which reaches zero at t = 1

λ
and thus cov-

ers an area of 1
2λ

. If the benefit B
2λ

is outweighed by the update
cost C, that is, if B≤ 2λC, then updating the entity does not make
sense as the benefit from the update is outweighed by the update
cost. Similarly, for exponential decay, the maximal benefit is the
area under z(t) = e−λ t , which is 1

λ
, and thus, whenever the values

of B and C are such that B
λ
≤ C, the benefit of an update is out-

weighed by the update cost. Note that futile entities only appear
in applications where outdated entities have zero value, as it is the
case for addresses, but possibly not for crawls of webpages.

Example 4 (Futile Entities) In our example above, where B and
C are fixed to 1, entities under linear decay with a decay rate≥ 0.5
or under exponential decay with a decay rate ≥ 1 satisfy the above
condition and thus it is more efficient to not update them at all. Such
entities would have a maximum lifespan less or equal to 2 years, or
a half-time less or equal than ln(2)≈ 0.69 years, respectively. This
could e.g. be trainee doctors or doctors in military hospitals that
frequently relocate.

Use Case: Webpages
In this section we discuss another use case, which is about the fre-
quency with which a crawler recrawls webpages.

In [5], Cho and Molina did measurements on the change fre-
quency of 270 popular websites. Subsequently, they created a model
where they grouped the sites into five categories, for which they as-
sumed that 23% were updated on average daily, 15% weekly, 16%
monthly, 16% quarterly and 30% yearly. They then assumed to
have resources to update the crawled version of every web page
once a month, and discussed how to best distribute these 270 up-
dates over the whole set.

Expanding our analysis from above to the same set consisting
of five groups of entities, we find that spending 270 updates per
month on the set of 270 sites is the best choice only if the ratio
between benefit per up-to-date entity per day and update cost (B

C)
is 0.355. If the cost-benefit ratio is different, providing resources
for 270 updates per month leads to a benefit that is significantly
below the optimum, as shown below:

Benefit-
cost ratio

B
C

Optimal
number of
monthly
updates

Loss wrt.
optimum when

using 270
updates

0.1 60 18.5%

0.3 242 0.1%

0.355 270 -

0.5 333 0.5%

1 1,033 6.0%

10 4,710 25.8%

100 15,882 31.8%

In the third column, we show the loss resulting from using 270
updates instead of the optimal number of updates (Column 2) for
varying benefit-cost ratios (Column 1). For the first two rows, this
270 updates would imply that entities are updated too often than op-
timal, for the last four rows it would imply that entities are updated
less often than optimal. Note that the loss for higher B

C ratios grows
less fast, because the net income depends on the average freshness,
which is bounded by 100%. Since 270 updates already achieve a
reasonable average freshness (>60%), significantly higher update
resources cannot outperform the net income similarly.

As we can see, depending on the true value of B
C , a fixed provi-

sion of updates which is different from the optimum may lead to
significant losses in the net income, even though we assume these
updates to be distributed in the optimal way according to short-
term optimization [5]. For instance, if the true ratio is 100, using
resources for monthly updates (ratio 0.355) leads to a reduction of
the overall income by 31.8%. Note also that the ratio for search
engines may be much higher, as in the next section we compute an
estimated B

C ratio of 16k for Google.

6. DISCUSSION
Computing the optimal update frequency under exponential de-

cay (Eq. 6) requires iteration, which e.g. cannot be done in standard
Excel. We therefore provide a Java implementation that computes
the location of the optimum. It can be downloaded at
http://www.inf.unibz.it/~srazniewski/updatefrequency.jar.

Executed with values for the two parameters r and B
C , it returns

the optimal update frequency under exponential decay and the ob-
tained net income.

Finding the Correct Decay Function. Finding the correct
function class and the right parameters requires either domain knowl-
edge, or data that can be statistically analysed. The work in [10]
shows that in different domains, different decay functions may be
applicable. In [5], it was verified that Poisson processes for data
change lead to exponential decay curves. Regarding the finding of
the right function parameters, note that in our example of the tax
payers, we only used the age attribute. It is likely that other at-
tributes will help to identify variances in decay rates too, e.g. it is
likely that certain professions require higher mobility than others,
or that persons with bigger families move less often than singles.
Regarding the update frequency of webpages, an extensive discus-
sion on how to estimate it can be found in [6].

Sensitivity to Wrong Estimates of Decay Rates. Even if
the class of decay functions is known, the individual decay rates

can be varying. In Fig. 5 we can see that the optimal update fre-
quencies for different decay rates are relatively close to each other,
which is likely due to the fact that the half times of the various age
groups are still relatively similar. For the web page scenario dis-
cussed in [5], the half times show a much higher variance (1-365
days), so there a wrong estimate for the decay rate might have much
more severe impact. Given the shape of the net income curves in
Fig. 5, it is generally advisable to be conservative in doubt. It is
better to underestimate the decay rate, and thus, to perform updates
less frequent than optimal, than to overestimate the decay rate, and
perform updates too frequent.

Applicability. In general, the presented analysis can be used in
any domain in which information is changing, and in which the cost
of checking for changes is close to the cost of pulling the changes.
An example where this is generally not the case is caching: It is
usually much cheaper to detect whether a change happened, e.g.
using flags or hash codes, than pulling a change. For web crawlers,
it is plausible that the benefit from outdated information is not nec-
essarily zero, but instead decreases gradually with the number of
new versions. It is not clear how that can be taken into account
in this model. For addresses this problem does not occur, as an
address is indeed either correct and useful, or outdated and useless.

Search Engine Business. We can instantiate our framework
with known values of the Google search engine. Note that this is
just a hypothetical example, the techniques Google uses for deter-
mining recrawl frequencies are not public and may be very differ-
ent. The equation in Eq. 6 has four parameters (B, U ,λ and C).
Thus, if we fix three of them we can calculate the fourth

We have seen that the cost C for one crawl is in the order of
0.0002 Cents. It is reported that the website quietnightbeds
(http://quietnightbeds.co.uk/), an online store, gets crawled by
Google 75 times a day4 (this gives U). If we assume that this
webpage changes on average daily (λ), we can compute the value
16,000 for the ratio B

C . Thus, given the known value for U , we can
deduce that the crawling service (Google) obtains a benefit B of
around 3.2 ct per day from having the current version of this web-
page. Analogously, if the webpage would change twice a day, the
benefit would be '1.6 ct per day.

7. CONCLUSION
In this paper we have introduced the problem of long-term opti-

mization of the number of resources used for refreshing decaying
information. We have discussed two use cases (postal advertise-
ment and web crawling), and presented a general way to calculate
the optimal update frequency, along with concrete instantiations for
linear and exponential decay. We have shown that when adjusting
their resources based on the optimal values found using long-term
optimization, businesses can potentially increase their net income
considerably.

Future work will focus on finding the best update frequency when
parameters are not exactly known, and on the impact of life-cycle
changes of decay parameters.

Acknowledgment. We thank Anastasia Mochalova for discus-
sions that started this research, and Divesh Srivastava for point-
ing out connections to web crawling. This work was supported
by the research project MAGIC, funded by the province of Bozen-
Bolzano.
4http://www.sitepoint.com/increase-search-traffic-getting-site-
recrawled-often/

http://www.inf.unibz.it/~srazniewski/updatefrequency.jar

8. REFERENCES
[1] M. Baker, K. Keeton, and S. Martin. Why traditional storage

systems don’t help us save stuff forever. In Proc. 1st IEEE
Workshop on Hot Topics in System Dependability, pages
2005–120. Citeseer, 2005.

[2] M. Bouzeghoub. A framework for analysis of data freshness.
In Proceedings of the 2004 international workshop on
Information quality in information systems, pages 59–67.
ACM, 2004.

[3] L. Bright and L. Raschid. Using latency-recency profiles for
data delivery on the web. In Proceedings of the 28th
international conference on Very Large Data Bases, pages
550–561. VLDB Endowment, 2002.

[4] D. Carney, S. Lee, and S. Zdonik. Scalable application-aware
data freshening. In Data Engineering, 2003. Proceedings.
19th International Conference on, pages 481–492. IEEE,
2003.

[5] J. Cho and H. Garcia-Molina. Effective page refresh policies
for web crawlers. ACM Trans. Database Syst.,
28(4):390–426, Dec. 2003.

[6] J. Cho and H. Garcia-Molina. Estimating frequency of
change. ACM Transactions on Internet Technology (TOIT),
3(3):256–290, 2003.

[7] W. Fan, F. Geerts, and J. Wijsen. Determining the currency
of data. ACM Trans. Database Syst., 37(4):25, 2012.

[8] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The
LLUNATIC data-cleaning framework. PVLDB,
6(9):625–636, 2013.

[9] L. Golab, T. Johnson, and V. Shkapenyuk. Scalable

scheduling of updates in streaming data warehouses.
Knowledge and Data Engineering, IEEE Transactions on,
24(6):1092–1105, 2012.

[10] B. Heinrich, M. Klier, and M. Kaiser. A procedure to develop
metrics for currency and its application in crm. Journal of
Data and Information Quality (JDIQ), 1(1):5, 2009.

[11] Y. Koren. Collaborative filtering with temporal dynamics.
Communications of the ACM, 53(4):89–97, 2010.

[12] A. Labrinidis and N. Roussopoulos. Balancing performance
and data freshness in web database servers. In Proceedings
of the 29th international conference on Very large data
bases-Volume 29, pages 393–404. VLDB Endowment, 2003.

[13] P. Li, X. L. Dong, A. Maurino, and D. Srivastava. Linking
temporal records. PVLDB, 4(11):956–967, 2011.

[14] J. McKeeth. Method and system for updating a search
engine, July 13 2004.

[15] T. Schwarz, M. Baker, S. Bassi, B. Baumgart, W. Flagg,
C. van Ingen, K. Joste, M. Manasse, and M. Shah. Disk
failure investigations at the internet archive. In
Work-in-Progess session, NASA/IEEE Conference on Mass
Storage Systems and Technologies (MSST2006), 2006.

[16] UCI Machine Learning Repository. California taxpayer
dataset. http://archive.ics.uci.edu/ml/datasets/
Census-Income+(KDD).

[17] J. L. Wolf, M. S. Squillante, P. Yu, J. Sethuraman, and
L. Ozsen. Optimal crawling strategies for web search
engines. In Proceedings of the 11th international conference
on World Wide Web, pages 136–147. ACM, 2002.

http://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)
http://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)

	Introduction
	Motivating Scenarios
	Related Work
	Information Decay
	Computing the Optimal Update Frequency
	Discussion
	Conclusion
	References
	References

