
Complete Approximations of Incomplete Queries

Ognjen Savković1 Paramita Mirza2

1Free University of Bozen-Bolzano
Piazza Domenicani 3

I-39100 Bozen-Bolzano, Italy

{fname.lname}@unibz.it

Alex Tomasi1 Werner Nutt1

2Fondazione Bruno Kessler
Via Sommarive 18

I-38123 Trento, Italy

paramita@fbk.eu

ABSTRACT
We present a system that computes for a query that may be incom-
plete, complete approximations from above and from below.

We assume a setting where queries are posed over a partially
complete database, that is, a database that is generally incomplete,
but is known to contain complete information about specific aspects
of its application domain. Which parts are complete, is described
by a set of so-called table-completeness statements. Previous work
led to a theoretical framework and an implementation that allowed
one to determine whether in such a scenario a given conjunctive
query is guaranteed to return a complete set of answers or not.

With the present demonstrator we show how to reformulate the
original query in such a way that answers are guaranteed to be com-
plete. If there exists a more general complete query, there is a
unique most specific one, which we find. If there exists a more
specific complete query, there may even be infinitely many. In
this case, we find the least specific specializations whose size is
bounded by a threshold provided by the user.

Generalizations are computed by a fixpoint iteration, employ-
ing an answer set programming engine. Specializations are found
leveraging unification from logic programming.

1. INTRODUCTION
Completeness is one of the classical dimensions of data qual-

ity. Recently, it attracted increased attention in research (cf. [2,
3]). With this demonstration, we draw upon an approach by Raz-
niewski and Nutt [7] and a subsequent implementation by the pres-
ent authors [8]. Building upon previous work by Motro [6] and
Levy [5], that work resulted in techniques to reason about the ques-
tion whether a generally incomplete database D contains sufficient
information to return a complete answer for a specific query Q.

This and the present work are motivated by a project to create
a school information system in the Italian province of Bolzano,
where decision-makers want to have guarantees about the com-
pleteness of query answers. In this setting, a database instance
D may be partially complete in that it contains, e.g., all pupils at
primary schools in Bolzano, but generally incomplete because the
registration data from other schools have not yet been incorporated.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

Following the approach in [7, 8], one can express which parts of
which tables are complete, using so-called table-completeness (TC)
statements. For example, one can write TC statements which say
that the database instance contains “all primary schools” (prim),
“all pupils attending a school in Bolzano” (schBol), and “all En-
glish learners that are pupils at a primary school” (primEng), re-
spectively. Such TC statements could be generated by workflow en-
gines or during ETL processes filling data warehouses. Intuitively,
a TC statement like (schBol) says that for every pupil enrolled in
a school in Bolzano, there is a recored in the pupil table of the
database. A formal semantics has been provided in [5, 7].

If we know that a collection C of TC statements holds over a
database, we can conclude that a certain query, say Q, will return
the same set of answers as it would over a database that contains
a complete record of the application domain. For instance, from
(prim), (schBol), and (primEng) we can infer that we can retrieve
all pupils at a primary school in Bolzano that learn English.

In [7], the authors reduced such completeness reasoning to query
containment, while [8] reported on an implementation, the MAGIK
system, that generalized these techniques to reasoning in the pres-
ence of keys, foreign keys (FKs), and finite domain constraints
(FDCs). In addition, if completeness of Q does not follow from C,
MAGIK returns the weakest set of TC statements whose addition
to C makes Q complete. Thus it would tell, in a way, which data
need to be added to make Q complete.

In this demonstration, instead, we deduce how to approximate
an incomplete query by complete queries from above, that is, by a
more general query, and from below, by more specific queries. We
can deal with single block SQL queries with equalities, which cor-
respond to conjunctive queries and our algorithms take into account
keys, FKs, and FDCs.

If Q, Q′ are queries such that Q is contained in Q′, then we say
that Q is a specialization of Q′ and Q′ is a generalization of Q.
One can prove that, given TC statements C, if there is a complete
generalization of a query Q, there is a most specific one. We call
this the most specific generalization or MSG of Q. Our system
computes such MSGs. One can also show that in general there is
more than one least specific specialization (LSS) of Q. Specializa-
tions can be obtained by instantiating variables or by adding atoms
or by both. In some cases, by continuous addition of atoms to Q,
one can even generate less and less specific specializations. There-
fore, our specialization algorithm is invoked with a bound on the
number of atoms it can add to Q.

With our demonstrator we made the following contributions:
• We developed algorithms to compute for an incomplete query

the most specific complete approximation from above (MSG)
and, given a bound on the query size, the set of least specific
complete approximations from below (LSSs);



• We implemented our algorithms using logic programming
platforms. More specifically, (i) we extended earlier tech-
niques for completeness reasoning, based on answer set pro-
gramming, to compute most specific generalizations, and (ii)
we leveraged Prolog unification to compute least specific spe-
cializations.

Section 2 walks through a possible demo session, Section 3 sketches
our implementation techniques, and Section 4 gives an overview
over the architecture.

2. SAMPLE DEMONSTRATION
The demonstrator analyzes queries that are posed over a fixed

schema with keys, foreign keys (FKs), and finite domain constraints
(FDCs) . It can be run either in virtual mode, where schemas can
be defined and altered for demonstration purposes, or in database
mode, where a schema can be imported from an existing Post-
greSQL database, and where constraints are read from the catalog.

In this section, we walk through a possible session and explain
the functionalities of the system. One starts by creating the schema
of a virtual database, connecting to an existing database, or select-
ing an already existing schema. For each schema, the demo server
keeps completeness constraints and queries from earlier sessions.

In our case, we choose the schema of the existing toy database
“school-bolzano”, modeling schools in the province of Bolzano
(Figure 1). It consists of the four tables below, where primary keys
are underlined:

school(sname, type, district)

class(code, level, scheme)

pupil(pname, sname, code)

learns(pname, lang).

The table school records for each school the name, the type (e.g.,
primary or middle school), and its school district. The table class
stores for each class, which is identified by a code, the level (e.g.,
1st year) and its scheme (half day or full day). The table pupil
contains for each pupil, identified by the name, the class the pupil
attends and the school. Finally, the table learns records which pupil
learns which language.

Once a schema is selected, the Completeness Reasoning window
is opened (Figure 2 (a)). Here the upper panel contains the foreign
key and finite domain constraints; the middle panel contains a list
of TC statements; and the lower panel contains a list of queries.
In virtual mode, all items from these three components can be cre-
ated, edited or deleted. In database mode, this is impossible for the
schema constraints.

Each item in the window (FK, FDC, TC statement, or query)
can be activated by selecting the corresponding check box. If con-
straints or completeness statements are activated, the reasoner takes
them into account in its analysis. In this way, the different features
and reasoning modes can be illustrated in the demo.

In our sample session, as documented in Figure 2(a), six TC
statements are activated:

Complete Table Completeness Condition
tc1 : school(S, ’primary’, D)

tc2 : pupil(N,S,C) school(S, T, ’Bolzano’)

tc3 : class(C,L, ’halfDay’)

tc4 : class(C,L, ’fullDay’)

tc5 : learns(N, ’English’) pupil(N,S,C), school(S, ’primary’,D)

tc6 : learns(N, ’English’) pupil(N,S,C), school(S, ’middle’,D)

Table completeness statements are written in a datalog-like syn-
tax. Intuitively, a TC statement about a table asserts that the table

Figure 1: Screen dump of the schema selection window

is complete for all tuples satisfying some conditions expressed by
selections and semi-joins. For instance, the first statement asserts
that the school table contains all primary schools (in the applica-
tion domain of the database). The second statement asserts that
the table pupil contains records of all pupils that attend a school in
the Bolzano district. Formally, the first statement says that the ta-
ble school contains all tuples that over an ideal complete database
satisfy the selection σtype=’primary’(school). The second statment
says that the table pupil contains all tuples that satisfy the semi-
join pupil n σdistrict=’Bolzano’(school) over such an ideal database.
Syntactically, a TC statement for a table R consists of two parts:
an R-atom, representing a selection on R, and, possibly, a condi-
tion, representing a semijoin with other tables. Strings starting with
upper-case letters denote variables and others constants. In our ex-
ample session, all TC statements are activated.

Queries are entered as SQL single block queries and, for the sake
of this demo, are assumed to be evaluated under set semantics. The
reason is that generalizations and specializations of queries often
change the multiplicities of query answers, which would make the
demo less interesting.

In the sample demo, we have entered four queries, Q1 to Q4.
Once a query is selected it can be checked for completeness by
pressing the button Run Query. Trying out one by one query, the
completes reasoner shows that, given the activated TC statements
(Figure 2 (a)), the first query can be answered completely and it
displays green label that the query is complete. For the last three it
found that completeness cannot be guaranteed and for each of them
it displays red label that query is incomplete (Figure 2 (b)).

In addition, if a query is incomplete, one finds here the most
specific generalization (MSG) of the query that is complete for the
given TC statements. One also finds the least specific specializa-
tions (LSSs) that are complete and do not contain additional atoms.
This helps a user understand which answers are potentially missing
and which answers are be lost if the query is replaced with some
complete approximation.

In the following, we discuss the completeness analysis for each
query separately. While the demonstrator accepts queries in SQL
syntax, we employ datalog syntax to save space.
Query Q1: “Select the names of all pupils that attend a primary
school in the Bolzano district”:

Q1(N) :– pupil(N,S,C), school(S, ’primary’, ’Bolzano’).

This query is complete because our database contains all records
of pupils from primary schools in the Bolzano district (tc2) and it
contains all such schools (tc1).
Query Q2: “Select the names of all pupils that attend a primary
school in the Bolzano district and that learn some language”:

Q2(N) :– pupil(N,S,C), school(S, ’primary’, ’Bolzano’), learns(N,L).



Figure 2: Screen dumps of our demonstrator

(a) Input part of Reasoning window (b) Output part of Reasoning window

This query is reported to be incomplete because there is no guaran-
tee that we have all language learners. If we look at the output part
of Reasoning window for this query (Figure 2 (b)), we see that the
system has found one generalization and one specialization:

Qgen
2 (N) :– pupil(N,S,C), school(S, ’primary’, ’Bolzano’).

Qspec1
2 (N) :– pupil(N,S,C), school(S, ’primary’, ’Bolzano’),

learns(N, ’English’).

They query Qgen
2 was discovered by dropping the potentially “in-

complete” learns atom. ThenQgen
2 is checked and found to be com-

plete. Because a most specific generalization is always unique (if
exists), the system stops.

Differently from the MSG approach, the LSS search algorithm
tries to specialize “incomplete” atoms to make them “complete”.
In this case, the system unifies the query atom learns(N,L) with
learns(N, ’English’) in tc5.

The completion succeeds because the atoms in the condition
of tc5, namely pupil(N,S,C), school(S, ’primary’,D), are more
general than the corresponding atoms in Q2. The condition of the
TC statement had not been more general, then the algorithm would
have attempted to unify the condition with the body of the query.
In an alternate branch, the algorithm also tries to apply tc6, but fails
because the atom school(S, ’middle’, D) does not unify. (It would
fail as well if additional atoms were allowed in the specialization,
due to the primary key constraint of school.)

The proposed approximations Qgen
2 and Qspec1

2 may introduce
new answers or eliminate previous answers over the given database
instance. To assess the quality of the approximations, the system
returns the numbers of new and eliminated answers, respectively.
If one of these numbers is close to the number of answers to the
original query, this can be seen as a confirmation that the orginal
answer was close to complete.

Query Q3: “Select the names of all 1st level pupils that attend a
school in the Bolzano district and that learn some language”:

Q3(N) :– pupil(N,S,C), school(S, ’primary’, ’Bolzano’)

class(C, ’1’, B), learn(N,L).

With this example we demonstrate the interaction between FKs and
FDCs. On the basis of the given completeness assertions, the sys-
tem proposes a generalization and a specialization.

For class the following FDC holds:

class[scheme] ∈ {’fullDay’, ’halfDay’}.

The reasoner concludes from this together with tc3 and tc4 that
the database is complete for all classes. It thus comes up with the
generalization:

Q
gen
3 (N) :– pupil(N,S,C), school(S, ’primary’, ’Bolzano’),

class(C, ’1’, B).

The result count over our example database reveals that Q3 and
Qgen

3 return the same number of answers—because every first year
pupil in the bilingual province of Bolzano learns either Italian or
German as an additional language. Consequently, the answer to
Q3 was already complete.

Analogously to Q2, the specialization of Q3 is the query that
asks for all first level pupils that learn English. Again, finite domain
reasoning is needed to conclude that the database is complete for
all classes.
Query Q4: “Select all language learners”:

Q4(N) :– learns(N,L).

This examples illustrates the effect of FKs and FDCs on generaliza-
tion and specialization. Under the present completeness assertions,
there is no complete generalization of Q4. However, a general-
ization would be possible if there were a TC statement asserting
completeness for the full pupil relation. In this case, the reasoner
would return the query asking for all pupils.

If we switch off the foreign key constraints, it finds a special-
ization of size 1+2, which is the same as query Qspec1

2 . With all
constraints activated, it returns as the least specific specialization

Qspec1
4 (N) :– learns(N, ’English’).

Statements tc5 and tc6 guarantee completeness of the learns table
for all pupils at primary and middle schools. Due to the FKs, for



every learn record, there is a corresponding pupil, and for every
pupil, there is a corresponding school. Thus, the presence of pupil
and school tuples is guaranteed. Moreover, due to the FDCs, each
school is either primary or middle, so all possibilities are covered
and Qspec1

4 (N) is complete.

3. IMPLEMENTATION TECHNIQUE
The core of the demonstrator is the completeness reasoner. Its

basic functionality is to determine whether a query is complete with
respect to a set of TC statements. The complexity class of this
problem ΠP

2 , which is corresponds to the difficulty of problems ex-
pressible with Answer Set Programming (ASP). This functionality
was already shown with the MAGIK demo [8], which translates
a completeness problem instance into a set of disjunctive datalog
rules, which are then processed by an ASP engine. Our demo uses
MAGIK to determine whether a query is complete or not and ex-
tends it to compute generalizations.

To compute generalizations, we rely on an operator fC under-
lying the algorithm in MAGIK. This operator exists for any set of
TC statements C. When reasoning without integrity constraints, fC
selects from a set of atoms B (e.g., the body of a conjunctive query
Q), the subset fC(B) ⊆ B of those atoms that are guaranteed to
be complete by the statements in C under the hypothesis that all
atoms in B are complete (which in general is not true). A query
Q(x̄) :−B is complete with respect to C if and only if fC(B) and
B are equivalent. Clearly, the operator fC is monotonic with re-
spect to set inclusion as as it maps sets of atoms to subsets. It is
also semantically monotonic in the sense that fC(B) is at least as
general as B. Repeated application therefore leads to a fixpoint.
One can show that this fixpoint is the body of the most specific
complete query containing Q if such a query exists. To take into
account keys, FKs and FDCs, the operator has to be generalized,
but it retains the property that it converges to the most specific gen-
eralization.

The operator fC can be expressed by a collection of logic pro-
gramming rules, where FKs are translated into rules with Skolem
functions and FDCs into disjunctive rules. These rules together
with a representation of the query are then passed to an ASP solver,
which applies cautious reasoning to check if the query is complete.

Specializations are computed using Prolog unification. To spe-
cialize a query without adding atoms, each atom of the query is
unified with a TC statement. If this succeeds, a more specific, but
complete query is obtained. In the following steps, we nondeter-
ministically add fresh atoms and apply the above specialization
procedure again until the maximal allowed query size is reached.
Prolog unification is used further to filter out the most general spe-
cializations.

4. SYSTEM ARCHITECTURE
The demo system is built as a web application written in Java. It

is composed of three layers (Figure 3). The interface layer is im-
plemented using Java Server Pages that are executed on an Apache-
Tomcat Web server. The reasoning layer is the core of the system.
The completeness reasoner encodes the problem of determining
completeness and of finding query generalizations by calling the
DLV [4] answer set engine. The problem of finding query spe-
cializations is encoded into Prolog and executed by TuProlog [1],
a Java-friendly Prolog distribution. The data layer is stores the
meta-information (virtual schemas, TC statements, and queries) us-
ing Hibernate as object-relational mapper. Database connections,
which are also stored in this database, are used to establish con-
nections with remote or localhost databases. When connecting to

Figure 3: The overall system architecture

Output	  

Query	  Results	  

Gen.	  and	  Spec.	  

Query	  Completeness	  

Interface	  Layer	  

Reasoning	  Layer	  

Data	  Layer	  

Par>ally	  Complete	  Database	  

Meta-‐informa>on	  Storage	  

Evaluate	  SQL	  Queries	  
(database	  mode)	  

Input	  

Schema	  constraints	  

TC-‐statements	  

SQL	  queries	  

Hibernate	  Store/Load	  
TCs	  and	  Queries	  

Read	  Database	  Schema	  
(database	  mode)	  

TuProlog	  

Program	  Business	  Logic	  

Completeness	  Reasoner	  

DLV	  Engine	  

Read/Write	  Virtual	  Schema	  
(virtual	  mode)	  

a database, the system retrieves the schema and constraint infor-
mation from the catalog. The connections also are used to execute
queries and retrieve answers. At the moment, the system only com-
municates with PostgreSQL databases.

5. CONCLUSION
We aim to show how one can build a system that supports query

answering over a partially complete database for which we have in-
formation about the complete parts, as it may arise when integrating
data from different sources or generated by different business pro-
cesses. Given a user query, our system computes queries that are
guaranteed to be complete and approximate the user query from
above and from below, taking into account keys, foreign keys, and
finite domain constraints. The algorithms are implemented lever-
aging logical programming technology.

The current implementation is intended as a proof of concept. In
future work, we will study how to make it scalable.

6. REFERENCES
[1] E. Denti, A. Omicini, and A. Ricci. Multi-paradigm

Java-Prolog integration in tuProlog. Science of Computer
Programming, 57(2):217 – 250, 2005.

[2] W. Fan and F. Geerts. Relative information completeness. In
PODS, pages 97–106, 2009.

[3] W. Fan and F. Geerts. Capturing missing tuples and missing
values. In PODS, pages 169–178, 2010.

[4] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri,
and F. Scarcello. The DLV system for knowledge represen-
tation and reasoning. ACM TOCL, 7(3):499–562, 2006.

[5] A. Levy. Obtaining complete answers from incomplete
databases. In Proc. VLDB, pages 402–412, 1996.

[6] A. Motro. Integrity = Validity + Completeness. ACM TODS,
14(4):480–502, 1989.

[7] S. Razniewski and W. Nutt. Completeness of queries over
incomplete databases. In VLDB, 2011.

[8] O. Savković, P. Mirza, S. Paramonov, and W. Nutt. MAGIK:
Managing Completeness of Data. In CIKM, pages 2725–2727,
2012.


	Introduction
	Sample Demonstration
	Implementation technique
	System Architecture
	Conclusion
	References

