
Under consideration for publication in Theory and Practice of Logic Programming 1

An ASP Approach to Query Completeness Reasoning

Werner Nutt
Free University of Bozen-Bolzano
(e-mail: nutt@inf.unibz.it)

Sergey Paramonov
KU Leuven

(e-mail: sergey.paramonov@cs.kuleuven.be)

Ognjen Savković
Free University of Bozen-Bolzano

(e-mail: savkovic@inf.unibz.it)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

We address the problem to determine whether a query over a partially complete database can be answered
completely, which arises in data integration and decision support. Using so-called table completeness
statements, one asserts which parts of a database are complete. The question then is whether these are
sufficient to retrieve the same answers as if the database had complete information about the domain of
application. Previous work in the area of databases has characterized the complexity of the problem, but did
not come up with a practical implementation.

In this paper we explore ASP engines as a possible platform to execute completeness reasoning problems.
We first generalize the problem by taking into account finite domain constraints and then translate it into
rules that may have disjunctions in the heads. The translation allows us to encode completeness problems
into cautious reasoning in ASP. We implemented our encoding in two state of the art solvers and tested it
on examples that involve many disjunctions, but allow for significant optimizations. It turned out that both
engines did not take advantage of the possibilities for optimization.

1 Introduction

In database applications such as information integration and decision support, one is in interested
in data sets that are complete, in the sense that the data represent all relevant facts that hold in the
real world. In many situations, though, it is only possible to guarantee partial completeness of the
data, which means that for certain aspects of the application domain the data are complete, but
not for others. In such a situation, one would like to know at least whether the available data are
sufficient to answer a given query completely, that is, whether the answers to the query over the
avalable data are the same as if the data set were complete.

An example is the management of school data in the province of Bolzano, which motivated the
work reported here. Data in the school information system of the province are often incomplete
because each school individually is responsible for inserting its data into the system and because
for certain kinds of data the contribution is optional. Decision makers, however, need to know

2 Werner Nutt, Sergey Paramonov and Ognjen Savković

whether or not the statistics on which they base the allocation of resources to schools are derived
from complete data.

Motro (1989) was the first to formalize incomplete databases and completeness of queries.
Levy (1996), in addition, introduced a format for assertions that say which parts of a relational
database are complete. We call these assertions table completeness or TC statements. He raised
the problem to determine whether a set of such TC statements imply that some given query can
be answered completely. Razniewski and Nutt (2011b) showed how to reduce this completeness
reasoning problem to containment of conjunctive queries (Chandra and Merlin 1977) and gave a
comprehensive analysis of its complexity, considering several variants of queries and assertions.
In particular, they showed that for the most expressive queries and assertions they considered,
completeness reasoning is ΠP

2 -complete. Such a degree of difficulty is reached, for instance,
if queries and assertions are expressed by conjunctive queries and if finite-domain constraints
hold over the database (Razniewski and Nutt 2011a). This work, however, did not lend itself
immediately to a practical implementation.

When implementing a new reasoning procedure, one may either start from scratch, or map
the reasoning problem to an existing formalism, for which implementations exist. Answer Set
Programming (ASP) allows one to declaratively express problems in ΠP

2 (Leone et al. 2006) and
researchers have produced some powerful solvers. This suggests ASP as a promising platform for
completeness reasoners.

In this paper we develop an approach to implement completeness reasoning for conjunctive
queries and for TC statements that are expressed by means of conjunctive queries. Moreover, we
take into account the finite domain constraints that hold over a database. Our approach consists
of two steps. First, we develop syntactic characterizations of when a collection of TC statments
entails the completeness of a query. Then we build upon the characterization to encode every
completeness reasoning problem into a logic program such that the resulting program entails a test
fact under cautious reasoning if and only if the the original problem has the answer “yes.” The two-
step approach opens up the possibility to prove the correctness of the encoding. Complete proofs
can be found in (Paramonov 2013), but are not included in the paper due to space limitations.

We have experimented with our encoding using two ASP engines, clasp (Gebser et al. 2012)
and dlv (Leone et al. 2006). The tests involve finite domain constraints, which are encoded using
disjunction in the head of rules. On the tests, both systems perform similarly: (i) their running
times are of the same order of magnitude, and (ii) the running times are exponential in the input
size. We argue that both systems forgo opportunities of optimisation, which in one of the tests
could already be achieved with straightforward and established optimization techniques.

The remainder of the paper is organized as follows. In Section 2, we recall basic definitions
from database theory and fix our notation. Section 3 formally introduces completeness reasoning.
In Section 4, we characterize completeness reasoning in the absence of finite domain constraints
and present our encoding for this case. In Section 5, characterization and encoding are generalized
to take account finite domain constraints. Section 6 reports on our experiments and Section 7
concludes.

2 Preliminaries

Relational Databases and Conjunctive Queries. A database schema is a set of relation symbols
Σ, each with an arity ary(R). In the following, we assume the schema to be fixed. We assume an
infinite set of constants dom, the domain. For a relation R with arity n, an atom is an expression

Theory and Practice of Logic Programming 3

R(t1, . . . , tn), where t1 . . . tn are either elements of dom or variables. We denote constants with
lower-case and variables with upper-case letters. A database instance D is a finite set of ground
atoms. We sometimes refer to the atoms in an instance as facts. For a relation R, we denote as
R(D) the set {t̄ | R(t̄) ∈ D} of all tuples occurring in an R-atom. A condition is a set of atoms.

A conjunctive query is written as Q(X̄)← B, where B is a condition and X̄ is a tuple of variables,
each occuring also in B. We call B the body of Q, the variables in X̄ the distinguished variables
and the other variables in B the nondistinguished variables. Given a conjunctive query Q(X̄)← B
and an instance D, an answer to Q is a tuple αX̄ , where α is an assignment of domain values to
all variables such that αB⊆ D. The set of all answers to Q over D is written as Q(D).

Finite Domain Constraints. Database systems allow one to formulate conditions, so-called
database integrity constraints, that all instances of a database have to satisfy. Many of them
can be captured in logic and allow for more inferences when reasoning about instances and
queries. In this paper, we consider finite domain constraints.

A finite domain (FD) constraint has the form Dom(R, p,V), where R is a relation, 1≤ p≤ ary(R)
is an argument position of R, and V is a finite set of constants. An instance D satisfies such a
constraint if for every R(t̄) ∈ D we have that t̄[p] ∈V , where t̄[p] is the value in the p-th position
of t̄. We will use F to denote sets of FD constraints.

Answer Set Programming. We consider extended answer set programs (Gelfond and Lifschitz
1991) allowing for (proper) disjunction in a head of rule:

A1 | . . . | Ak← B1, . . . ,Bm

where the A’s and B’s are atoms. A rule with empty head (the empty disjunction) is a denial.
(We avoid the common term “integrity constraint” in this paper to avoid confusion with integrity
constraints over databases.) A fact is a rule with empty body (we omit “←”). An answer-set
program is a finite set of such rules. For the theory of answer set programs we refer to (Simons
et al. 2002; Baral 2003).

3 Data Completeness

Running Example. Our examples build upon a toy schema from the school world with the three
relations

pupil(name, level,code) class(level,code,scheme) learns(name, lang).

Here, pupil(fred,1,a) means that Fred is a pupil in class 1a; class(1,a,halfDay) means that
class 1a follows a half-day scheme; and learns(fred,english) means that Fred learns English.

The schema shows attribute names to make the relations more intuitive, although with our
notation we refer to the argument positions of relations only by way of numbers. We consider the
FD constraints that classes have a level between 1 and 5, expressed as Dom(class,1,{1,2,3,4,5}),
classes have a code among a, b, and c, expressed as Dom(class,2,{a,b,c}), and that the possible
schemes are half-day or full-day, expressed as Dom(class,3,{halfDay, fullDay}).

The conjunctive query Q1hd, defined by the rule

Q1hD(N)← pupil(N,1,C),class(1,C,halfDay) (1)

asks for “the names of all pupils that attend a class at level 1 following a half-day scheme”.

4 Werner Nutt, Sergey Paramonov and Ognjen Savković

Query and Table Completeness. When stating that data is incomplete, one must have a conceptual
complete reference. We model an incomplete database in the style of (Levy 1996) as a pair
of database instances D = (Di,Da), where Da ⊆ Di. Here, Di is called the ideal state and Da

the available state. In an application, the state stored in a DBMS is the available state, which
represents only a part of the facts that hold in reality. The facts holding in reality constitute the
ideal state, which however is unknown. (Later on we will introduce table completeness statements
as a way to express meta-information about the extent to which the available state captures the
ideal state.)

Data are accessed by posing queries. We would like to know whether a database has sufficient
information to answer a query completely, that is, whether the query is complete. If we can infer
from meta-information that a query is complete, we know that the answer we receive over the
available database is the same as the one we would get over the (hypothetical) ideal database.

We write Compl(Q) to denote that Q is complete. This statement is satisfied by an incomplete
database D = (Di,Da), written D |= Compl(Q), if Q(Di) = Q(Da).

With table completeness (TC) statements we specify that parts of a table are complete. A TC
statement, written Compl(R(s̄); G), has two components, a relational atom R(s̄) and a condition G.
In the sequel, we will denote a TC statement generically as C. As an example, consider

ChD = Compl(pupil(N,L,C); class(L,C,halfDay)) (2)

Clev1 = Compl(class(1,C,S); true). (3)

The first statement asserts that the table pupil contains all records of pupils attending a half-day
class, while the second asserts that the table class contains all records of classes at level 1.

In practice, TC statements can be generated in several ways. One source can be business
rules. For instance, in the area of Bolzano, vocational schools use the the province school
information system to manage grades of pupils. Therefore, grades are complete for pupils from
vocational schools. Completeness statements can also be derived from information about the
business processes that generate data. For instance, if the administration of a school finishes
the registration procedure for the new school year, this can be recorded and tranlated into a
completeness statement.

A TC statement C has an associated query, which is defined as QC(s̄)← R(s̄),G. The state-
ment C is satisfied by D = (Di,Da), written D |= Compl(R(s̄); G), if QC(Di) ⊆ R(Da). Note
that the ideal instance Di is used to determine those tuples in the ideal version R(Di) that sat-
isfy G and that the statement C is satisfied if these tuples are present in the available version
R(Da). We refer to the query associated to C as QC. For instance, the query associated to ChD is
QChd(N,L,C)← pupil(N,L,C),class(L,C,halfDay).

For any set C of TC statements we define an operator TC that maps database instances to
instances. If C is a TC statement about R, then we define TC(D) := {R(t̄) | t̄ ∈ QC(D)}. For C we
define

TC (D) :=
⋃

C∈C TC(D). (4)

For any instance D, the pair (D,TC (D)) is an incomplete database satisfying C and TC (D) is the
smallest set (wrt set inclusion) for which this holds.

We say that C entails the completeness of Q if every incomplete database D that satisfies the
statements in C , also satisfies Compl(Q). In this case, we write C |=Compl(Q). The completeness
reasoning problem is to check, given C and Q, whether the above entailments hold. An instance

Theory and Practice of Logic Programming 5

of this problem is to check whether {ChD,Clev1} |= Compl(Q1hD) (which intuitively holds and
which we prove to hold in Section 4).

We say that D = (Di,Da) satisfies F if Di satisfies F . Note that, due to Da ⊆ Di, this
implies that also Da satisfies F . We say that C entails the completeness of Q wrt F , and write
C |=F Compl(Q), if every D that satisfies both C and F , also satisfies Compl(Q).

From (Razniewski and Nutt 2011b) we know that the completeness reasoning problem can
be reduced to query containment (cf. (Chandra and Merlin 1977; Klug 1988)). Reasoning in
the presence of FD constraints can be reduced to containment with respect to FD constraints
(Razniewski and Nutt 2011a).

4 Encoding Query Completeness into ASP

In the rest of the paper, we always consider a set of TC statements C and a conjunctive query Q
defined by the rule Q(X̄)← R1(t̄1), . . . ,Rn(t̄n).

We want to encode the completeness check “C |= Compl(Q)?” into the question whether a
program entails a fact for a boolean test predicate. While developing our approach, we illustrate it
with an example. Consider the query Q1hD in (1) and the set ChD,lev1 = {ChD,Clev1} comprising
the TC statements in (2) and (3). Suppose D = (Di,Da) satisfies ChD,lev1 and Q1hD returns an
answer, say n′, over the ideal instance Di. Then Di contains two atoms of the form pupil(n′,1,c′)
and class(1,c′,halfDay). Now, due to ChD, also Da contains pupil(n′,1,c′), and due to Clev1, the
atom class(1,c′,halfDay) is in Da, too. Consequently, Q1hD returns n′ also over Da. Since Di and
Da were arbitrary, this shows that ChD,lev1 |= Compl(Q1hD).

Using the TC transformation in (4), we can generalize this approach to a completeness test. We
define the set of facts DQ, which we call the canonical database of Q, obtained by freezing the
atoms in the body of Q. (“Freezing” variables is a well-known concept in logic programming and
database theory, which allows one to treat a variable like a constant.) Thus,

DQ = {R1(θ t̄1), . . . ,Rn(θ t̄n)}, (5)

where θ is the substitution that maps each variable X to the “frozen version” of θX of X . To DQ

we apply TC and check whether Q can retrieve the frozen tuple of distinguished variables.

Theorem 1 (Characterization). Let C be a set of TC statements, and Q(X̄)← B be a conjunctive
query. Then

C |= Compl(Q) ⇐⇒ θ X̄ ∈ Q(TC (DQ)). (6)

This reasoning can be performed by an answer set program for arbitrary Q and C . We start
from the set of facts DQ. Then we extend our signature by two additional relation symbols Ri and
Ra for every R in Σ, to be able to reason about the ideal and available instances. We also introduce
a copy rule rR : Ri(X̄)← R(X̄) for every relation and denote the set of all such copy rules as PΣ.
Thus, every answer set of DQ and PΣ contains an “ideal” copy of DQ.

Next, we capture the reasoning with TC statements by introducing for each C ∈ C , C =

Compl(R(s̄); G), the datalog rule rC, defined as:

Ra(s̄)← Ri(s̄),Gi, (7)

where the i in Gi indicates that all relation symbols are replaced by their ideal version. For
example, rChD is the rule pupila(N,L,C)← pupili(N,L,C),classi(L,C,halfDay) and rClev1 is the

6 Werner Nutt, Sergey Paramonov and Ognjen Savković

rule classa(1,C,S)← classi(1,C,S). We collect all rules for statements in C in the set

PC = {rC |C ∈ C }. (8)

Intuitively, DQ is a prototypical instance D where Q returns an answer, namely, the prototypical
answer θ X̄ . Applying the rules in PΣ turns D into an ideal database Di

Q. The application of the
rules in PC then amounts to computing TC (Di

Q) (see Theorem 1). It remains to check whether Q
returns the answer θ X̄ also over the available instance TC (Di

Q).
To this end, we introduce the boolean test query Qs, which is obtained from Q by replacing

each relation symbol by its available version and freezing the distinguished variables. Formally,
Qs is defined by the rule rQ = Qs← Ra

1(δ t̄1), . . . ,Ra
n(δ t̄n), where δ is the substitution that maps

every distinguished variable to its frozen version. In our example, the test query is Q1hD ←
pupila(n′,1,C),classa(1,C,halfDay).

We end up with programs PC , encoding C , and PQ := DQ∪PΣ∪{rQ}, encoding Q.

Theorem 2. Let Q be a conjunctive query and C be a set of TC statements. Then

C |= Compl(Q) ⇐⇒ Qs is in the answer set of PC ∪PQ.

The theorem can be proved by formalizing the intuition presented above. Recall that in the
definition of the test query, we freeze the distinguished variables because we want to test whether
Q returns θ X̄ , and we do not freeze the non-distinguished variables because we do not want to
impose constraints on how θ X̄ is retrieved. To see why this definition works, consider the query

Qeng(N)← learns(N,english), learns(N,L), (9)

which asks for “all learners of English, which in addition learn some language” (which may
be English). Suppose, our data are complete for all learners of English, expressed by the TC
statement Ceng, whose rule form is learnsa(N,english)← learnsi(N,english). The ideal copy of
the canonical database DQeng is Di

Qeng
= {learnsi(n′,english), learnsi(n′, l′)}. With our TC rule,

we can derive the fact learnsa(n′,english), but not learnsa(n′, l′). Still, this is enough to succeed
for our test query Qs

eng← learnsa(n′,english), learns(n′,L), since the variable L can be bound to
english. Thus, the check in Theorem 2 returns the intuitively expected answer “yes”.

5 Completeness Reasoning with Finite Domain Constraints

Finite domain constraints make it necessary to reason by cases. Consider the query

QlevEng(N,L)← pupil(N,L,C), learns(N,english), (10)

which asks for the name and the level of pupils learning English. Suppose that our data is complete
for all English learners, expressed by the statement Ceng from above, and for all pupils at each level
from 1 to 5, expressed by the TC statements CpLevl , where l = 1, . . . ,5, with rule representation
pupila(N, l,C)← pupili(N, l,C). These TC statements alone do not entail completeness of QlevEng,
because in principle there could be pupils at other levels. If in addition we know that the only levels
are 1 to 5, expressed by the constraint FpLev = Dom(pupil,2,{1,2,3,4,5}), we can conclude the
completeness of the query.

The test in Theorem 2, though, will not work here, because the level rules rCpLevl only fire in
the presence of pupili atoms where the level is one of the constants 1 to 5. Therefore, a reasoning
procedure has to instantiate the levels in all ways permitted by the FD constraint before applying
the TC rules. If the test query succeeds for all instantiations, then we can conclude completeness.

Theory and Practice of Logic Programming 7

In the following, we develop concepts that allows us to characterize completeness wrt FD
constraints and then provide an encoding of the characteristic condition.

Let F be a fixed set of FD constraints. We say that a variable Y occurring at position p in an
R-atom in Q is constrained by Dom(R, p,V) to a value in V . For instance, the variable L in QlevEng

is constrained by FpLev. We say that a substitution γ is an F -case of Q if γ maps the variables
of Q to constants such that (i) γY ∈ F whenever Y is constrained to F by some FD constraint
in F , and (ii) γY is the frozen version of Y otherwise. For instance, {N/n′, L/1,C/c′} is an
FpLev-case of QlevEng, where FpLev = {FpLev}. Note that our definition requires that a variable
that is constrained by more than FD constraint has to respect all such constraints. By ΓF ,Q we
denote the set of all F -cases of Q. We now generalize Theorem 1 to FD constraints.

Theorem 3 (Characterization FD Constraints). Let C be a set of TC statements, F be a set of
FD constraints, and Q(X̄)← B be a conjunctive query. Then

C |=F Compl(Q) ⇐⇒ γX̄ ∈ Q(TC (γB)) for every case γ in ΓF ,Q. (11)

Condition (11) stipulates a test comprising the following steps: (1) Instantiate the query body B,
which is a set of atoms, in all ways possible permitted by the FD constraints. This amounts
to considering all possible ways in which an answer to Q can be retrieved. (2) For each such
instantiation γB, compute TC (γB), the set of atoms that must be present in any available database if
the ideal database contains γB. (3) Evaluate Q over TC (γB) and check whether the result contains,
γX̄ , the prototypical answer to Q over γB. We now show how to encode (1) F -cases, (2) the
operator TC , and (3) the final test.

The starting point is again the canonical database DQ. Since DQ consists of ground atoms,
which cannot be instantiated, we have to mimic the instantiation by cases. We introduce a new
binary predicate val, where intuitively val(t,v) indicates that the term t is instantiated by the value
v. We want to keep the encodings of Q, F , and C independent from each other. Therefore, no
information as to which variable can be instantiated by which value should influence the encoding
of Q. To achieve this, we introduce for each term in DQ, both for original constants and for frozen
variables, the fact val(t, t). The set of all such facts is denoted as ValQ. Then we require that every
term can have at most one val-value other than itself, which can be seen as a requirement for val
to be functional. This can be expressed by the denial rfun below:

← val(X ,Y), val(X ,Z), X 6= Y, X 6= Z, Y 6= Z. (12)

To mimic the instantiation of the query body by cases, we introduce for each constraint F =

Dom(R, p,{a1, . . . ,am}) the disjunctive rule rF as

val(Xp,a1) | · · · | val(Xp,am)← Ri(X1, . . . ,Xp, . . .Xn), (13)

which nondeterministically binds the term in position p to one of the values in {a1, . . . ,am}. We
collect the rules encoding F into the program PF := {rF | F ∈F}∪{rfun}.

We keep the rules PΣ that copy DQ into the ideal database Di
Q. To make the TC rules applicable

to facts with val-bindings, we need to unfold them. For an atom A = R(t1, . . . , tn), the unfolding
consists of the atom Au = R(Y1, . . . ,Yn), where each argument is replaced by a fresh variable,
and the set of val-bindings UA = {val(Y1, t1), . . . ,val(Yn, tn)}. We have already translated a TC
statement C into the rule rC : Ra(t1, . . . , tn)← Ri(t1, . . . , tn),Gi. The unfolded rule for C is then

ru
C : Ra(Y1, . . . ,Yn)← Ri(Y1, . . . ,Yn),(Gi)

u
,URi(t1,...,tn),UGi

, (14)

8 Werner Nutt, Sergey Paramonov and Ognjen Savković

where the unfolding (Gi)u of the condition Gi and the set of value atoms UGi
are defined analo-

gously to the case of single atoms. For example the unfolded rule for ChD is

ru
ChD

: pupila(N1,L1,C1)← pupili(N1,L1,C1),val(N1,N),val(L1,L),val(C1,C),

classi(L2,C2,S2),val(L2,L),val(C2,C),val(S2,halfDay).

The program consisting of the unfolded rules is denoted as Pu
C = {ru

C |C ∈ C }.
Let Q(X1, . . . ,Xn)← B be the query which we want to check for completeness. We have to

modify the test query in two ways, first by unfolding, and second by adding val-atoms to encode
the check whether Q returns γX̄ over TC (γB). Thus, the rule rQu

s for the test query Qu
s is

Qu
s ← (Ba)u,UBa

,val(x1,X1), . . . ,val(xn,Xn), (15)

where the x j are the frozen versions of the X j. For example, the test query for Q1hD in (1) is

Qu
1hD← pupila(N1,L1,C1),val(N1,N),val(n′,N),val(L1,1),val(C1,C),

classa(L2,C2,S2),val(L2,1),val(C2,C),val(S2,halfDay),

where n′ is the frozen version of N. Let Pu
Q := Di

Q∪ValQ∪{rQu
s } be the set of rules about Q.

Theorem 4. Let Q be a conjunctive query, C a set of TC statements, and F a set of FD constraints.
Then

C |=F Compl(Q) ⇐⇒ Qu
s is in every answer set of PC ∪PF ∪Pu

Q.

6 Experiments

In the absence of finite domain constraints, completeness is NP-complete. In this case, only one
answer set exists and checking query completeness boils down to applying TC rules in all possible
ways to the ideal canonical database DQ in order to satisfy the body of the Qs rule.

Finite domain (FD) constraints make the problem more difficult, raising the complexity to
ΠP

2 -completeness. This is reflected by the disjunctive rules in our encoding, which introduce
multiple answer sets. Our FD constraints are independent of each other. Therefore, the number
of answer sets to be checked for an instance is equal to the product of the sizes of the finite
domains involved. Consequently, when considering a sequence of problems where the number of
FD constraints grows linearly, the number of answers sets grows exponentially. In principle one
cannot avoid generating exponentially many answer sets, due to the ΠP

2 -completeness. However,
in many cases a problem is structured in such a way that the FD constraints can be elaborated
independently of each other, or that they can be ignored completely.

To check whether state-of-the-art ASP solvers are taking advantage of such possibilities for
optimization, we set up two test cases for completeness reasoning in the presence of FD constraints:
the first case allows one to work on each constraint in isolation and the second can be solved
without considering FD constraints at all. We ran them using two state-of-the-art solvers: dlv and
clasp on a laptop machine with a 2.4 GHz processor and 8 GB of RAM.

Test 1. We wanted to see whether the reasoners can identify that some disjunctive rules are
independent from each other and treat them consecutively. For the test, we checked the query

Q1(N)← pupil(N,L,C), learns(N,Lang),class(L,C,halfDay) (16)

in the presence of finite domain constraints for the attributes level and code of pupil and lang of
learns. We varied the FD constraints so that the cardinality of level and code ranged between 1

Theory and Practice of Logic Programming 9

1	
 ms	

10	
 ms	

100	
 ms	

1000	
 ms	

10000	
 ms	

100000	
 ms	

1000000	
 ms	

1	
 10	
 100	
 1000	
 10000	

dlv	

clasp	

Fig. 1. Test 1

1	
 ms	

10	
 ms	

100	
 ms	

1000	
 ms	

10000	
 ms	

100000	
 ms	

1000000	
 ms	

10000000	
 ms	

10	
 100	
 1000	
 10000	
 100000	

dlv-­‐query1	

clasp-­‐query1	

dlv-­‐query2	

clasp-­‐query2	

Fig. 2. Test 2

and 10, the cardinality of lang ranged between 10 and 100, and their product ranged from 101 to
105. For each possible level $l and code $c we had a TC rule pupila(N,$l,$c)← pupili(N,$l,$c),
while for each possible lang value $lg, we had the rule learnsa(N,$lg)← learnsi(N,$lg). In
addition, we had the rule classa(L,C,S)← classi(L,C,S). The first type of rule says, for instance,
that we are complete for all pupils of level $l and code $c.

We ran the completeness test for cardinalities with products 10i, 1 ≤ i ≤ 5. Conceptually,
according to Theorem 3, for such a test 10i many cases have to be checked, that is, 10i many
answer sets. In principle, one could derive the completeness of Q1 by independently verifying
completeness for each atom in the query. The cardinalities above were chosen such that no more
than 100 cases per atom had to be considered. Figure 1 shows that the execution time grows
proportionally to the number of answer sets. This suggests that all possible instantiations were
performed and checked and the possible optimization did not take place.

Test 2. Next, we wanted to see whether the reasoners were able to identify disjunctive rules that
are irreleveant for a completeness check.

We used again query Q1 from above, but simplified our TC rules. There were only three rules,
which state completeness of each of the tables pupil, learns, and class, that is, pupila(N,L,C)←
pupili(N,L,C), learnsa(N,Lang)← learnsi(N,Lang), and classa(L,C,S)← classi(L,C,S). Again,
we added FD constraints for level, code and lang. Similar to the first test, we varied the FD con-
straints so that their cardinality ranged between 1 and 100 and their product ranged from 101 to
105. As before, 10i many answer sets had to be checked in principle. However, an optimization
should be easier here, since each of the TC rules is applicable without firing any of the disjunctive
finite domain rules. A system that applies such rules lazily should show a running time polynomial
in the size of the input, which consisted of the three TC rules and three disjunctive rules with a
maximum of 100 atoms in the head (see rule pattern (13)).

Surprisingly, Figure 2 shows that now the running time grows even faster than the number
of answer sets, both for clasp and dlv. To understand whether the joins in Q1 prevented an
optimization, we ran the test with the join-free query Q2(N)← pupil(N,L,C), where we modified
the FD constraints on level and code so that again between 101 to 105 answer sets had to be
considered. As shown in Figure 2, the times grew more slowly, but still exponentially.

With the straightforward optimization of first attempting to solve a problem by deterministic
rules and to resort to non-deterministic rules only if necessary, this instance could have been solved
in polynomial time. We conclude that none of the two systems implements such an optimization.

10 Werner Nutt, Sergey Paramonov and Ognjen Savković

7 Conclusion

Previous work on query completeness led to a theoretical framework in which the central concepts
and the reasoning tasks could be defined, a practical way to realise completeness reasoners
was missing, though. With our encoding of completeness reasoning tasks into disjunctive logic
programs, we have opened the possibility to implement such reasoners by harnessing existing
answer set engines. We built a demonstrator system, MAGIK, that realizes our approach, which is
publically accessible on the Web1 (Savković et al. 2012).

Our current work indicates that ASP is also helpful for additional functionalities beyond mere
yes/no answers of a completeness checker. By analysing the answer sets generated by a query
check, we can find out which parts of a database would need to be completed to guarantee
completeness of the query.

Our performance tests, however, showed that our encoding into ASP is not necessarily scalable.
ASP engines have difficulties with combinations of disjunctions, since apparently they do not
exploit situations where a conclusion can be reached without applying a disjunctive rule at all. We
needed disjunctions to reason about finite domains. A challenge for the ASP community that may
arise from this work is to provide better support for finite domain reasoning.

Acknowledgements: This work was partially supported by the ESF project 2-299-2010 “Schul-
Informationssystem – Wir verbinden Menschen” and by the project “Managing Completeness of
Data (MAGIC)”, funded by the province of Bolzano.

References

BARAL, C. 2003. Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge
University Press, New York, NY, USA.

CHANDRA, A. AND MERLIN, P. 1977. Optimal implementation of conjunctive queries in relational
databases. In Proc. 9th STOC.

GEBSER, M., KAUFMANN, B., AND SCHAUB, T. 2012. Multi-threaded ASP solving with clasp. TPLP 12, 4-
5, 525–545.

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365–385.

KLUG, A. 1988. On conjunctive queries containing inequalities. J. ACM 35, 1, 146–160.
LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S., AND SCARCELLO, F. 2006.

The DLV system for knowledge representation and reasoning. ACM TOCL 7, 3, 499–562.
LEVY, A. 1996. Obtaining complete answers from incomplete databases. In Proc. VLDB. 402–412.
MOTRO, A. 1989. Integrity = Validity + Completeness. ACM TODS 14, 4, 480–502.
PARAMONOV, S. 2013. Query completeness—A logic programming approach. Tech. Rep. KRDB13-2,

KRDB Research Center, Free Univ. Bozen-Bolzano. http://www.inf.unibz.it/krdb/pub/tech-rep.php.
RAZNIEWSKI, S. AND NUTT, W. 2011a. Checking query completeness over incomplete data. Tech. Rep.

KRDB11-2, KRDB Research Center, Free University of Bozen-Bolzano.
RAZNIEWSKI, S. AND NUTT, W. 2011b. Completeness of queries over incomplete databases. In VLDB.
SAVKOVIĆ, O., MIRZA, P., PARAMONOV, S., AND NUTT, W. 2012. MAGIK: Managing Completeness of

Data. In CIKM. 2725–2727.
SIMONS, P., NIEMELÁ, I., AND SOININEN, T. 2002. Extending and implementing the stable model

semantics. Artif. Intell. 138, 1-2 (June), 181–234.

1 http://magik-demo.inf.unibz.it

