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ABSTRACT
Data completeness is an important aspect of data quality. We con-
sider a setting, where databases can be incomplete in two ways:
records may be missing and records may contain null values. We
(i) formalize when the answer set of a query is complete in spite
of such incompleteness, and (ii) we introduce table completeness
statements, by which one can express that certain parts of a database
are complete. We then study how to deduce from a set of table-
completeness statements that a query can be answered completely.

Null values as used in SQL are ambiguous. They can indicate
either that no attribute value exists or that a value exists, but is
unknown. We study completeness reasoning for the different in-
terpretations. We show that in the combined case it is necessary
to syntactically distinguish between different kinds of null values
and present an encoding for doing that in standard SQL databases.
With this technique, any SQL DBMS evaluates complete queries
correctly with respect to the different meanings that nulls can carry.
We study the complexity of completeness reasoning and provide al-
gorithms that in most cases agree with the worst-case lower bounds.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration

Keywords
Data Quality, Data Completeness, Metadata Management

1. INTRODUCTION
Decisions in business, politics and administration are taken on

the basis of an ever increasing supply of information. To make
the right decision, it is crucial to know how reliable the underlying
data is. Often, data from diverse backgrounds are combined, which
originate independently and according to different policies. As a
consequence, the quality of the data may largely vary.
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Aspects of data quality concern accuracy, currency, correctness,
and similar issues [3]. In settings such as manual data insertion or
data integration, completeness of data plays a key role [15]. Many
approaches aim to improve data quality by inspecting and trans-
forming concrete data. For instance, there is a wealth of techniques
to detect and eliminate duplicate records. To deal with data com-
pleteness, such approaches have limited applicability: by inspect-
ing data it is hard to detect whether or not something is missing.

Consider as a driving example the management of school data
in a school district, which motivated the technical work reported
here. The schools in the district are largely autonomous in the
way they run their business: although the district provides a cen-
tral database for administering data about students, teachers and the
like, the schools can choose to what extent to use this system. As
a consequence, on many topics data is incomplete, which becomes
a problem when statistics about the schools are needed. While in
principle, those statistics could be generated by queries over the
database, the administration does not know whether or not it can
trust the answers. In particular, if an item does not show up in
a query result, or has the value null in an attribute, it is unclear
whether that item does not have the property queried for in real-
ity, or relevant data were just not submitted. The administration
has some knowledge as to what data individual schools put into the
central database. The question is how such metadata can be utilized
to judge whether it is complete and thus can be trusted.

The first researcher to address this question was Motro who for-
malized completeness of databases and queries [14]. Halevy intro-
duced statements, by which one can express that certain parts of
a database are complete and raised the question how to use such
statements to infer query completeness [12]. Recently, Razniewski
and Nutt provided a general solution to this problem, including a
technique to design algorithms and a comprehensive study of the
complexity [16]. All this work considered only incompleteness in
the form of missing records. In practice however, incompleteness
in the form of null values is at least the same important. To take
into account nulls we extend in this work previous formalisms by
refining the granularity of completeness descriptions.

A problem with nulls as used in standard SQL databases is their
ambiguity, as those nulls may mean both that an attribute value
exists but is unknown, or that no value applies to that attribute.
The established models of null values, such as Codd, v-, and c-
tables [13], avoid this ambiguity by concentrating on the aspect of
unknown values. In this work, we consider the ambiguous standard
SQL null values [5], because those are the ones used in practice.

In this paper, we define a formal framework to study reasoning
about the completeness of query answers over databases with null
values and missing records. In Section 2, we introduce a school
database as running example. Sections 3 formalizes databases with
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null values, incomplete databases and completeness statements. Sec-
tion 4 presents the reasoning for simple, uniform meanings of null
values, while in Section 5 we point out the limitations when com-
bining the different meanings. Section 6 shows how the different
meanings of nulls can be made explicit in standard SQL databases,
while Sections 7 shows that reasoning is possible in that case. Sec-
tion 8 discusses the reasoning for queries under bag semantics, Sec-
tion 9 the complexity of reasoning, and Section 10 related work.

2. EXAMPLE: SCHOOL DATABASE
Our running example is that of a school database, which con-

tains, inter alia, the following two tables:

• student (name, classCode, homeTown)

• class (code, formTeacher, profile)

The student table stores for each student the name, the class
and the home town. Because we assume that the school is situated
in a remote area, some students do not belong to any class but are
taught at home. This would be indicated by a null value for the
classCode attribute. It may also happen that there is no entry for
the homeTown attribute, because the student did not provide this
information or the secretary did not enter the data yet.

The class table stores the classes of the school. For each class,
it stores its code, its form teacher and its profile, such as arts, sci-
ence or similar. The formTeacher attribute may be null , because
the decision of forming a class may have been taken before assign-
ing the form teachers, or because the secretary may have forgotten
to insert the form teacher. The profile attribute can be null , because
some classes do not have a special profile.

3. FORMALISATION
In the following, we introduce standard notations about databases

with null values and query evaluation, and introduce the notions of
partial databases, query completeness and table completeness that
we use in reasoning about completeness.

3.1 Relational Databases
A database schema is a set of relation symbols Σ each with an

arity. In the following, we assume the schema to be fixed. We as-
sume an infinite set of constants dom including a special symbol ⊥
for null values.

For a relation R with arity n, an atom is an expression R(t1, . . . , tn),
where t1 . . . tn are either elements of dom or variables. A database
instance D is a finite set of ground atoms. We sometimes refer to
the atoms in an instance as facts. A condition is a set of atoms.

A conjunctive query is written as Q(x̄)← L, where L is a condi-
tion and x̄ is a tuple of variables, each occuring also in L. We call L
the body of Q, the variables in x̄ the distinguished variables and the
other variables in L the nondistinguished variables. Given a con-
junctive query Q(x̄) ← L and an instance D, an answer to Q is a
tuple αx̄, where α is an assignment of values to variables such that
αL ⊆ D. The set of all answers to Q over D is written as Qs(D).
Similarly, we define Qb(D) as the bag of anwers that contains as
many copies of a tuple as there are assignments returning it. We
say that Q is evaluated under set or bag semantics, respectively, if
we refer to the set or bag of answers. We drop the superscripts s, b
if they are not important or clear from the context.

A conjunctive query is linear, if its body does not contain any
relation symbol twice. It is minimal, if no atom can be removed
from its body without changing the semantics of the query (cf. [4]).

3.2 Null Values
Nulls are a common form in which incompleteness is manifested

in real-world databases. Null values mainly have two meanings:
• an attribute value exists, but is unknown;
• an attribute value does not exist, the attribute is thus not ap-

plicable.
In database theory, unknown values are represented by so-called
Codd nulls, which are essentially existentially quantified first-order
variables. A relation instance with Codd nulls, called a Codd ta-
ble, represents the set of all regular instances that can be obtained
by instantiating those variables with non-null values. [1]. For a
conjunctive query Q over an instance with Codd nulls, say DCodd,
one usually considers certain answer semantics [1]: the result set
Qcert(DCodd) consists of those tuples that are in Q(D′) for every in-
stantiation D′ of DCodd. The set Qcert(DCodd) can be computed by
evaluating Q over DCodd while treating each occurrence of a null
like a different constant and then dropping tuples with nulls from
the result. Formally, using the notation

Q(D)↓ := { t̄ ∈ Q(D) | t̄ does not contain nulls }, (1)

this means Qcert(DCodd) = Q(DCodd)↓.
The null values supported by SQL (“SQL nulls” in short) have

a different semantics than Codd nulls. Evaluation of first order
queries follows a three-valued semantics with the additional truth
value unknown. For a conjunctive query Q, we say that y is a join
variable if y occurs at least twice in the body of Q and a singleton
variable otherwise. If DSQL contains facts with null values, then
under SQL’s semantics the result of evaluating Q(x̄) over DSQL is

QSQL(DSQL) = {αx̄ | α maps no join variable to nulls }. (2)

To see this, note that a twofold occurrence of a variable y is ex-
pressed in an SQL query by an equality between two attributes,
which evaluates to unknown if a null is involved.

Recently, Franconi and Tessaris [11] have shown that the SQL
way to evaluate queries over instances with nulls captures exactly
the semantics of attributes that are not applicable. To make this
more precise, suppose that R is an n-ary relation with attribute set
X := { A1, . . . , An }. If each attribute in an R-tuple can be null, then
R can be seen as representing for each Y ⊆ X a relation RY with
attribute set Y . In this perspective, an instance of R with tuples
containing nulls represents a collection of 2n instances of the rela-
tions RY , where a tuple t belongs to the instance RY iff the entries in
t for the attributes in Y are not null. In other words, null values are
padding the positions that do not correspond to attributes of RY .

Example 1. Consider the query Q that asks for all classes whose
form teacher is also form teacher of a class with arts as profile,
which we write as Q(c1)← class(c1, t, p), class(c2, t, ′arts′), and
the instance D = { class(1a,⊥, ′arts′) }. If we interpret ⊥ as Codd-
null, then (1a) ∈ QCodd(D). If we evaluate Q under the standard
SQL semantics, we have that (1a) < QSQL(D).

Suppose we know that class 1a has a form teacher. Then whoever
the teacher of that class really is, the class has a teacher who teaches
a class with arts as profile and the the first interpretation is correct.
If no teacher exists, the second interpretation is correct.

Note that certain answer semantics and SQL semantics are not
comparable in that the former admits more joins, while the latter
allows for nulls in the query result. Later on we will show how
for complete queries we can compute certain answers from SQL
answers by simply dropping tuples with nulls.

We will say that a tuple with nulls representing an unknown but
existing value is an incomplete tuple, since this nulls indicate the
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Di

class student
(1a, Smith, arts) (John, 1a, Chester)
(2b, Rossi, ⊥) (Mary, ⊥, Hampton)

(Paul, 2b, Westfield)

Da

class student
(1a, Smith, arts) (John, 1a, Chester)
(2b, Rossi, ⊥) (Mary, ⊥, Hampton)

Table 1: Partial database with restricted facts

absence of existing values. We say that a tuple where nulls rep-
resent that no value exists is a restricted tuple, because only the
not-null values in the tuple are related to each other. When mod-
eling databases with null values, we will initially not syntactically
distinguish between different kinds of null values and assume that
some atoms in an instance contain the symbol ⊥.

3.3 Partial Databases
When stating that data is incomplete, one must have a concep-

tual complete reference. We model partial databases in the style
of Levy [12] as pairs D = (Di,Da) of database instances: Di, the
ideal state, with complete information, and Da, the available state,
which contains possibly less information. In general, both Di and
Da may contain facts with nulls.

In an application, the state stored in a DBMS is the available
state, which represents only a part of the facts that hold in real-
ity. The facts holding in reality constitute the ideal state, which
however is unknown. (Later on we will assume that we have some
meta-information about the extent to which the available state cap-
tures the ideal state.)

We formalize that the available database contains less informa-
tion than the ideal one using the concept of dominance: Let R(s̄)
and R(t̄) be atoms that possibly contain nulls. Then R(s̄) is dom-
inated by R(t̄), written R(s̄) � R(t̄), if R(s̄) is the same as R(t̄),
except that R(s̄) may have nulls where R(t̄) does not. An instance
D is dominated by an instance D′, written D � D′, if each fact in
D is dominated by some fact in D′.

Proposition 1 (Monotonicity) Let Q be a conjunctive query and
D, D′ be database instances with nulls. Suppose that D is domi-
nated by D′. Then Qcert(D) ⊆ Qcert(D′) and QSQL(D) � QSQL(D′).

A partial database (or PDB for short) is a pair of database in-
stances (Di,Da) such that Da is dominated by Di. We say that
D = (Di,Da) is a simple partial database if Da ⊆ Di and neither Di

nor Da contains a null value. Completeness reasoning for simple
partial databases has been studied in [16]. We say that D is a par-
tial database with restricted facts if Da ⊆ Di. Note that in this case
the ideal state may contain nulls and that every fact in the available
state must appear in the same form in the ideal state. Thus, a null in
the position of an attribute means that the attribute is not applicable
and nulls are interpreted the way SQL does. The pair (Di,Da) is
a partial database with incomplete facts if Di does not contain any
nulls and Da is dominated by Di. In this case, there are no nulls in
the ideal state, which means that all attributes are applicable, while
the nulls in the available state indicate that attribute values are un-
known. Therefore, those nulls have the same semantics as Codd
nulls.

Di

class student
(1a, Smith, arts) (John, 1a, Chester)

(2b, Rossi, science) (Mary, 2b, Hampton)
(Paul, 2b, Westfield)

Da

class student
(1a, Smith, arts) (John, 1a, ⊥)
(2b, Rossi, ⊥) (Mary, 2b, Hampton)

Table 2: Partial database with incomplete facts

Example 2. Recall the school database from our running exam-
ple, defined in Section 2. In Table 1 we see a partial database with
restricted facts for this scenario. All null values appearing in the
available database mean that no value exists for the correspond-
ing attributes. The class table shows that no profile hass been
assigned to class 2b and that Mary is an external student not be-
longing to any class.

In contrast, Table 2 shows a partial database with incomplete
facts. Here, null values in the available database mean that a value
exists but is unknown. So, class 1a has form teacher, but we do not
know who. Class 2b has a profile, but we do not now which. John
has a hometown, but we do not no from where he comes.

Observe that in both kinds of partial databases, some facts, such
as the one about Paul being a student, can be missing completely.

In practice, null values of both meanings will occur at the same
time, which may lead to difficulties if they cannot be distinguished.

3.4 Query Completeness
Data are accessed by posing queries. The core question we pur-

sue in our work is whether a database has sufficient information to
answer a query, that is, whether a query is complete. Intuitively, if
we can infer from some meta-information that a query is complete,
we know that the answer we receive over the available database at
hand is the same as the one we would get when querying the ideal
database. In other words, the available database contains all the
data that is relevant for calculating the query answer, so one can
trust the result that one gets.

We write Compls(Q) and Complb(Q), respectively, to indicate
that Q is complete under set or bag semantics. We now define when
such a query completeness (QC) statement is satisfied by a partial
database.

If D = (Di,Da) is a simple partial database (i.e., without nulls),
then D |= Compls(Q) if and only if Qs(Di) = Qs(Da), and D |=
Complb(Q) if and only if Qb(Di) = Qb(Da) (cf. [14]).

If D contains nulls, then Qs(D) and Qb(D) depend on whether
we interpret those as Codd or as SQL nulls.

Suppose D is a PDB with incomplete facts. Then nulls are in-
terpreted as Codd nulls and queries are evaluated under certain
answer semantics. While Da may contain nulls, Di does not and
Qcert(Di) = Q(Di). We therefore define

D |=inc Compl∗(Q) iff Q∗(Di) = Q∗cert(D
a) (3)

where ∗ ∈ { s, b }. That is, the tuples returned by Q over Di are also
returned over Da if nulls are treated according to certain answer
semantics. Conversely, that every null-free tuple returned over Da

is also returned over Di follows by mononoticity from the fact that
Da � Di (Proposition 1).
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Suppose that D is a PDB with restricted facts. Then nulls are
interpreted as SQL nulls and queries are evaluated under SQL se-
mantics. For ∗ ∈ { s, b } we define

D |=res Compl∗(Q) iff Q∗SQL(Di) = Q∗SQL(Da). (4)

Again, the crucial part is that tuples returned by Q over Di are also
returned over Da if nulls are treated according to SQL semantics,
while the converse inclusion holds due to monotonicity.

Example 3. The query Qart_students(n) ← student(n, c, h),
class(c, t, ′arts′) asks for the names of students in classes with arts
as profile. Over Di in Table 2 it returns the singleton set {(John)}
and over Da as well. Therefore, Qart_students is complete over that
partial database.

In contrast, Qhomes(h) ← student(n, c, h) is not complete over
this database, because it returns {(Chester), (Hampton), (Westfield)}
over the ideal database but only {(Hampton), (⊥)} over the available
one.

3.5 Table Completeness
We use table completeness (TC) statements to specify that parts

of a table are complete. A table completeness statement, written
Compl(R(s̄); P; G), has three components: (i) a relational atom
R(s̄), (ii) a set of numbers P ⊆ { 1, . . . , arity(R) }, and (iii) a con-
dition G. The numbers in P are interpreted as attribute positions
of R. For instance, if R is the relation student, then { 1, 3 } refers
to the attributes name and hometown.

Let C = Compl(R(s̄); P; G) be a TC statement andD = (Di,Da)
an incomplete database. An atom R(ū) ∈ Di is constrained by C
if there is an assignment α such that ū = αs̄, R(αs̄) ∈ Di, and
αG ⊆ Di. An atom R(ū′) ∈ Da is an indicator for R(ū) wrt C if
ū[P] = ū′[P], where ū[P] is the projection of ū onto the positions
in P. We say that C is satisfied by D if for every atom R(ū) ∈ Di

that is constrained by C there is an indicator R(ū′) ∈ Da.
Note that this type of TC statements extends the ones in [12] and

[16] in that it allows one to state the completeness of projections of
tables.

Example 4. In our school scenario, the TC statement

Compl(student(n, c, h); { 1, 2 }; class(c, t, ′arts′)) (5)

states, intuitively, that the available database contains for all stu-
dents of classes with arts as profile the name and the class. How-
ever, the student’s hometown need not be present. Over the ideal
database in Example 2, the fact student(John, 1a,Chester) is con-
strained by the statement (5). Any fact student(John, 1a,⊥),
student(John, 1a,Chester) or student(John, 1a,Clayton) in Da

would be an indicator. In the database in Table 2 the first fact is
present, and therefore Statement (5) is satisfied over it.

The semantics of TC statements can also be expressed using rule
notation like the one that is used for instance for tuple-generating
dependencies (TGDs) (see [7]). As a preparation, we introduce
two copies of our signature Σ, which we denote as Σi and Σa. The
first contains a relation symbol Ri for every R ∈ Σ and the second
contains a symbol Ra. Now, every incomplete database (Di,Da) can
naturally be seen as a Σi∪Σa-instance. We extend this notation also
to conditions G. By replacing every occurrence of a symbol R by
Ri (resp. Ra), we obtain Gi (resp. Ga) from G. Similarly, we define
Qi and Qa for a query Q. With this notation, (Di,Da) |= Compl(Q)
iff Qi(Di) = Qa(Da).

We associate to each TC statement C = Compl(R(s̄); P; G) a
rule ρC . For instance, to Statement (5) we associate the rule

classi(c, t, ′arts′), studenti(n, c, h)→ ∃ h′. studenta(n, c, h′).

To simplify our notation, we assume that the projection positions P
are the first k positions of R and that s̄ has the form (s̄′, s̄′′), where
s̄′ has length k and s̄′′ has length arity(R) − k. Then ρC is

Gi,Ri(s̄′, s̄′′)→ ∃ z̄. Ra(s̄′, z̄),

where z̄ is a tuple of distinct fresh variables that has the same lenght
as s̄′′. Clearly, for every TC statement C, an incomplete database
satisfies C in the sense defined above if and only if it satisfies the
rule ρC in the classical sense of rule satisfaction.

Note, that our definition of when a TC statement is satisfied takes
into account null values. Regarding nulls in Da, we treat nulls like
non-null values and consider their presence sufficient to satisfy an
existential quantification in the head of a TC rule.

Nulls in Di, however, have to be taken into account when eval-
uating the body of a rule. Since nulls in the ideal database always
represent the absence of a value, we always interpret the rules that
we associated with TC statements under SQL semantics.

3.6 Reasoning
As usual, a set C of TC statements entails completeness of a

query Q (we write C |= Compl(Q)) if every partial database that
satisfies all statements in C also satisfies Compl(Q).

While TC statements are a natural way to describe completeness
of available data (“These parts of the data are complete”), query
completeness captures requirements for data quality (“For these
queries we need complete answers”). Thus, in the following we
investigate how to decide whether a set of TC statements entails
query completeness (TC-QC entailment).

4. REASONING FOR SPECIFIC NULLS
In this section we discuss reasoning for databases where the

meaning of nulls is unambiguous. In 4.1, we assume that nulls
always mean that a value is missing but exists, while in 4.2, we
assume that nulls mean that a value is inapplicable. For both cases
we give decidable characterizations of TC-QC entailment. More-
over, we show that evaluation under certain answer and under SQL
semantics lead to the same results for minimal complete queries.

4.1 Incomplete Facts
We suppose we are given a set of TC statements C and a conjunc-

tive query Q, which is to be evaluated under set semantics. We say
that C entails Compls(Q) over PDBs with incomplete facts, written

C |=inc Compls(Q), (6)

iff for every such PDBD we have that

D |= C implies D |=inc Compls(Q).

To decide property (6), we will derive a characterization that can
be effectively checked.

To this end we introduce for every set C of TC statements a
transformation TC that, intuitively, maps an instance D to the least
informative instance TC(D) such that (D,TC(D)) |= C. Let C =

Compl( R(s̄′, s̄′′); P; G ) be a TC statement, where wlog s̄′ consists
of the terms in the positions P. We define the query QC by the rule

QC(s̄′, ⊥̄)← R(s̄′, s̄′′), G. (7)

This means, given an instance D, the query QC returns for every α
satisfying the condition R(s̄′, s̄′′),G, a tuple (αs̄′, ⊥̄) that consists
of the projected part αs̄′ and is padded with ⊥s for the positions
projected out. We then define

TC(D) := {R(t̄) | t̄ ∈ QC(D) } (8)
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and TC(D) :=
⋃

C∈C TC(D).
Intuitively, for a database instance Di and a TC statement C, the

function TC calculates the minimal information that any available
database Da must contain in order that (Di,Da) together satisfy C.
Observe that every atom in TC(D) is an indicator for some R(ū) in
D wrt C. This is the case because every fact in TC(D) is created as
an indicator for some fact in D constrainted by C. Observe also that
in general, TC(D) may contain more facts than D, because several
TC statments may constrain the same atom and therefore several
indicators are produced.

Example 5. Consider the TC statement C defined in Example 4
as Compl(student(n, c, h); { 1, 2 }; class(c, t, ′arts′)). The corre-
sponding query is QC(n, c,⊥)← student(n, c, h), class(c, t, ′arts′).
For the partial database in Table 2, QC(Di) is { (John, 1a,⊥) } and
hence TC(Di) = { student(John, 1a,⊥) }, which is the minimal
information that any available database must contain to satisfy to-
gether with Di the TC statement C.

The following proposition formalizes the intuition about TC.

Proposition 2 Let D be a database instance without nulls and let
D0 be the partial database (D,TC(D)). Then

1. TC(D) is dominated by D,

2. D0 is a PDB with incomplete facts, and

3. D0 |= C.

Moreover, if D′ is another instance such that (D,D′) is a PDB with
incomplete facts that satisfies C, then D′ dominates TC(D).

Similar to a database instance, the body of a conjunctive query
is a set of atoms, to which we can apply the transformation TC if
we view the variables as constants. The following characterization
of TC-QC-entailment over PDBs with incomplete facts says that
completeness of Q wrt. C can be checked by evaluating Q over
TC(L).

Theorem 3 Let Q(x̄) ← L be a conjunctive query and C be a set
of table completeness statements. Then

C |=inc Compls(Q) iff x̄ ∈ Qcert(TC(L)).

Proof. “⇒” By Proposition 2, (L,TC(L)) is a PDB with incom-
plete facts that satisfies C. Thus, by assumption, (L,TC(L)) |=inc

Compls(Q), which implies Qs(L) = Qs
cert(TC(L)). The identity from

L to L is a satisfying assignment for Q over L, from which it follows
that x̄ ∈ Q(L), and hence x̄ ∈ Qcert(TC(L)).

“⇐” Suppose that x̄ ∈ Qcert(TC(L)). We show that C |=inc

Compls(Q). Let D = (Di,Da) be a PDB with incomplete facts that
satisfies C and suppose that d̄ ∈ Qs(Di). We show that d̄ ∈ Qs

cert(D
a)

(the converse holds because of the dominance of Da by Di).
Given that there is an assignment δ such that δL ⊆ Di and δx̄ = d̄

we construct an assignment δ′ such that δ′L ⊆ Da and δ′ x̄ = d̄. To
define δ′, we specify how it maps atoms of L to Da.

Let A be an atom in L. Since x̄ ∈ Qcert(TC(L)), there is a ho-
morphism θ from L to TC(L) such that θx̄ = x̄. Let B′ = θA ∈
TC(L). By construction of TC(L), there is a TC-statement C =

Compl(B; P; G) such that (B,G) ⊆ L and B′ has been constructed
as indicator for B wrt. C. Since δL ⊆ Di, we have (δB, δG) ⊆ Di.
Clearly, δB is constrained by C over D. Since D |= C, there is an
indicator atom B̃ for δB in Da. Defining that δ′A := B̃, the map-
ping δ′ proves that d̄ is also in Q(Da) and hence that the query is
complete. �

The idea of the theorem is the following: To check whether com-
pleteness of a query Q is entailed by a set of TC statements C, we
perform a test over a prototypical database: Considering the body
of the query as an ideal database, we test whether the satisfaction of
the TC statements C implies that there is also enough information
in any available database to return the tuple of the distinguished
variables x̄. If that is the case, then also for any other tuple found
over an ideal database, there is enough information in the available
database to compute that tuple again.

Example 6. Consider again the query from Example 3, which
is Qart_students(n) ← student(n, c, h), class(c, t, ′arts′). Suppose we
are given TC statements C1 = Compl(class(c, t, p); {1, 2, 3}; true)
and C2 = Compl(student(n, c, h); {1, 2}; class(c, t, p)), which
state that complete facts about all classes are in our database, and
that for all students from art classes the name and the class attribute
are in the database. When we want to find out whether C1 and C2

imply that query Qart_students returns a complete answer, we proceed
according to Theorem 3 as follows:

1. We take the body of the query Qart_students as a prototypical
test database: L = { student(n, c, h), class(c, t, p) }.

2. We apply the functions TC1 and TC2 to L to generate the mini-
mum information that can be found in any available database
if the TC statements are satisfied: TC1 (L) = { class(c, t, p) }
and TC2 (L) = { student(n, c,⊥) }.

3. We evaluate Qart_students over TC1 (L) ∪ TC2 (L). The result is
{ (n) }.

The tuple (n) is exactly the distinguished variable of Qart_students.
Therefore, we conclude that C1 and C2 entail query completeness
under certain answer semantics.

We will discuss the complexity of reasoning in Section 9. At this
point we only remark that the reasoning is in NP for conjunctive
queries, since all that needs to be done is query evaluation, first of
the TC rules in order to calculate TC(L), second of Q, in order to
check whether x̄ ∈ Q(TC(L)). Also, for conjunctive queries without
self-joins the reasoning can be done in polynomial time.

So far we have assumed that nulls in the available database are
treated as Codd nulls and that queries are evaluated under certain
answer semantics. Existing DBMSs, however, implement the SQL
semantics of nulls, which is more restrictive, as it does not allow
for joins involving nulls, and thus leads to fewer answers. In the
following we will show that SQL semantics gives us the same re-
sults as certain answer semantics for a query Q, if Q is complete
and minimal.

In analogy to “|=inc”, we define for a PDB with incomplete facts
D = (Di,Da) that D |=inc,SQL Compls(Q) if and only if Qs(Di) =

Qs
SQL(Da)↓. Moreover, we write C |=inc,SQL Compls(Q) if and only

if D |=inc,SQL Compls(Q) for all PDBs where D |= C. Intuitively,
“|=inc,SQL” is similar to “|=inc”, with the difference that queries over
Da are evaluated as by an SQL database system.

We show that query completeness for this new semantics can
be checked in a manner analogous to the one for certain answer
semantics in Theorem 3. The proof is largely similar.

Lemma 4 Let Q(x̄) ← L be a conjunctive query and C be a set of
table completeness statements. Then

C |=inc,SQL Compls(Q) iff x̄ ∈ QSQL(TC(L)).

Now, suppose that the conjunctive query Q is minimal (cf. [4]).
Then Q returns a result over TC(L) only if each atom from L has an
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indicator in TC(L). The next lemma shows that it does not matter
whether the nulls in TC(L) are interpreted as SQL or as Codd nulls.

Lemma 5 Let C be a set of TC statements and Q(x̄) ← L be a
minimal conjunctive query. Then

x̄ ∈ QSQL(TC(L)) iff x̄ ∈ Qcert(TC(L)).

Combining Theorem 3 and Lemmas 4 and 5 we conclude that
for minimal conjunctive queries that are known to be complete, it
does not matter whether one evaluates them under certain answer
or under SQL semantics.

Theorem 6 Let D = (Di,Da) be an incomplete database with in-
complete facts, let C be a set of TC statements, and let Q(x̄) ← L
be a minimal conjunctive query. If C |=inc Compls(Q) and ifD |= C
then Qs

cert(D
a) = Qs

SQL(Da)↓.

It follows that for complete queries we also get a complete query
result when evaluating them over standard SQL databases.

Example 7. Consider again the query Qart_students from Example 3,
where Qart_students(n)← student(n, c, h), class(c, t, ′arts′), and the
TC statements C1 and C2 from Example 6 that entailed query com-
pleteness over PDBs with incomplete facts. Since Qart_students has
no self-joins it is clearly minimal, and hence over the available
database of any PDB that satisfies C1 and C2 we can evaluate it
under set semantics and will get a complete query result.

4.2 Restricted Facts
We now move to PDBs with restricted facts. Recall that in this

case a null in a fact indicates that an attribute is not applicable.
Accordingly, a PDB with restricted facts is a pair (Di,Da) where
both the ideal and the available database may contain nulls, and
where the available is a subset of the ideal database (Da ⊆ Di).

Again, we suppose that we are given a set of TC statements C
and a conjunctive query Q(x̄) ← L, which is to be evaluated under
set semantics. Similar to the case of incomplete facts, we say that
C entails Compls(Q) over PDBs with restricted facts, written

C |=res Compls(Q), (9)

iff for every such PDBD we have that

D |= C implies D |=res Compls(Q).

We will derive a characterization of (9) that can be effectively
checked. We reuse the function TC defined in Equation (8).

Proposition 7 Let D be an instance that may contain nulls and let
D1 = (D ∪ TC(D),TC(D)). Then

1. D1 is a PDB with restricted facts;

2. D1 |= C.

Moreover, if D′ is another instance such that (D∪D′,D′) is a PDB
with restricted facts that satisfies C, then D′ dominates TC(D).

In contrast to databases with incomplete facts, nulls can now ap-
pear in the output of queries over the ideal database, and therefore
must not be ignored in query answers over the available database.
Recent results in [11] imply that for queries over databases with
restricted facts, evaluation according to SQL’s semantics of nulls
returns correct results.

The characterization of completeness entailment is different now
because Q’s body L is no more a prototypical instance for Q to

retrieve an answer x̄. Since the ideal database may now contain
nulls, we must consider the case that variables in L are mapped
to ⊥ when Q is evaluated over Di.

We first present a result for boolean queries, that is, for queries
where the tuple of distinguished variables x̄ is empty, and for linear
(or self-join free) queries, that is, queries where no relation symbol
occurs more than once.

A variable y in a query Q(x̄) ← L is a singleton variable, if it
appears only once in L. Recall that only singleton variables can be
mapped to ⊥ when evaluating Q under SQL semantics. Let L⊥ and
x̄⊥ be obtained from L and x̄, respectively, by replacing all singleton
variables with ⊥.

Theorem 8 Let Q(x̄) ← L be a boolean or linear conjunctive
query and C be a set of table completeness statements. Then

C |=res Compls(Q) iff x̄⊥ ∈ QSQL(TC(L⊥)).

The theorem reduces completeness reasoning in the cases above
to conjunctive query evaluation. We conclude that deciding TC-
QC entailment wrt databases with restricted facts is in PTIME for
linear and NP-complete for arbitrary boolean conjunctive queries.

For general conjunctive queries, which may have distinguished
variables, evaluating Q over a single test database obtained from
L is not enough. We can show, however, that it is sufficient to
consider all cases where singleton variables in L are either null or
not. A null version of L is a condition obtained from L by replacing
some singleton variables with ⊥. We represent null versions of L
as instantiations γL, where γ is a substitution that replaces some
singleton variables of L with ⊥ and is the identity otherwise.

Theorem 9 Let Q(x̄) ← L be a conjunctive query. Then the fol-
lowing are equivalent:

• C |=res Compls(Q);

• γx̄ ∈ QSQL(TC(γL)), for every null version γL of L.

The theorem says that instead of just one prototypical case, we
have to consider several now, because query evaluation for databases
with nulls is more complicated: while the introduction of nulls
makes the satisfaction of TC statements and the query evaluation
more difficult, it also creates more possibilities to retrieve null as a
result (see [10]).

The above characterisation can be checked by a ΠP
2 algorithm: in

order to verify that containment does not hold, it suffices to guess
one null version γL and then show that γx̄ is not in Q(TC(γL)),
which is an NP task.

5. AMBIGUOUS NULLS
So far we have assumed that nulls have one of two possible

meanings, standing for unknown or for non-existing values. In this
section we discuss completeness reasoning in the presence of one
syntactic null value, which can have three possible meanings, the
previous two plus indeterminacy as to which of those two applies.
This is the typical usage of nulls in SQL.

We model PDBs for this case as pairs D = (Di,Da), where both
instances, Di, Da, may contain ⊥ and each tuple in Da is dominated
by a tuple in Di. We assume that queries are evaluated as in SQL,
since we cannot tell which nulls are Codd-nulls and which not. For
a query Q and ∗ ∈ { s, b } we define

D |=ambg Compl∗(Q) iff Q∗SQL(Di) = Q∗SQL(Da). (10)
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Different from the case where nulls stand for unknown values,
we may not drop nulls in the query result over the available database,
because they might carry information (absence of a value).

We observe that without further restrictions on the PDBs, for
many queries there is no way to conclude query completeness from
table completeness.

Proposition 10 There exists a PDBD with ambiguous nulls and a
query Q, such thatD satisfies any set of TC statements butD does
not satisfy Compls(Q).

Proof. Let D be with Di = { student(Mary, 2a,Chester) } and
Da = { student(Mary, 2a,Chester), student(Mary,⊥,Chester) }.
Clearly, D satisfies all possible TC statements, because Da ⊆ Di.
But query Qclasses(c) ← student(n, c, h) is not complete over D,
because Qs(Di) = { (2a) } while Qs(Da) = { (2a), (⊥) }. �

Inspecting D in the proof above more closely, we observe that
the two facts in Da are dominated by the same fact in the ideal
database. Knowing that, we can consider the second fact in Da as
redundant: it does not add new information about Mary. This dupli-
cate information leads to the odd behaviour ofDwrt completeness:
while all information from the ideal database is also in the available
database, Q(Da) contains an additional fact with a null.

Sometimes, such duplicates occur naturally, e.g., when data from
different sources is integrated. In other scenarios, however, redun-
dancies are unlikely because objects are identified by keys, and
only non-key attributes may be unknown or non-applicable.

In a school database, it can happen that address or birth place of
a student are unknown. In contrast, it is hard to imagine that one
may want to store a fact student(⊥,⊥,Chester), saying that there
is a student with unknown name and class living in Chester.

Keys alone, however, are still not sufficient:

Example 8. Suppose we are given a partial database with Di =

{student(Mary, 2a,Chester), student(Paul, 2a,Hampton)} and
Da = { student(Mary, 2a,Chester), student(Paul,⊥,Hampton) }.
Observe that there are no redundant tuples in Da. The TC statement
Compl(student(n, c, h); { 2 }; true), which says that all classes from
Di are also in Da, is satisfied over this PDB. One might believe
that over a PDB satisfying this statement the query Qclasses, de-
fined above, is complete, as it is the case for PDBs with incomplete
facts or with restricted facts. However, query evaluation returns
that Qs

classes(D
i) = { (2a) } while Qs

classes(D
a) = { (2a), (⊥) }.

The problem with ambiguous nulls is that while all information
needed for computing a query result may be present in the available
database, it is not clear how to treat a null in the query answer. If it
represents an unknown value, we can discard it because the value
will still be there explicitly. But if it represents that no value exists,
it should also show up in the query result.

Therefore, we conclude that one should disambiguate the mean-
ing of null values. In the next section we propose how to do this in
an SQL database.

6. MAKING NULL SEMANTICS EXPLICIT
Nulls in an available database can express three different state-

ments about a value: absence, presence with the concrete value be-
ing unknown, and indeterminacy which of the two applies. As seen
in Section 5, this ambiguity makes reasoning impossible. To ex-
plicitly distinguish between the three meanings of nulls in an SQL
database, we present an approach that adds an auxiliary boolean
attribute to each attribute that possibly has nulls as values.

student student

name . . . code name . . . hasCode code

Sara 2a Sara true 2a
John ⊥uk John true ⊥

Mary ⊥n/a Mary false ⊥

Paul ⊥⊥ Paul ⊥ ⊥

Table 3: Making the semantics of nulls explicit

Example 9. Consider relation student(name, code, hometown).
Imagine a student John for whom the attribute code is null because
John attends a class, but the information was not entered into the
database yet. Imagine another student Mary for whom code is null
because Mary is an external student and does not attend any class.
Imagine a third student Paul for whom code is null because it is
unknown whether or not he attends a class. We mark the different
meanings of nulls by symbols ⊥uk (unknown but existing value),
⊥n/a (not applicable value) and⊥⊥ (indeterminacy), but remark that
in practice, in an SQL database, all three cases would be expressed
using syntactically identical null values.

We can distinguish them, however, if we add a boolean attribute
hasCode. For John, the value of hasCode would be true, express-
ing that the tuple for John has a code value, which happens to be
unknown, indicated by the⊥ for code. For Mary, codewould have
the value false, expressing that the attribute code is not applicable.
For Paul, the hasCode attribute itself would be ⊥, expressing that
nothing is known about the actual value. Table 3 shows a student
instance with explicit types of null, on the left using three nulls, on
the right with a single null and the auxiliary attribute.

In general, for an attribute attr where we want to disambiguate
null values, we introduce a boolean attribute hasAttr. We refer
to hasAttr as the sign of attr, because it signals whether a value
exists for the attribute, no value exists, or whether this is unknown.

Note that if hasAttr is false or ⊥, then attr must be ⊥. This
can be enforced by an SQL check constraint.

As seen earlier, in general SQL semantics does not fully cap-
ture the semantics of unknown nulls as it may miss some certain
answers. We will show in Theorem 12, that our encoding can be
exploited to compute answer sets for complete queries by joining
attributes with nulls according to SQL semantics and then using the
signs to drop tuples with unknown and indeterminate nulls.

7. REASONING FOR DIFFERENT NULLS
In the previous section we showed how to implement a syntac-

tic distinction of three different meanings of null values in SQL
databases. In this section we discuss how to reason with these three
different nulls.

An instance D with the three different kinds of nulls represents
an infinite set of instances D′ that can be obtained from D by (i) re-
placing all occurrences of ⊥uk with concrete values and (ii) replac-
ing all occurrences of ⊥⊥ with concrete values or with ⊥n/a.

As usual, the set of certain answers of a query Q over D consists
of the tuples that are returned by Q over all such D′ and is denoted
as Qcert(D).

It is easy to see that a tuple d̄ is in Qcert(D) iff the only nulls in
d̄ are ⊥n/a and there exists an assignment α such that (i) d̄ = αx̄,
(ii) αL ⊆ D, (iii) α does not map join variables to ⊥n/a or ⊥⊥, and
(iv) no two occurrences of a join variable are mapped to different
occurences of ⊥uk. Intuitively, this means that we have to treat ⊥uk

as Codd null and the other nulls as SQL nulls.
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We say that a partial databaseD = (Di,Da) contains partial facts
if (i) the facts in Di may contain the null ⊥n/a, (ii) the facts in Da

may contain all three kinds of nulls, and (iii) each fact R(t̄) ∈ Da is
dominated by a fact R(t̄′) in Di in the sense that for any position p

• if t̄[p] = ⊥n/a, then also t̄′[p] = ⊥n/a,
• if t̄[p] = ⊥uk, then t̄′[p] is a value from the domain dom,
• if t̄[p] = ⊥⊥, then t̄′[p] is ⊥n/a or in dom,
• if t̄[p] = d for a value d ∈ dom, then also t̄′[p] = d.

We then say that a query is complete over a databaseD = (Di,Da)
with partial facts, if Q(Di) = Qcert(Da), and writeD |=3⊥ Compl(Q).

Satisfaction of TC-statements is not affected by these changes,
as Di contains only nulls ⊥n/a, which indicate restricted facts that
can be treated according to SQL semantics.

Example 10. Consider the available database Da that contains
the three facts class(1a,⊥uk,

′arts′), class(2b,⊥n/a,
′arts′) and

class(3c,⊥⊥, ′arts′). Also, consider the query from Example 1
that asks for all classes whose form teacher is also form teacher of
an arts class, written as Q(c1)← class(c1, t, p1), class(c2, t, ′arts′).

Then similar to before, the only tuple in Qcert(Da) is (1a), be-
cause since the teacher of that class is unknown but existing, it
holds in any complete database that the class 1a has a teacher that
also teaches an arts class (1a again). The tuples 2b and 3c do not
show up in the result, because the former has no form teacher at all
(⊥n/a), while the latter may or may not have a form teacher.

A first result is that TC-QC entailment over PDBs with partial
facts is equivalent to entailment over PDBs with restricted facts:

Theorem 11 Let Q be a conjunctive query and C be a set of TC
statements. Then

C |=3⊥ Compls(Q) iff C |=res Compls(Q).

Proof. (Sketch) “⇒” Trivial, because PDBs with restricted facts
are PDBs with partial facts that contain only the null value ⊥n/a.

“⇐” Assume, C 6|=3⊥ Compls(Q). Then there is a PDB with par-
tial factsD such thatD |= C, but D 6|=3⊥ Compls(Q). We construct
a PDB D0 with restricted facts that also satisfies C, but does not
satisfy Compls(Q). Let Da

0 = Da[⊥uk/⊥n/a,⊥⊥/⊥n/a] be the variant
of Da where ⊥uk and ⊥⊥ are replaced by ⊥n/a, and let Di

0 = Di∪Da
0.

The additional facts in Di
0 do not lead to violations of TC state-

ments, since they are dominated by facts in Di, thus,D0 |= C. How-
ever, Q(Da

0) ⊆ Q(Da), since changing nulls to ⊥n/a makes query
evaluation more restrictive, and Q(Di) ⊆ Q(Di

0) due to monotonic-
ity. Hence, Q(Da

0) $ Q(Di
0), that is,D0 6|=res Compls(Q). �

Also, we define the query evaluation Q(D)⇓ as Q(D) without all
tuples containing ⊥uk or ⊥⊥.

Similar to a database with incomplete facts only, it holds that
query answering for minimal queries that are complete does not
need to take into account certain answer semantics but can safely
evaluate the query using standard SQL semantics:

Theorem 12 Let D = (Di,Da) be an incomplete database with
partial facts, Q be a minimal conjunctive query and C be a set of
table completeness statements. If C |=3⊥ Compls(Q) and D |= C
then Qs

cert(D
a) = Qs

SQL(Da)⇓.

8. QUERIES UNDER BAG SEMANTICS
Bag semantics is the default semantics of SQL queries, while

set semantics is enabled with the DISTINCT keyword. As the next
example shows, for relations without keys reasoning about query
completeness under bag semantics may not be meaningful.

Example 11. Consider the partial database with incomplete facts
D = (Di,Da), where Di = { student(Mary, 2a,Chester) } and
Da = { student(Mary, 2a,Chester), student(Mary,⊥,Chester) }.
Since it is a priori not possible to distinguish whether the fact con-
taining ⊥ is redundant, the boolean query Q() ← student(n, c, h)
that is just counting the number of students is not complete, because
the redundant tuple in the available database leads to a miscount.

As tuples with nulls representing unknown values can introduce
redundancies, we require that keys are declared for PDBs with in-
complete facts, with one ambiguous null or with partial facts. Only
for partial databases with restricted facts keys are not necessary,
because there the available database is always a subset of the ideal
one and hence no redundancies can appear.

Formally, for a relation R with arity n, a key is a subset of the
attribute positions { 1, . . . , n }. Wlog, we assume that the key at-
tributes are the first k(R) attributes, where k is a function from re-
lations to natural numbers. An instance D satisfies the key of a
relation R, if (i) no nulls appear in the key positions of facts and
(ii) no two facts have the same key values, that is, if for all R(t̄),
R(t̄′) ∈ D it holds that t̄[1..k(R)] = t̄′[1..k(R)] implies t̄ = t̄′, where
t̄[1..k(R)] denotes the restriction of t̄ to the positions 1..k(r).

Table completeness statements that do not talk about all key at-
tributes of a key are not useful for deciding the entailment of query
completeness under bag semantics, because, intuitively, they can-
not assure that the right multiplicity of information is in the avail-
able database. We say that a TC statement Compl(R(x̄); P; G) is
key-preserving, if { 1..k(R) } ⊆ P. In the following, we only con-
sider TC statements that are key-preserving.

We develop a characterization for TC-QC entailment that is sim-
ilar to the one for set semantics. However now, we need to ensure
that over a prototypical database not only query answers but assign-
ments are preserved, because a query answer tuple can be produced
by different assignments. So if an assignment is missing, the mul-
tiplicity of a tuple in the result is incorrect. As a consequence, a
set of TC statements may entail completeness of a query Q for set
semantics, but not for bag semantics.

Example 12. The relation lnCourse(student,language)
stores the language courses that students take. Consider the query
Qnr_for_french(n) ← lnCourse(n, l), lnCourse(n, ′french′), which
counts for each student that attends French, how many language
courses he attends. Under set semantics, Qnr_for_french is complete
if Da contains all facts about French courses, which is expressed
by Cfrench = Compl(lnCourse(n, ′french′); { 1, 2 }; true). To test
completeness for set semantics, we apply TC to the query body L,
which results in TC(L) = { lnCourse(n, ′french′) }, since the first
body atom is not constrained by Cfrench. Evaluating Qnr_for_french over
TC(L) returns (n), which shows set completeness.

But this does not entail that Qnr_for_french is complete under bag se-
mantics. The PDB (L,TC(L) is a counterexample: it satisfies C and
we can evaluate Qnr_ f or_ f rench over L two times, while over TC(L)
just once. If Paul takes French and Spanish according to Di, it is
clearly not sufficient to only have the fact about French in Da when
we want to count how many courses Paul takes!

We therefore modify the test criterion in Theorem 8 in two ways.
For a query Q(x̄) ← L, the tuple w̄ of crucial variables consists

of the variables that are in x̄ or occur in key positions in L. For any
two assignments α and β that satisfy L over a database D, we have
that α and β are identical if they agree on w̄. Thus, the crucial vari-
ables determine both, the answers of Q and the multiplicities with
which they occur. We associate to Q the query Q̄(w̄) ← L that has
the same body as Q, but outputs all crucial variables. Consequently,

909



Q is complete under set semantics if and only if Q̄ is complete un-
der set semantics. The first modification of the criterion will consist
in testing Q̄ instead of Q.

A direct implication of the first modification is that we need not
consider several null versions γL of L as in Theorem 9. The reason
for doing so was that a null ⊥ = αx in the ouput of Q over γL could
have its origin in an atom γA in γL such that x does not occur in A,
but another variable, say y is instantiated to ⊥. Now, the query Q̄
passes the test for set completeness only if an atom in L is mapped
to an atom with the same key values. Thus, a variable x cannot be
bound to a null ⊥ = γy. Hence it suffices to consider just the one
version L⊥ where all singleton variables are mapped to null. By the
same mapping, w̄⊥ is obtained from w̄.

The second modification is due to the possibility that several TC
statements constrain one fact in Di und thus TC generates several
indicators. Since we assumed TC statements to be key-preserving,
these indicators all agree on their key positions. However, in some
non-key position one indicator may have a null while another one
has a non-null value. So, TC(L⊥) may not satisfy the keys. This can
be repaired by “chasing” TC(L⊥) (cf. [1]).

The function chase takes a database D with nulls as input and
merges any two R-facts A′, A′′ that have the same key values into
one R-fact A as follows: the value of A at position p, denoted A[p]
is A′[p] if A′[p] , ⊥ and is A′′[p] otherwise. Clearly, if C is key-
preserving and D satisfies the keys, then chase(TC(D)) also satisfies
the keys. Intuitively, chase condenses information by applying the
key constraints. Obviously, chase runs in polynomial time.

We now are ready for our characterization of completeness en-
tailment under bag semantics, which is similar, but slightly more
complicated than the one in Theorem 8.

Theorem 13 Let Q(x̄) ← L be a conjunctive query and C be a set
of key-preserving TC statements. Then

C |=3⊥ Complb(Q) iff w̄⊥ ∈ Q̄(chase(TC(L⊥))).

Since the criterion holds for incomplete databases with three dif-
ferent nulls, it holds also for the special cases where only one type
of null values is present (restricted or incomplete facts).

Notably, it also holds for partial databases with one ambiguous
null, because when keys are present and TC statements guarantee
that all mappings are preserved, no additional nulls can show up in
the query result.

9. COMPLEXITY OF REASONING
We now discuss the complexity of inferring query completeness

from table completeness. We define TC-QC? as the problem of
deciding whether under ?-semantic for all partial databases D it
holds that D |= C implies that D |= Compl(Q). We will find that
for all cases considered in the paper, the complexity of reasoning is
between NP and ΠP

2 :

Theorem 14 (Complexity Bounds)
1. TC-QCs

inc is NP-complete;
2. TC-QCs

res is NP-hard and in ΠP
2 ;

3. TC-QCs
3⊥ is NP-hard and in ΠP

2 ;
4. TC-QCb

3⊥ is NP-complete.

Proof. NP-hardness in all four cases can be shown by a re-
duction of containment of Boolean conjunctive queries, which is
known to be NP-complete [4]. We sketch the reduction for (1)–(3),
the one for (4) being similar. Suppose we want to check whether
Q() ← L is contained in Q′() ← L′. Let P be a new unary re-
lation. Consider the query Q0() ← P(a), L and the TC statement

Query semantics
Partial database

class
set semantics bag semantics &

databases with keys
no nulls NP-complete NP-complete

incomplete facts NP-complete NP-complete
restricted facts NP-hard, in ΠP

2 NP-complete
partial facts NP-hard, in ΠP

2 NP-complete

Table 4: Complexity of TC-QC entailment

C0 = Compl(P(a); { 1 }; L′). Let C consist of C0 and the state-
ment that R is complete for every relation R in L. Then it fol-
lows from Theorems 3, 8 and 11 that C |=∗ Compls(Q), where
∗ ∈ { inc, res, 3⊥ }, if and only if P(a) ∈ TC(L), P(a) ∈ TC(L⊥),
and P(a) ∈ TC(L⊥), respectively. The latter three conditions hold
iff P(a) = TC0 (P(a), L), which holds iff Q is contained in Q′.

Problem 1 is in NP, because according to Theorem 3 to show
that the entailment holds, it suffices to construct TC(L) by guessing
assignments that satisfy sufficiently many TC statements in C over
L, and to guess an assignment that satisfies Q over TC(L) such that
the tuple x̄ is returned.

Problem 2 is in ΠP
2 , because according to the characterization

in Theorem 9, to show that entailment does not hold, it suffices to
guess one null version γL of the body of Q and show that γx̄ is not
in Q(chase(TC(γL))), which is an NP task.

Problem 3 is in ΠP
2 for the same reason.

Problem 4 is in NP, because we do not consider different nullver-
sions of L but only one. The remaining argument is the same as for
Problem 1, since one needs to show that x̄⊥ is in TC(L⊥), which is
an NP task. �

Reasoning becomes easier for special cases of queries:

Theorem 15 (Special Cases) Let ∗ ∈ { inc, res, 3⊥ }. Then
1. TC-QCs

∗ and TC-QCb
∗ are in PTIME for linear queries;

2. TC-QCs
∗ is NP-complete for boolean queries.

Proof. Regarding Claim 1, the most critial case is ∗ = res. For
linear queries under bag semantics, observe that the criterion in
Theorem 13 can be checked in polynomial time. First, there is only
one choice to map an atom in a query QC to an atom in L⊥ (the one
with the same relation). Second, chase(TC(L⊥)) can be computed in
polynomial time. Lastly, the evaluation of Q̄ over the chase result
is in PTIME, because an atom in Q̄ can be mapped in only one way.

Note that for linear queries under set semantics, we only need to
consider one null version L⊥ because a binding for an output term
can only come from one position.

The lower bounds of Claim 2 follow from Theorem 14, the upper
bounds from Theorem 14 for inc, and from Theorems 8 and 11 for
res and 3⊥, since evaluation of conjunctive queries is in NP. �

In Table 4 we summarize our complexity results for TC-QC en-
tailment over databases with nulls. Notably, if we have keys then
under bag semantics the complexity does not increase with respect
to databases without null values. For queries under set semantics, it
remains open whether the complexity of reasoning increases from
NP to ΠP

2 for databases with restricted facts and with 3 null values.

10. RELATED WORK
Since the introduction of null values in relational databases [5],

there has been a long debate about their semantics and the cor-
rect implementation. In particular, the implementation of nulls in
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SQL has led to wide criticism and numerous proposals for improve-
ment (for a survey, see [19]). Much work has been done on the
querying of incomplete databases with missing but existing val-
ues [2, 17], while only recently, Franconi and Tessaris showed that
SQL correctly implements null values that stand for inapplicable
attributes [11]. It was observed early on that different syntactic null
values in databases would allow to capture more information [6],
but these ideas did not reach application.

Query completeness over incomplete databases was first studied
by Motro [14]. He investigated query completeness as an aspect of
query integrity, and introduced the notion of partially incomplete
and incorrect databases as databases that can both miss facts that
hold in the real world and contain facts that do not hold there, but
do not contain null values. He described partial completeness in
terms of query completeness (QC) statements under set semantics.
To infer completeness of a query from a set of queries known to be
complete, he would search for a conjunctive rewriting of the given
query in terms of the complete queries. This solution is correct, but
not complete, as later results on query determinacy show [18].

Halevy [12] suggested local completeness statements, which we
call table completeness (TC) statements, as an alternate formalism
for asserting partial completeness of an incomplete database with-
out nulls. The main problem he addressed was how to derive query
completeness from table completeness (TC-QC reasoning). How-
ever, his approach led only to a decision procedure applicable to
trivial cases.

Fan and Geerts [8] discussed the problem of query completeness
in the presence of master data. Their work is not directly compa-
rable to the one presented here because in addition to the different
setting it always considers a database instance. In follow-up work,
they considered incomplete data also in the form of missing, but
existing values [9], which they represented by c-tables [13].

Recently, Razniewski and Nutt picked up Levy’s problem of TC-
QC entailment over databases that can miss records [16]. They
showed that TC-QC entailment is decidable if conjunctive queries
with comparisons are used for formulating TC and QC statements
and analysed the complexity of the problem in detail for queries
under bag semantics, set semantics and aggregate queries, finding
complexities ranging from PTIME to ΠP

2 .

11. CONCLUSION
Although null values are an important aspect of incompleteness

in relational databases, they were not supported by formalisms for
reasoning about data completeness. We generalized partially com-
plete databases, table completeness and query completeness state-
ments as in [12, 16] so that one can describe incompleteness in the
form of both missing records and missing values.

Our approach addresses two challenges. First, if a table contains
nulls, it may be that not entire rows, but only the columns of some
rows are complete. To describe such a situation, we refined ta-
ble completeness statements so that they can refer to projections of
parts of tables. Second, null values as used in practice are ambigu-
ous (unknown, not applicable, indeterminate). To resolve such am-
biguities, we proposed an encoding for SQL databases that makes
diffent kinds of nulls explicit. We then developed techniques to in-
fer the completeness of conjunctive queries from such refined state-
ments for different semantics of nulls and assessed the complexity
of the reasoning task.

While SQL’s query evaluation is generally not correct for nulls
that represent missing values, we showed that for a minimal com-
plete query correct query answers can be calculated from the SQL
query result by dropping tuples with unknown and indeterminate
nulls.

In this work, we focussed on conjunctive queries without built-in
predicates like inequalities or disequalities. Treatment of built-in is
orthogonal to the one of nulls, so that our results can be extended to
them, using the techniques in [16]. Similarly, as aggregate queries
are computed on top of non-aggregate queries, our results can also
be extended in this direction.
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