
1

Introduction to
Database Systems

Queries in SQL

Werner Nutt

2

The select Statement (Basic Version)

• Query statements in SQL start with the keyword
select

and return a result in table form

select Attribute … Attribute
from Table … Table
[where Condition]

• The three parts are usually called
– target list
– from clause
– where clause

3

name age
Person

income
Andy 27

Mary 55
Anne 50
Phil 26

Greg 50
Frank 60
Kim 30
Mike 85
Lisa 75

Rob 25
21

42
35
30
40
20
41
35
87

15

mother child
Lisa

Anne
Anne
Mary
Mary

Lisa
Mary

Kim
Phil

Andy
Rob

Greg

MotherChild

father child

Greg
Greg
Frank
Frank

Steve
Kim
Phil

Andy
Rob

Frank

FatherChild

4

Selection and Projection

Name and income of persons that are less than 30:

πname, income(σage<30(Person))

select name, income
from person
where age < 30

name income
Andy

Phil
Rob

21

30
15

5

Naming Conventions
• To avoid ambiguities, every attribute name has two components

RelationName.AttributeName

• When there is no ambiguity, one can drop the initial component
RelationName.

select person.name, person.income
from person
where person.age < 30

can be written as:

select name, income
from person
where age < 30

6

select: Abbreviations
select name, income
from person
where age < 30

and also for:

select p.name as name, p.income as income
from person p
where p.age < 30

is an abbreviation for:

select person.name, person.income
from person
where person.age < 30

7

Two Kinds of Projection

surname branch salaryempNo

Black Glasgow 645998
Black York 557309

Brown London 645698
Brown London 449553

Employee

Surname and branch of all employees

π surname, branch (Employee)

8

Two Kinds of Projection

surname ranch

Black Glasgow
Black York

Brown London

surname branch

Black Glasgow
Black York

Brown London
Brown London

select
surname, branch

from employee

select distinct
surname, branch

from employee

9

Usage of “as” in select Statements
“as” in the list of attributes specifies explicitly a name for the
attributes of the result. If for some attribute “as” is missing, the
name is equal to the one that appears in the list.

Example:
select name as personName, income as salary
from person
where age < 30

returns as result a relation with two attributes, the first having the
name personName and the second having the name salary

select name, income
from person
where age < 30

returns as result a relation with two attributes, the first having the
name name and the second having the name income

10

Exercise 1

“From the table person, compute a new table by
selecting only the persons with an income between 20
and 30, and adding an attribute that has, for every tuple,
the same value as income.

Show the result of the query”

name agePerson income

11

Exercise 1: Solution

select name, age, income,
income as also-income

from person
where income >= 20 and income <= 30

name age income
Andy 27
Phil 26

Frank 60

21
30
20

also-income
21
30
20

12

Selection, without Projection

name, age and income of persons younger than 30:

σage<30(Person)
select *
from person
where age < 30

is an abbreviation for:

select name, age, income
from person
where age < 30

all
attributes

13

select with Asterisk

Given a relation R with attributes A, B, C

select *
from R
where cond

is equivalent to

select A, B, C
from R
where cond

14

Projection without Selection

name and income of all persons

π name, income(Person)

select name, income
from person

is an abbreviation for:

select p.name, p.income
from person p
where true

15

Expressions in the Target List

select income/4 as quarterlyIncome
from person
where name = ‘Greg'

select *
from person
where income > 25

and (age < 30 or age > 60)

Complex Conditions in the “where” Clause

16

The “like” Condition

The persons having a name that starts with 'A' and has a 'd' as the third
letter:

select *
from person
where name like 'A_d%‘

• ‘_‘ matches a single letter

• ‘%‘ matches a string

17

Handling of Null Values

σ age > 40 OR age IS NULL (Employee)

Employees whose age is or could be greater than 40:

select *
from employee
where age > 40 or age is null

18

Exercise 2

“From the table employee, calculate a new table by
selecting only employees from the London and Glasgow
branches, projecting the data on the attribute salary,
and adding an attribute that has, for every tuple, twice the
value of the attribute salary.

Show the result of the query”

surname branch salaryempNoEmployee

19

Exercise 2: Solution

salary
64
44
64

doubleSalary
128
88

128

select salary,
salary*2 as doubleSalary

from employee
where branch = ‘Glasgow' or

branch = ‘London'

20

Selection, Projection, and Join

• Using select statements with a single relation in the
from clause we can realise:
– selections,
– projections,
– renamings

• Joins (and Cartesian products) are realised by using two
or more relations in the from clause

21

SQL and Relational Algebra
Given the relations: R1(A1,A2) and R2(A3,A4)

the semantics of the query

select R1.A1, R2.A4
from R1, R2
where R1.A2 = R2.A3

can be described in terms of
• Cartesian product (from)
• selection (where)
• projection (select)

Note: This does not mean that the system really
calculates the Cartesian product!

22

SQL and Relational Algebra (cntd)

Given the relations: R1(A1,A2) and R2(A3,A4),

select R1.A1, R2.A4
from R1, R2
where R1.A2 = R2.A3

corresponds to:

πA1,A4 (σA2=A3 (R1 x R2))

23

SQL and Relational Algebra (cntd)

It may be necessary to rename attributes

• in the target list (as in relational algebra)
• in the Cartesian product (in particular, when the query refers

twice to the same table)

select X.A1 as B1, ...
from R1 X, R2 Y, R1 Z
where X.A2 = Y.A3 and ...

which can also be written as

select X.A1 as B1, ...
from R1 as X, R2 as Y, R1 as Z
where X.A2 = Y.A3 and ...

24

SQL and Relational Algebra (cntd)

X ← R1, Y ← R2, Z ← R1,

ρB1←X.A1, B2←Y.A4 (
πX.A1,Y.A4 (σX.A2 = Y.A3 and Y.A4 = Z.A1(X x Y x Z)))

select X.A1 as B1, Y.A4 as B2
from R1 X, R2 Y, R1 Z
where X.A2 = Y.A3 and Y.A4 = Z.A1

25

name age
Person

income
Andy 27

Mary 55
Anne 50
Phil 26

Greg 50
Frank 60
Kim 30
Mike 85
Lisa 75

Rob 25
21

42
35
30
40
20
41
35
87

15

mother child
Lisa

Anne
Anne
Mary
Mary

Lisa
Mary

Kim
Phil

Andy
Rob

Greg

MotherChild

father child

Greg
Greg
Frank
Frank

Steve
Kim
Phil

Andy
Rob

Frank

FatherChild

26

Exercise 3

“The fathers of persons who earn more than 20K”

Write the query both in relational algebra and SQL

27

Exercise 3: Solution

select distinct fc.father
from person p, fatherChild fc
where fc.child = p.name

and p.income > 20

“The fathers of persons who earn more than 20K”

πfather(FatherChild child=name σincome>20 (Person))

28

Exercise 4: Join

“Father and mother of every person”

Write the query both in relational algebra and SQL

29

Exercise 4: Solution

“Father and mother of every person”

Can be calculated in relational algebra by means of a
natural join

FatherChild MotherChild

select fc.child, fc.father, mc.mother
from motherChild mc, fatherChild fc
where fc.child = mc.child

30

Exercise 4: Join and Other Operations

“Persons that earn more than their father,
showing name, income, and income of the father”

Write the query both in relational algebra and SQL

31

Exercise 5: Solution
“Persons that earn more than their father,
showing name, income, and income of the father”

πname, income, FI (σincome>FI

(ρFN name, FA age, FI income(Person)

FN=father

(FatherChild child =name Person)))

select c.name, c.income, f.income
from person f, fatherChild fc, person c
where f.name = fc.father and

fc.child = c.name and
c.income > f.income

32

select, with Renaming of the Result

For the persons that earn more than their father, show their
name, income, and the income of the father

select fc.child, c.income as income,
f.income as incomefather

from person f, fatherChild fc, person c
where f.name = fc.father and

fc.child = c.name and
c.income > f.income

33

Explicit Join
For every person, return the person, their father and their

mother

select fatherChild.child, father, mother
from motherChild, fatherChild
where fatherChild.child = motherChild.child

select fatherChild.child, father, mother
from motherChild join fatherChild on

fatherChild.child = motherChild.child

34

select with Explicit Join, Syntax

select …
from Table { join Table on JoinCondition }, …
[where OtherCondition]

35

Exercise 6: Explicit Join

“For the persons that earn more than their father, show their
name, income, and the income of the father”

Express the query in SQL, using an explicit join

36

Exercise 6: Solution

“For the persons that earn more than their father, show their
name, income, and the income of the father”

An equivalent formulation without explicit join:

select c.name, c.income, f.income
from person c

join fatherChild fc on c.name = fc.child
join person f on fc.father = f.name

where c.income > f.income

select c.name, c.income, f.income
from person c, fatherChild fc, person f
where c.name = fc.child and

fc.father = f.name and
c.income > f.income

37

A Further Extension: Natural Join
(Less Frequent)

“Return the names of fathers, mothers, and their children”

πfather,mother,child (FatherChild MotherChild)

In SQL: select father, mother, fatherChild.child
from motherChild join fatherChild on

fatherChild.child = motherChild.child

Alternatively:
select father, mother, fatherChild.child
from motherChild natural join fatherChild

38

Outer Join

“For every person, return the father and, if known, the mother”

select fatherChild.child, father, mother
from fatherChild left outer join motherChild

on fatherChild.child = motherChild.child

Note: “outer” is optional

select fatherChild.child, father, mother
from fatherChild left join motherChild

on fatherChild.child = motherChild.child

39

Outer Join: Examples
select fatherChild.child, father, mother
from motherChild join fatherChild

on motherChild.child = fatherChild.child

select fatherChild.child, father, mother
from motherChild left outer join fatherChild

on motherChild.child = fatherChild.child

select fatherChild.child, father, mother
from motherChild right outer join fatherChild

on motherChild.child = fatherChild.child

select fatherChild.child, father, mother
from motherChild full outer join fatherChild

on motherChild.child = fatherChild.child

40

Ordering the Result: order by

“Return name and income of persons under thirty, in
alphabetic order of the names”

select name, income
from person
where age < 30
order by name

select name, income
from person
where age < 30
order by name desc

descending
order

ascending
order

41

Ordering the Result: order by

select name, income
from person
where age < 30

select name, income
from person
where age < 30
order by name

name income
Andy 21
Rob 15
Mary 42

name income

Mary 42
Andy 21

Rob 15

42

Aggregate Operators

Among the expressions in the target list, we can also have
expressions that calculate values based on multisets of
tuples:

– count, minimum, maximum, average, sum

Basic Syntax (simplified):

Function ([distinct] ExpressionOnAttributes)

43

Aggregate Operators: count

Syntax:

• counts the number of tuples:
count (*)

• counts the values of an attribute (considering duplicates):
count (Attribute)

• counts the distinct values of an attribute:
count (distinct Attribute)

44

Aggregate Operator count: Example

Example: How many children has Frank?

select count(*) as NumFranksChildren
from fatherChild
where father = 'Frank'

Semantics: The aggregate operator (count), which counts the tuples, is
applied to the result of the query:

select *
from fatherChild
where father = 'Frank'

45

Results of count: Example

NumFranksChildren
2

fatherFatherChild child

Greg
Greg

Steve
Kim
Phil

Frank
Frank

Andy
Rob

Frank

Frank
Frank

Andy
Rob

46

count and Null Values
select count(*)
from person

select count(income)
from person

select count(distinct income)
from person

name agePerson income
Andy 27

Mary 55
Anne 50

Rob 25
21

21
35

NULL

Result =number of tuples
=4

Result = number of values
different from NULL

= 3
Result =number of distinct

values (excluding
NULL)

=2

47

Other Aggregate Operators

sum, avg, max, min
• argument can be an attribute or an expression

(but not “*”)
• sum and avg: of numeric types and time intervals
• max and min: on types for which an ordering is defined:

numbers, strings, time intervals, arrays

Example: Average income of Frank’s children

select avg(p.income)
from person p join fatherChild fc on

p.name = fc.child
where fc.father = 'Frank'

48

Aggregate Operators and Null Values

select avg(income) as meanIncome
from person

name agePerson income
Andy 27

Mary 55
Anne 50

Rob 25
30

36
36

NULL

is
ignored

meanIncome
34

49

Aggregate Operators and the Target List
An incorrect query (whose name should be returned?):

select name, max(income)
from person

The target list has to be homogeneous, for example:

select min(age), avg(income)
from person

50

Aggregate Operators and Grouping

• Aggregation functions can be applied to partitions of the
tuples of a relations

• To specify the partition of tuples, one uses the group by
clause:

group by attributeList

51

Aggregate Operators and Grouping

The number of children of every father.

select father, count(*) as NumChildren
from fatherChild
group by father

FatherChild

father child

Greg
Greg

Steve
Kim
Phil

Frank
Frank

Andy
Rob

Frank
father NumChildren

Greg
Steve

2
Frank 2

1

52

Semantics of Queries with Aggregation
and Grouping

1. The query is run ignoring the group by clause and the
aggregate operators:

select *
from fatherChild

2. The tuples that have the same value for the
attributes appearing in the group by clause, are
grouped into equivalence classes.

3. Each group contributes a tuple to the answer. The
tuple consists of the values of the group by attributes
and the result of applying the aggregation function to
the group.

53

Exercise 7: group by

name agePerson income

“For each group of adult persons who have the same age,
return the maximum income for every group and show the
age”

Write the query in SQL!

54

Exercise 7: Solution

“For each group of adult persons who have the same age,
return the maximum income for every group and show the
age”

select age, max(income)
from person
where age > 17
group by age

55

Grouping and Target List
In a query that has a group by clause, only such attributes can appear
in the target list (except for aggregation functions) the appear in the
group by clause.

Example: Incorrect: income of persons, grouped according to age

select age, income
from person
group by age

There could exist several values for the same group.

Correct: average income of persons, grouped by age.

select age, avg(income)
from person
group by age

56

Grouping and Target List (cntd)
The syntactic restriction on the attributes in the select clause holds also for
queries that would be semantically correct (i.e., for which there is only a
single value of the attribute for every group).

Example: Fathers with their income and with the average income of their
children.

Incorrect:
select fc.father, avg(c.income), f.income
from person c join fatherChild fc on c.name=fc.child

join person f on fc.father=f.name
group by fc.father

Correct:
select fc.ather, avg(c.income), f.income
from person c join fatherChild fc on c.name=fc.child

join person f on fc.father=f.name
group by fc.father, f.income

57

Conditions on Groups
It is also possible to filter the groups using selection conditions.
Clearly, the selection of groups differs from the selection of the tuples in
the where clause: the tuples form the groups.
To filter the groups, the “having clause” is used.
The having clause must appear after the “group by”

Example: “Fathers whose children have an average income greater 25.”

select fc.father, avg(c.income)
from person c join fatherChild fc

on c.name = fc.child
group by fc.father
having avg(c.income) > 25

58

Exercise 8: where or having?

“Fathers whose children under age 30 have an average
income greater 20”

59

Exercise 8: Solution

“Fathers whose children under the age of 30 have an
average income greater 20”

select father, avg(f.income)
from person c join fatherChild fc

on c.name = fc.child
where c.age < 30
group by cf.father
having avg(c.income) > 20

60

Syntax of SQL select (Summary)

SQLSelect ::=

select ListOfAttributesOrExpressions
from ListOfTables
[where ConditionsOnTuples]
[group by ListOfGroupingAttributes]
[having ConditionsOnAggregates]
[order by ListOfOrderingAttributes]

61

Union, Intersection, and Difference

Within a select statement one cannot express unions.
An explicit construct is needed:

select ...
union [all]
select ...

With union, duplicates are eliminated
(also those originating from projection).

With union all duplicates are kept.

62

Positional Notation of Attributes
select father, child
from fatherChild
union
select mother, child
from motherChild

Which are the attribute names of the result?
Those of the first operand!

→ SQL matches attributes in the same position
→ SQL renames the attributes of the second

operand

63

Result of the Union

Lisa

Anne
Anne
Mary
Mary

Lisa
Mary

Kim
Phil

Andy
Rob

Greg

father child

Greg
Greg
Frank
Frank

Greg
Kim
Phil

Andy
Rob

Frank

64

Positional Notation: Example

select father, child
from fatherChild
union
select mother, child
from motherChild

select father, child
from fatherChild
union
select child, mother
from motherChild

65

Positional Notation (cntd)

Renaming does not change anything:

select father as parent, child
from fatherChild
union
select child, mother as parent
from motherChild

Correct (if we want to treat fathers and mothers as parents):

select father as parent, child
from fatherChild
union
select mother as parent, child
from motherChild

66

Difference

select name
from employee
except
select lastName as name
from employee

We will see that differences can also be expressed with
nested select statements.

67

Intersection
select name
from employee
intersect
select lastName as name
from employee

is equivalent to

select en.name
from employee en, employee eln
where en.name = eln.lastName

68

Single Block Queries: Exercises
Consider a database about suppliers and parts with the following schema:

Supplier(sid, sname, address)
Part(pid, pname, colour)
Catalog(sid, pid, cost)

Formulate the following queries in SQL:

1. Find the names of suppliers who supply some red part.

2. Find the IDs of suppliers who supply some red or green part.

3. Find the IDs of suppliers who supply some red part and are based at 21
George Street.

69

Single Block Queries: Exercises (cntd)
4. Find the names of suppliers who supply some red part or are based

at 21 George Street.

5. Find the IDs of suppliers who supply some red and some green part.

6. Find pairs of IDs such that for some part the supplier with the first ID
charges more than the supplier with the second ID.

7. For each supplier, return the maximal and the average cost of the
parts they offer.

8. List those red parts that on average cost no more than 30 Euro.

9. List the names of those red parts that are offered by at least three
suppliers.

70

Nested Queries

• In the atomic conditions of the where clause one can also
use a select clause (which must appear in
parentheses).

• In particular, in atomic conditions one can have:
– comparisons of an attribute (or several attributes) with

the result of a subquery
– existential quantification

71

Nested Queries (Example)
“Name and income of Frank’s father”

select f.name, f.income
from person f, fatherChild fc
where f.name = fc.father and fc.child = 'Frank'

select f.name, f.income
from person f
where f.name = (select fc.father

from fatherChild fc
where fc.child = 'Frank')

72

Nested Queries: Operators

In the where clause, the result of a nested query can be related to
other values by way of several operators:

• equality and other comparisons
(the result of the nested query must be unique)

• if it is not certain that the result of the nested query is unique, the
nested query can be preceded by one of the keywords:

— any: true, if the comparison is true for at least one of the result
tuples of the nested query

— all: true, if the comparison is true for all the result tuples of the
nested query

• the operator in, which is equivalent to =any
• the operator not in, which is equivalent to <>all
• the operator exists

73

Nested Queries: Example

Name and income of the fathers of persons who earn more than 20k.

select distinct f.name, f.income
from person f, fatherChild fc, person c
where f.name = fc.father and

fc.child = c.name and c.income > 20

select f.name, f.income
from person f
where f.name = any

(select fc.father
from fatherChild fc, person c
where fc.child = c.name and

c.income > 20)

fathers of persons
who earn more

than 20k

74

Nested Queries: Example
Name and income of the fathers of persons who earn more than 20k.

select f.name, f.income
from person f
where f.name in (select fc.father

from fatherChild fc, person c
where fc.child = c.name

and c.income > 20)

select f.name, f.income
from person f
where f.name in (select fc.father

from fatherChild fc
where fc child in (select c.name

from person c
where c.income > 20)

)

persons who
earn more
than 20k

fathers of
persons who

earn more than
20k

75

Nested Queries: Comments

• The nested formulation of a query is sometimes executed
less efficiently than an equivalent unnested formulation
(due to limitations of the query optimizer).

• The nested formulation is sometimes more readable.

76

Nested Queries: Example with all

“Persons who have an income that is higher than the income of all
persons younger than 30”

77

Nested Queries: Example with all

“Persons who have an income that is higher than the income of all
persons younger than 30”

select name
from person
where income >= all (select income

from person
where age < 30)

78

Equivalent Formulation with max

“Persons who have an income that is higher than the income of all
persons younger than 30”

select name
from person
where income >= (select max(income)

from person
where age < 30)

79

Nested Queries: Example with exists
An expression with the operator exists is true if the result of the
subquery is not empty.

Example: “Persons with at least one child”

select *
from person p
where exists (select *

from fatherChild fc
where fc.father = p.name)

or
exists (select *

from motherChild mc
where mc.mother = p.name)

Note: the attribute name refers to the table in the outer from clause.

80

Nesting, Union, and “or”
The query for “persons with at least one child” can also be expressed as

a union:

select p.name, p.age, p.income
from person p, fatherChild fc
where fc.father = p.name
union
select p.name, p.age, p.income
from person p, motherChild mc
where mc.mother = p.name

Does the following query with “or” return the same answers?

select distinct p.name, p.age, p.income
from person p, fatherChild fc, motherChild mc
where fc.father = p.name

or mc.mother = p.name

81

Nested Queries and Negation
All the queries with nesting in the previous examples are equivalent to some
unnested query. So, what’s the point of nesting?

Example: “Persons without a child”

select *
from person p
where not exists (select *

from fatherChild fc
where fc.father = p.name)

and
not exists (select *

from motherChild mc
where mc.mother = p.name)

This cannot be expressed equivalently as a “select from where” query.
Why?

82

Exercise 9

“Name and age of the mothers all of whose children are at
least 18”

Approach 1: Subquery with all

Approach 2: Subquery with min

Approach 3: Subquery with not exists

83

Exercise 9: Solution with all

“Name and age of the mothers all of whose children are at
least 18”

select m.name, m.age
from person m join motherChild mc

on m.name = mc.mother
where 18 =< all (select c0.age

from motherChild mc0 join person c0
on mc0.mother = c0.name

where mc0.mother = mc.mother)

84

Exercise 9: Solution with min

“Name and age of the mothers all of whose children are at
least 18”

select m.name, m.age
from person m join motherChild mc

on m.name = mc.mother
where 18 =< (select min(c0.age)

from motherChild mc0 join person c0
on mc0.mother = c0.name

where mc0.mother = mc.mother)

“Name and age of mothers where the minimal age of their children is
greater or equal 18”

85

Exercise 9: Solution with not exists

“Name and age of the mothers all of whose children are at
least 18”

select m.name, m.age
from person m join motherChild mc

on m.name = mc.mother
where not exists

(select *
from motherChild mc0 join person c0

on mc0.mother = c0.name
where mc0.mother = mc.mother and

c0.age < 18)

Name and age of mothers who don’t have a child that is younger than 18.

86

Nested Queries: Comments
• Visibility rules:

– it is not possible to refer to a variable defined in a block
below the current block

– if an attribute name is not qualified with a variable or
table name, it is assumed that it refers to the “closest”
variable or table with that attribute

• In each block, one can refer to variables defined in the
same block or in surrounding blocks

• Semantics: the inner query is executed for every tuple of
the outer query

87

Exercise

On the supplier and parts DB:

Supplier(sid, sname, address)
Part(pid, pname, colour)
Catalog(sid, pid, cost)

1. Suppliers that supply only red parts

2. Suppliers that supply all red parts

88

Nested Queries: Visibility
Persons having at least one child.

select *
from person
where exists (select *

from fatherChild
where father = name)

or
exists (select *

from motherChild
where mother = name)

The attribute name refers to the table person in the outer from clause.

89

More on Visibility
Note: This query is incorrect:

select *
from employee
where dept in (select name

from department D1
where name = 'Production')

or
dept in (select name

from department D2
where D2.city = D1.city)

name lastNameemployee dept

name addressdepartment city

90

Visibility: Variables in Internal Blocks
Name and income of the fathers of persons who earn more than 20k,
showing also the income of the child.

select distinct f.name, f.income, c.income
from person f, fatherChild, person c
where f.name = fc.father and fc.child = c.name

and c.income > 20

In this case, the “intuitive” nested query is incorrect:

select name, income, c.income
from person
where name in (select father

from fatherChild
where child in (select name

from person c
where c.income > 20))

91

Correlated Subqueries

It may be necessary to use in inner blocks variables that are
defined in outer blocks. In this case one talks about correlated
subqueries.

Example: The fathers all of whose children earn strictly more than
20k.

select distinct fc.father
from fatherChild fc
where not exists (select *

from fatherChild fc0, person c
where fc.father = fc0.father

and fc0.child = c.name
and c.income <= 20)

92

Exercise 10: Correlated Subqueries

“Name and age of mothers who have a child whose age
differs less than 20 years from their own age”

93

Exercise 10: Solution

“Name and age of mothers who have a child whose age
differs less than 20 years from their own age”

select m.name, m.age
from person m, motherChild mc
where m.name = mc.mother and

mc.child in (select c.name
from person c
where m.age – c.age < 20)

94

Question: Intersection

Can one express intersection by way of nesting?

select name from employee
intersection

select lastName as name from employee

95

Intersection by Way of Nesting
select name from employee

intersection
select lastName as name from employee

select name
from employee
where name in (select lastName

from employee)

select name
from employee e
where exists (select *

from employee
where lastName = e.name)

96

Intersection Without Nesting

Is it possible to express intersection without nesting?

select name from employee
intersection

select lastName as name from employee

97

Exercise 11

Can one express set difference by way of nesting?

select name from employee
except

select lastName as name from employee

98

Exercise 11 (Solution 1)

Can one express set difference by way of nesting?

select name from employee
except

select lastName as name from employee

select name
from employee
where name not in (select lastName

from employee)

99

Exercise 11 (Solution 2)

Can one express set difference by way of nesting?

select name from employee
except

select lastName as name from employee

select name
from employee e
where not exists (select *

from employee
where lastName = e.name)

100

Exercise 12: Nesting and Functions

“The person (or the persons) that have the highest income”

101

Exercise 12: Solution

“The person (or the persons) that have the highest income”

select *
from person
where income = (select max(income)

from person)

Or:

select *
from person
where income >= all (select income

from person)

102

Nested Queries:
Conditions on Several Attributes

The persons which have a unique combination of age and
income

(that is, persons for whom the pair (age, income) is
different from the corresponding pairs of all other
persons).

select *
from person p
where (age,income) not in

(select age, income
from person
where name <> p.name)

103

Views
• A view is a table whose instance is derived from other tables by a

query.

create view ViewName [(AttributeList)] as SQLSelect

• Views are virtual tables: their instances (or parts of them) are only
calculated when they are used (for instance in other queries).

Example:

create view AdminEmp(empNo,firstName,lastName,sal) as
select EmpNo, firstName, lastName, salary
from employee
where dept = 'Administration' and

salary > 10

104

Maximizing Aggregates
• “Which age group has the highest total income?”

• One solution is to use nesting in the having clause:

select age
from person
group by age
having sum(income) >= all (select sum(income)

from person
group by age)

• Another solution is to create a view.

105

Solution with Views
create view ageIncome(age,sumIncome) as

select age, sum(income)
from person
group by age

select age
from ageIncome
where sumIncome = (select max(sumIncome)

from ageIncome)

106

Exercise 13

• Among all companies based in George Street that sell red
parts, which is the one with the least average price for red
parts?

107

Exercise 13 (Solution)

• Among all companies based in George Street that supply
red parts, which is the one with the least average price for
red parts?

create view RedPartCompGS(sid,name,avgCost) as
select sid, name, avg(cost)
from supplier natural join catalog

natural join part
where address LIKE ‘%George St%’ AND

colour = ‘red’
group by sid, name

108

Exercise 13 (Solution, cntd)

• Among all companies based in George Street that sell red
parts, which is the one with the least average price for red
parts?

select name
from RedPartCompGS
where avgCost = (select max(avgCost)

from RedPartCompGS)

109

Views Can Replace Subqueries
select *
from person
where name in (select father from fatherChild);

With a view

create view father(name) as
select distinct father from fatherChild;

select *
from person
where name in (select name from father);

110

Inline Views: Views in the FROM Clause

An equivalent formulation

select person.*
from person, father
where person.name = father.name;

If we need a view only once, we can define it in the FROM clause

select *
from person,

(select distinct father as name
from fatherChild) father

where person.name = father.name;

111

Inline Views (Cntd)

Inline views can also take part in joins

select person.*
from person

natural join
(select distinct father as name
from fatherChild) father;

Note: The inline view needs to be named,
even if the name is never used.

112

Inline Views in Aggregation of Aggregates

“The age group with the highest average salary”

select age, avginc
from (select age, avg(income) as avginc

from person
group by age) ageavg

where ageavg.avginc = (select max(avginc)
from (select avg(income)

as avginc
from person
group by age)

ageavgs);

This is not best practice! …but illustrates what is possible

113

Exercise

Consider the table

Employee(enumber, name, job, hiredate,
salary, depno)

Task: Compute a new table giving data about employees per
department for the job types of analysts and clerks
with the schema

(depno, n_clerks, n_analysts, tot_ca)

114

Step 1: Count Employees
per Department and Job

select depno, job, count(*)
from employee
group by depno, job
order by depno, job;

Create a view that does this

create view depjobcount(depno, job, jobcount) as
select depno, job, count(*)
from employee
group by depno, job;

115

Step 2, Attempt 1: Join counts of
Analysts and Clerks

select adjc.depno,
adjc.jobcount as N_analysts,
cdjc.jobcount as N_clerks

from depjobcount adjc
join depjobcount cdjc on adjc.depno = cdjc.depno

where adjc.job = 'Analyst' and
cdjc.job = 'Clerk';

What if there is a department without analyst or clerk?

116

Step 2, Attempt 2: Take the Outer Join

select adjc.depno,
adjc.jobcount as N_analysts,
cdjc.jobcount as n_Clerks

from depjobcount adjc
full outer join depjobcount cdjc

on adjc.depno = cdjc.depno
where adjc.job = 'Analyst' and

cdjc.job = 'Clerk';

Is the result different this time?

117

Step 2, Attempt 3: Take the Outer Join of
Inline Views

select adjc.depno,
adjc.jobcount as N_analysts,
cdjc.jobcount as N_clerks

from (select * from depjobcount
where job = 'Analyst') adjc

on alldeps.depno = adjc.depno
full outer join
(select * from depjobcount

where job = 'Clerk') cdjc
on alldeps.depno = cdjc.depno;

What about the department numbers?

118

Step 2, Attempt 4: Include all Departments

select alldeps.depno,
adjc.jobcount as N_analysts,
cdjc.jobcount as N_clerks

from (select distinct depno from depjobcount) alldeps
full outer join
(select * from depjobcount

where job = 'Analyst') adjc
on alldeps.depno = adjc.depno
full outer join
(select * from depjobcount

where job = 'Clerk') cdjc
on alldeps.depno = cdjc.depno;

119

Step 2, Attempt 5: Turn Nulls Into 0s

select alldeps.depno,
coalesce(adjc.jobcount,0) as N_Analysts,
coalesce(cdjc.jobcount,0) as N_Clerks

from (select distinct depno from depjobcount) alldeps
full outer join
(select * from depjobcount

where job = 'Analyst') adjc
on alldeps.depno = adjc.depno
full outer join
(select * from depjobcount

where job = 'Clerk') cdjc
on alldeps.depno = cdjc.depno;

120

Step 3: Join With Total Number of
Analysts and Clerks

Exercise …

121

Generic Integrity Constraints: check
Constraints on tuples or complex constraints on a single table are
specified as:

check (Condition)
create table Employee
(EmpNo character(6),
FirstName character(20),
LastName character(20),
Sex character not null check (sex in (‘M’,‘F’))
Salary integer,
Superior character(6),
check (salary <= (select s.salary

from employee s
where superior = s.EmpNo))

)

When do you expect that this constraint will be checked?
Would that correspond to the semantics you expect?

122

Check Constraints (cntd)

• In systems, only check constraints are completely supported
that need information from a single tuple, for instance

create table Employee
(EmpNo character(6),

FirstName character(20),
LastName character(20),
Sex character not null check (sex in (’M’,’F’))
Salary integer,
Superior character(6),
check (not LastName = ’Smith’ or Salary >= 40)

)

123

Generic Integrity Constraints: Assertions

Specify constraints at schema level. Syntax:

create assertion AssName check (Condition)

Example:

create assertion AtleastOneEmployee
check (1 <= (select count(*)

from employee))

– No efficient implementation techniques exist to date
– Systems do not support assertions

124

Access Control
• In SQL it is possible to specify

– who can use (i.e., which user)
– in which way (i.e., read, write,...)

a data base (or part of it)

• The object of such privileges (access rights) are usually
tables, but also other types of resources, like attributes,
views, or domains.

• The predefined user _system (database administrator)
has all privileges.

• The creator of a resource has all privileges for it.

125

Characteristics of Privileges

A privilege is characterised by:
• the resource to which it refers
• the user who grants the privilege
• the user who receives the privilege
• the action that is permitted
• the possibility to transfer the privilege

126

Privileges (cntd)

Types of privileges
• insert: permits to insert new records (tuples)
• update: permits to modify the content
• delete: permits to eliminate records
• select: permits to read the resource
• references: permits the definition of referential integrity

constraints that target the resource (can limit the
possibility to modify the resource)

• usage: permits the usage in a definition (for example, the
usage of a domain)

127

grant and revoke

• Concession of privileges:
grant < Privileges | all privileges > on
Resource to Users [with grant option]

– with grant option specifies whether the privilege can be
transferred to other users

grant select on Department to Joe

• Revocation of privileges:
revoke Privileges on Resource from Users
[restrict | cascade]

128

Transactions

A transaction is the execution of a program
that accesses the DB and
• starts with a BEGIN operation
• followed by a number of SQL statements
• and ends with a COMMIT or ROLLBACK operation.

129

Example Transaction in SQL

begin transaction;
update CurrentAccount

set Balance = Balance – 10
where AccountNo = 12345;

update CurrentAccount
set Balance = Balance + 10
where AccountNo = 55555;

commit work;

What can go wrong during the execution of this transaction?

130

Transactions in SQL

Basic instructions:

• begin transaction: specifies the beginning of the
transaction (the specified operations do not yet leave a
permanent effect on the database itself, e.g., they are
written into a log file)

• commit work: the operations specified after the begin
transaction are being made permanent

• rollback work: the request to execute the operations
after the last begin transaction is withdrawn

131

Savepoints

Savepoints allow one to limit rollbacks

begin transaction;
update CurrentAccount

set Balance = Balance – 10
where AccountNo = 12345;

savepoint mysavepoint;
update CurrentAccount

set Balance = Balance + 10
where AccountNo = 55555;

rollback to savepoint mysavepoint;

132

Transactions are Interleaved

• Large database systems are typically multi-user systems
many transactions are running at the same time

• Running transactions serially (i.e., one after the other)
is inefficient:
• transactions are often waiting for I/O to complete

serial execution leads to low resource utilisation

133

Transactions

• A transaction is a sequence of operations that is
considered indivisible (“atomic”), that is not influenced
during its execution by other operations on the database
(“isolated”), and whose effects are definitive (“durable”).

• Properties (“ACID”):
– Atomicity
– Consistency
– Isolation
– Durability (persistence)

We shall discuss these properties one by one

134

Transactions are … Atomic

• The sequence of operations on the database is either
executed in its entirety, or not at all.

Example: transfer of funds from account A to account B:
either both, the debit on A and the deposit into B are
executed, or none of the two.

135

Transactions are … Consistent

• After a transaction has been executed, the integrity
constraints have to be satisfied.

• During the execution, there may be violations, but if they
remain until the end, the transaction has to be undone
(“aborted”).

136

Transactions are … Isolated

• Transactions must not interfere with each other.

• The effect of a group of transactions on the database that
are executed concurrently must be the same as the effect
of some serial execution (i.e., as if they had been
executed one after the other).

Example: A withdrawal from a bank account could interfere
with a concurrent deposit so that the effect of one is
overridden by the other.

137

Transactions are … Durable

• After the succesful completion of a transaction, the DBMS
commits to make the outcome of the transaction
permanent, even in the presence of concurrency and/or
breakdowns

138

Exercise: ACID Properties of Transactions

Suppose a database system is used to organize the check-in
of airline passengers:
• there is a list of passengers, and upon arrival a seat has to

be assigned to each passenger and their luggage has to
be checked in.

Briefly describe in this context the four ACID properties of
transactions, i.e.,
• for each property give an example that illustrates the

problem which such a system might suffer if the property
is not supported.

139

Integrity Checking and Transactions
A company database has the following two tables

Emp(empno int, ename string, depno int)

Dept(depno int, dname string, hod int)

where hod stands for the “Head of Department”,
who has to be an employee.

There are two referential integrity constraints

Emp(depno) references Dept(depno)

Dept(hod) references Emp(empno)

How can we define the two relations in SQL?

140

Integrity Checking and Transactions (cntd)

Table definition (Attempt 1)

CREATE TABLE Emp (
empno int PRIMARY KEY,
ename varchar(20),
depno int,
FOREIGN KEY (depno)

REFERENCES Dept(depno));

CREATE TABLE Dept (
depno int primary key,
dname varchar(20),
hod int,
FOREIGN KEY (hod)

REFERENCES Emp(empno));

What will
the DBMS
respond?

141

Integrity Checking and Transactions (cntd)

Table definition (Attempt 2)

CREATE TABLE Emp (
empno int PRIMARY KEY,
ename varchar(20),
depno int);

CREATE TABLE Dept (
depno int primary key,
dname varchar(20),
hod int);

Are both ALTER TABLE statements necessary?

ALTER TABLE Emp
ADD CONSTRAINT emp_fk_dept
FOREIGN KEY (depno)

references Dept(depno);

ALTER TABLE Dept
ADD CONSTRAINT dept_hod_is_emp
FOREIGN KEY (hod)

references Emp(empno);

142

Integrity Checking and Transactions (cntd)

Next, we want to populate the database:

Smith is the first employee,
Accounting the first department, and
Smith is the head of the accounting department:

INSERT INTO emp VALUES (1, 'Smith', 1);

INSERT INTO dept VALUES (1, 'Accounting', 1);

How will the DBMS react?

143

Integrity Checking and Transactions (cntd)

In SQL, integrity constraints can be declared as deferrable
(in PostgreSQL, this is only possible for foreign key constraints)

If a (deferrable) constraint is deferred during a transaction,
it is only checked at the end of the transaction.

We modify the constraint definitions:

ALTER TABLE Emp
ADD CONSTRAINT emp_fk_dept
FOREIGN KEY (depno)

references Dept(depno)
DEFERRABLE;

ALTER TABLE Dept
ADD CONSTRAINT dept_hod_is_emp
FOREIGN KEY (depno)

references Dept(depno)
DEFERRABLE;

144

Integrity Checking and Transactions (cntd)

Now, we can combine the insertion steps in one transaction:

BEGIN;
SET CONSTRAINTS emp_fk_dept DEFERRED;
SET CONSTRAINTS dept_hod_is_emp DEFERRED;
INSERT INTO emp VALUES (1, 'Smith', 1);
INSERT INTO dept VALUES (1, 'Accounting', 1);
COMMIT;

Was it necessary to defer both constraints?

145

Concurrency Control
• There are two owners of the new company, Alice and Bob,

who are hiring staff.
• Alice wants to hire Black, Bob wants to hire Brown.
• The two are running concurrently two transaction on the company

database

How should the DBMS react?
What if Alice commits?
What if Alice does rollback, and then commits?

begin;

insert(2,'Black',1)
begin;

insert(2,'Brown',1)

Alice Bob

146

Concurrency Control (cntd)
• Alice has hired two new employees, McBlack and Mc Brown, while

Bob has hired two other employees, OBlack and OBrown
• Alice and Bob are making the following insertions:

What should the DMBS do?

begin;

insert(2,'McBlack',1)

Insert(3,'McBrown',1)

begin;

insert(3,'OBrown',1)

insert(2,'OBlack',1)

Alice Bob

147

Deadlocks
Deadlocks can be detected by maintaining a “Wait-For-Graph”:
• Waiting transactions are the nodes
• There is an edge from Ti to Tj if Ti is waiting for Tj

⇒ There is a deadlock among the waiting transactions
iff the Wait-For-Graph contains a cycle

To break the deadlock,
roll back enough transactions so that the cycle vanishes

In our example, the PostgreSQL server responds:

ERROR: deadlock detected
DETAIL: Process 15806 waits for ShareLock on transaction 16094;
blocked by process 15785.
Process 15785 waits for ShareLock on transaction 16095;
blocked by process 15806.
********** Error **********

148

Violations of Isolation
The SQL standard distinguishes between:

• Dirty read
A transaction reads data written by a concurrent uncommitted
transaction

• Nonrepeatable read
A transaction re-reads a tuple it has previously read and finds that
the tuple has been changed (modified or deleted) by another
transaction (that committed since the initial read)

• Phantom read
A transaction re-executes a query returning a set of rows that
satisfy a search condition and finds that the set of rows satisfying
the condition has changed due to another recently-committed
transaction

149

Isolation Levels Prevent Violations

Four isolation levels can be defined for a transaction

• “Read committed“ is default
• Isolation levels are defined by

SET TRANSACTION ISOLATION LEVEL IsolationLevel

Not possibleNot possible Not possible Serializable

Possible Not possible Not possible Repeatable read

Possible Possible Not possible Read committed

Possible Possible Possible Read
uncommitted

Phantom Read Nonrepeatable
Read Dirty Read Isolation Level

150

Transactions (Example)
A sailing club allows its members to reserve individual boats over the
internet for periods of several days. The club uses a DBMS and relies
on the concurrency control of the DBMS to prevent conflicting
reservations. The club‘s database contains a table with the schema

reservation(boatName, startDate, endDate, sailorName)

The table contains only the tuple

('Marine', '10-Apr-08', '13-Apr-08', 'Dustin')

151

Transactions (Example ctd)
Two sailors, Rusty and Lubber, connect to the database at the same time
to make a reservation. To keep things simple, we assume that sailors
make transactions using a psql interface.

Rusty likes the boat Clipper and would like to use it from
13 April 2008 to 15 April 2008. He types

SELECT r.startDate, r.endDate
FROM reservation r
WHERE r.boatName = 'Clipper' AND

r.startDate <= '15-Apr-08' AND
r.endDate >= '13-Apr-08';

What is the intuitive meaning of the query?
What does Rusty get to see?

152

Transactions (Example ctd)
Rusty decides to reserve Clipper from 13 April to 15 April and types

INSERT INTO reservation
VALUES ('Clipper', '13-Apr-05', '15-Apr-05', 'Rusty');

Lubber wants to reserve a boat from 12 April 2005 to 14 April 2005 and
types

SELECT r.boatName
FROM reservation r
WHERE r.startDate <= '14-Apr-05' AND

r.endDate >= '12-Apr-05';

What is the intuitive meaning of the query?
What does Lubber get to see?

153

Transactions (Example ctd)
Lubber also likes Clipper and types

INSERT INTO reservation VALUES
('Clipper', '12-Apr-05', '14-Apr-05', 'Lubber');

What happens?

Both, Rusty and Lubber type commit.

What happens?

154

Transactions (Example ctd)
The manager of the club connects to the database and types the
following query:

SELECT r1.boatName, r1.startDate, r1.endDate,
r2.startDate, r2.endDate

FROM reservation r1, reservation r2
WHERE r1.boatName = r2.boatName AND

r1.startDate <= r2.endDate AND
r2.startDate <= r1.endDate AND
r1.startDate <= r2.startDate;

What is the intuitive meaning of the query?
What does the manager get to see?
Has the isolation property of transactions been guaranteed?

155

SQL: Summary

• SQL combines DDL and DML
• DDL implements basic concepts of relational data model

(domains, relations, schemas, integrity constraints)
• The core DML (w/o) aggregation is essentially equivalent

to first order predicate logic
• The DML has the same expressivity as relational algebra
• Aspects of both, predicate logic and relational algebra, are

present in the SQL query language
• Further aspects include generic integrity constraints,

views, and transactions

156

References

In preparing the lectures I have used several sources.
The main ones are the following:

Books:
• A First Course in Database Systems, by J. Ullman and J.

Widom
• Fundamentals of Database Systems, by R. Elmasri and S.

Navathe

Slides:
• The slides of this chapter are to a large part translations of

material prepared by Maurizio Lenzerini (University of
Rome, “La Sapienza”) and Diego Calvanese (Free
University of Bozen-Bolzano) for their introductory course
on databases at the University of Rome, “La Sapienza”

