

Mapping an E-R Diagram to a Relational Schema

We cannot store date in an ER schema

(there are no ER database management systems)

→ We have to translate our ER schema

into a relational schema

→ What does "translation" mean?

Translation: Principles

- Maps
 - ER schemas to relational schemas
 - ER instances to relational instances
- Ideally, the mapping should
 - be one-to-one in both directions
 - not lose any information
- Difficulties:
 - what to do with ER-instances that have identical attribute values, but consist of different entities?
 - in which way do we want to preserve information?

Mapping Many:one Relationship Types to Relations (cntd.)

STUDEN	١T	STAFF						
<u>studno</u>	given	family	tutor	roomno	slot		<u>name</u>	roomno
s1	fred	jones	bush	2.26	12B		kahn	IT206
s2	mary	brown	kahn	IT206	12B		bush	2.26
s3	sue	smith	goble	2.82	10A		goble	2.82
s4	fred	bloggs	goble	2.82	11A		zobel	2.34
s5	peter	jones	zobel	2.34	13B		watson	IT212
s6	jill	peters	kahn	IT206	12A		woods	IT204
							capon	A14
							L'un alla av s	0.40

Ν	Vlappi	ng IVI t	iany: o Re	lations	elations (cnto	วทร d.)	ship Typ	Des
STUD	ENT						STAFF	
<u>studn</u>	<u>o</u> given	fami	ly				name	roomno
s1	fred	jone	s				kahn	IT206
s2	mary	brow	/n				bush	2.26
s3	sue	smit	h				goble	2.82
s4	fred	blog	gs				zobel	2.34
s5	peter	jone	s				watson	IT212
s6	jill	pete	rs				woods	IT204
	,						capon	A14
		TUTOR					lindsey	2.10
		<u>studno</u>	tutor	roomno	slot		barringer	2.125
		s1	bush	2.26	12B			
		s2	kahn	IT206	12B			
		s3	goble	2.82	10A			
		s4	goble	2.82	11A			
		s5	zobel	2.34	13B			
		s6	kahn	IT206 -	12A	J		

Optional Participation of the Determined Entity

STUDENT

<u>studno</u>	given	family	hons
s1	fred	jones	ca
s2	mary	brown	cis
s3	sue	smith	CS
s4	fred	bloggs	ca
s5	peter	jones	CS
s6	jill	peters	ca

SCHOOL

hons	faculty
ac	accountancy
is	information systems
CS	computer science
се	computer science
mi	medicine
ma	mathematics

"hons" cannot be NULL because it is mandatory for a student to be registered for a school

→ "not null" constraint

No student is registered for "mi", so "mi" doesn't occur as a foreign key value (but that's no problem)

Optional Participation of the Determinant Entity (cntd.)

STI	JDF	NT
010		

<u>studno</u>	given	family	tutor	roomno	slot
s1	fred	jones	bush	2.26	12B
s2	mary	brown	kahn	IT206	12B
s3	sue	smith	goble	2.82	10A
s4	fred	bloggs	goble	2.82	11A
s5	peter	jones	zobel	2.34	13B
s6	jill	peters	kahn	IT206	12A

<u>name</u>	<u>roomno</u>
kahn	IT206
bush	2.26
goble	2.82
zobel	2.34
watson	IT212
woods	IT204
capon	A14
lindsey	2.10
barringer	2.125

STVEE

19

Optional Participation of the Determinant Entity (cntd.)

STUDENT

<u>studno</u>	given	family	tutor	roomno	slot
s1	fred	jones	bush	2.26	12B
s2	mary	brown	kahn	IT206	12B
s3	sue	smith	goble	2.82	10A
s4	fred	bloggs	goble	2.82	11A
s5	peter	jones	NULL	NULL	NULL
s6	jill	peters	kahn	IT206	12A

STAFF

<u>name</u>	<u>roomno</u>
kahn	IT206
bush	2.26
goble	2.82
zobel	2.34
watson	IT212
woods	IT204
capon	A14
lindsey	2.10
barringer	2.125

Mapping One:one Relationship Types to Relations

Post the primary key of one of the entity types into the other entity type as a foreign key, including any relationship attributes with it

1 - / (1)	
<u>year</u>	yeartutor
1	zobel
2	bush
3	capon
	-

YFAR

STAFF

•	Merge the entity
	types together

Which constraint holds in this case?

<u>name</u>	<u>roomno</u>	year
kahn	IT206	NULL
bush	2.26	2
goble	2.82	NULL
zobel	2.34	1
watson	IT212	NULL
woods	IT204	NULL
capon	A14	3
lindsey	2.10	NULL
barringer	2.125	NULL

Multi-Valued Attributes

For each multi-valued attribute of E_i, create a relation with the attributes

primary_key(E_i) U multi-valued attribute

The primary key comprises all attributes

STUDENT

<u>studno</u>	given	family
s1	fred	jones
s2	mary	brown

STUDENT_CONTACT

<u>studno</u>	<u>contact</u>
s1	Mr. Jones
s1	Mrs Jones
s2	Bill Brown
s2	Mrs Jones
s2	Billy-Jo Woods

Non-binary Relationship

STUDENT(studno, givenname, familyname)

STAFF(staffname, roomno)

TUTORS(

Weak Entities

???

)

Association Entity Types

We have:

- COURSE(courseno, subject, equip)
- STUDENT(<u>studno</u>, givenname, familyname)

Then:

• ENROL(courseno, studno, labmark, exammark)

29

Translation of the University Diagram

STUDENT (studno, givenname, familyname, hons, tutor, tutorroom, slot, year)

ENROL(<u>studno, courseno</u>, labmark,exammark)

COURSE(courseno, subject, equip)

STAFF(<u>lecturer,roomno</u>, appraiser, approom)

TEACH(courseno, lecturer, lecroom)

YEAR(year, yeartutor, yeartutorroom)

SCHOOL(hons, faculty)

Exercise: Supervision of PhD Students

A database needs to be developed that keeps track of PhD students:

- For each student store the name and matriculation number. Matriculation numbers are unique.
- Each student has exactly one address. An address consists of street, town and post code, and is uniquely identified by this information.
- For each lecturer store the name, staff ID and office number. Staff ID's are unique.
- Each student has exactly one supervisor. A staff member may supervise a number of students.
- The date when supervision began also needs to be stored.

Exercise: Supervision of PhD Students

- For each research topic store the title and a short description. Titles are unique.
- Each student can be supervised in only one research topic, though topics that are currently not assigned also need to be stored in the database.

Tasks:

- a) Design an entity relationship diagram that covers the requirements above. Do not forget to include cardinality and participation constraints.
- b) Based on the ER-diagram from above, develop a relational database schema. List tables with their attributes. Identify keys and foreign keys.

Translating of Hierarchies: Options

To store information about these classes, We have to define appropriate relations.

For each relation, we have to define:

- set of attributes
- primary key

In principle, there are three options:

33

- A. Create a relation for each entity type in the schema, i.e., for both, superclass and subclasses
- B. Create only relations for subclasses
- C. Create only one relation, for the superclass

Translation into Relations: Option A

- 1. Create a relation for the superclass
- 2. For each subclass, create a relation over the set of attributes

primary_key(superclass) U attributes of subclass

The key for each subclass relation is: primary_key(superclass)

subclass the tuple represents • Overlapping coverage: class

has to represent a set of classes Partial coverage: class is null

∴ entity is from superclass

year

thesis title

Exercise: For each of the approaches A, B, C, decide

- Which tables need to be created?
- Which are the attributes? And which are their possible values?

References

In preparing these slides I have used several sources. The main ones are the following:

Books:

- A First Course in Database Systems, by J. Ullman and J. Widom
- Fundamentals of Database Systems, by R. Elmasri and S. Navathe

Slides from Database courses held by the following people:

- Enrico Franconi (Free University of Bozen-Bolzano)
- Carol Goble and Ian Horrocks (University of Manchester)