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Functional Dependencies

• A FD is written 

X → A or   X → Y

• Notation: X, Y, Z represent sets of attributes;
A, B, C,… represent single attributes

• X → A (“X determines A”) is an assertion about a relation R:
whenever two tuples of R agree on all the attributes of X, 
then they must also agree on the attribute A, or

t1[X] = t2[X] implies t1[A] = t2[A]   for all t1, t2 in R

(analogously for X → Y)

• Convention:We say “X → A holds in R”

• Notation: No set braces in sets of attributes: just ABC, 
rather than {A,B,C }.
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Example

Table   Drinkers(name, addr, beersLiked, manf, favBeer)

Reasonable FD’s to assert:

1.name → addr

2.name → favBeer

3.beersLiked → manf

name addr beersLiked manf favBeer
Janeway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle Pete’s WickedAle
Spock Enterprise Bud A.B. Bud
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Example FDs

Because of name → addr Because of  name → favBeer

name addr beersLiked manf favBeer
Janeway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle Pete’s WickedAle
Spock Enterprise Bud A.B. Bud

Because of  beersLiked → manf
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FD’s With Multiple Attributes

FDs with more than one attribute on the right don’t increase

expressivity …

… but allow for convenient shorthands that combine FDs

Example: name → addr and name → favBeer
become name → addr favBeer

More than one attribute on the left may be essential.

Example: bar beer → price
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Keys of Relations

R relation, K a set of attributes of R

• K is a superkey for relation R if       

K functionally determines all of R

• K is a key for R if K is a superkey, 

but no proper subset of K is a superkey

(that is, K is a minimal superkey)

Sometimes we call “keys” also “candidate keys”, 
to indicate they are candidates for choosing the primary key 
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Example

Drinkers(name, addr, beersLiked, manf, favBeer)

We have

name → addr favBeer

beersLiked → manf

Therefore, {name, beersLiked} determine all the other

attributes

Hence, {name, beersLiked} is a superkey
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Example (cntd.)

Neither {name} nor {beersLiked} is a superkey:

– name → manf doesn’t hold

– beersLiked → addr doesn’t hold

Hence: {name, beersLiked} is a key

There are no other keys, but lots of superkeys:

Any superset of {name, beersLiked} is a superkey
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ER and Relational Keys

• Keys in ER concern entities

• Keys in relations concern tuples

• Usually, one tuple corresponds to one entity, 
so the ideas are similar

• But — in poor relational designs, 
one tuple may represent several entities, 

… so ER keys and relational keys are different
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Example Data

name addr beersLiked manf favBeer
Janeway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle Pete’s WickedAle
Spock Enterprise Bud A.B. Bud

The relational key is {name, beersLiked}

But in E/R, 
• name is a key for Drinkers
• beersLiked is a key for Beers.

The relation contains 
• 2 tuples for Janeway entity
• 2 tuples for Bud entity.
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Where Do Keys Come From?

1. Just assert one key K

– The only FDs are K → A for all attributes A

2. Assert FDs and 
deduce the keys by systematic exploration

– ER model gives us FDs from entity-set keys 
and from many-one relationships

– Other FDs we may know from our domain 
knowledge 

(“no two courses take place in a room 
at the same time”)
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Inferring FDs

We are given FD’s 

X1 → A1, X2 → A2,…, Xn → An , 

and we want to know whether an FD 

Y → B

must hold in any relation that satisfies the given FDs

Example: If A → B and B → C hold, 

then surely A → C holds

Important for design of good relation schemas
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Inference Test

We are given a set of FDs and want to know whether

Y → B

follows from the given FDs.

Test: We consider two tuples
and assume they agree in all attributes of Y:

Y

0000000. . . 0

00000?? . . .?
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Inference Test (cntd.)

Apply the given FDs to infer that these tuples must also

agree on certain other attributes

• If B is one of these attributes, then Y → B is true

• Otherwise, the two tuples, with any forced equalities, 
form a two-tuple relation 

– that satisfies the given FDs

– but does not satisfy Y → B.

This would show that Y → B does not follow from the
given FDs.
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Inference Test: Example

Drinkers(name, addr, beersLiked, manf, favBeer)

with

1. name → addr

2. name → favBeer

3. beersLiked → manf

Which of the FDs below follow from the given FDs?

4. addr → favBeer

5. name beersLiked → favBeer
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Closure Test

An easier test is based on the concept of attribute closure

• Let R be a relation, 
F a set of FDs over R, 
Y a set of attributes of R.

• The closure of Y with respect to F, written Y+,
consists of all attributes that are determined by Y, given F.

• Observation: 
Y → B follows from F 

if and only if 
B ∈ Y+
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The Closure Algorithm

• Initialization: Y+ = Y

• Loop: 
– Look for an FD X → A in F such that X ⊆ Y+ and A ∉ Y+

– Add A to Y+

• Until: there is no applicable FD left in F
• Output: Y+

This is a typical example of a fixpoint algorithm
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Closure Algorithm: The Idea

Y+ new Y+

X A
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Example

Contracts(cno, supplno, projno, depno, partno, qty, value)

Short: CSPrDPaQV

A designer has found the following set of FDs:
• C is a key, i.e., C → SPrDPaQV
• A project purchases each part using a single contract, PrPa → C
• A department purchases at most one part from a supplier, SD → Pa

His colleague has come up with a slightly different set:
• A project purchases each part using a single contract, PrPa → C
• A contract determines project, supplier and department, C → PrSD
• SPrD is a key, SDPr → CPaQV

Are the findings of the second designer different from those of the first? 
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Finding All Implied FDs

We know how we can determine whether one FD follows
from a set of FDs F = { X1 → A1,…, Xn → An }

Question: How can we find all such FDs?

Motivation: To get a better schema, we “normalize”, i.e.,
we break one relation schema 
into two or more schemas.
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Finding All Implied FD’s: Example

Relation R with attributes ABCD, with FD’s 
AB → C,  C → D,   D → A.

Decompose R into ABC, AD, 
(i.e., project  onto ABC and AD)

Question: What FDs hold in ABC ?

Answer: Not only AB → C, but also C → A !
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Why?

a1b1cABC a2b2c

Thus, tuples in the projection
with equal Cs have equal As:
C → A.

a1b1cd1 a2b2cd2ABCD

comes
from

d1=d2 because
C → D

a1=a2 because
D → A
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Projecting FDs

How can we find the FDs that hold on the projection of R?

Basic Idea:

1. Start with the given FDs

2. Find all nontrivial FDs that follow from the given FDs

(nontrivial = left and right sides disjoint)

3. Restrict to those FDs that involve only attributes
of the projected schema
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A Simple, Exponential Algorithm

1. For each set of attributes X, compute X+

2. Add X → A for all A ∈ X+ – X

3. However, drop XY → A whenever we discover X → A
(Because XY → A follows from X → A in any projection)

4. Finally, return only FDs involving projected attributes
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Optimizations

Suppose that Z is the set of all attributes of R. Then:

• ∅+ =∅

• Z + = Z

• If X ⊆ Y and X + = Z then Y + = Z

This can be used for optimizations!
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Example

Relation ABC with FDs A → B and B → C

Project onto AC

• A+ = ABC   ⇒ A → B, A → C
(Optimization: We do not need to compute AB+ or AC+ )

• B+ = BC   ⇒ B → C

• C+ = C   ⇒ nothing

• BC+ = BC   ⇒ nothing

Resulting FDs: A → B, A → C, and B → C.

Projection onto AC: A → C.
(The only FD that involves a subset of { A,C })
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A Geometric View of FDs

• We consider the set of all instances
of a particular relation R

• That is, 

– all finite sets of tuples

– that have the proper number of components.

• Each instance is a point in this space
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Example: R(A,B)

{(1,2), (3,4)}

{ }

{(1,2), (3,4), (1,3)}

{(5,1)}

etc.
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An FD is a Subset of Instances

• For each FD X → A, there is the subset of all 
instances that satisfy the FD

• Thus, we can identify an FD 
with a region in the space

• An FD is trivial
if and only if 

it is represented by the entire space

Example: A → A.
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Example: A → B for R(A,B)

{(1,2), (3,4)}

{ }

{(1,2), (3,4), (1,3)}

{(5,1)}

A → B
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Representing Sets of FDs

If each FD is a set of relation instances, then a collection of 

FDs corresponds to the intersection of those sets
(Intersection = all instances that satisfy all of the FDs)

A → B
B → C

CD → A

Instances satisfying
A → B, B → C, and
CD → A
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Entailment of FDs

F = { X1 → A1,…,Xn → An } set of FDs

• An FD Y → B follows from F or is entailed by F if 
every instance that satisfies all FDs in F also satisfies Y → B

This can be visualized:

• If Y → B follows from the set F = { X1 → A1,…,Xn → An },
then in the space of instances the region for Y → B must include the 
intersection of the regions for the FDs Xi→ Ai . 

That is:

– Every instance satisfying all the Xi→ Ai surely satisfies Y → B.

– But an instance could satisfy Y → B, yet not be in this intersection.
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Example

A → B B → CA → C
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