
Tree-Structured Indexes

Werner Nutt

Introduction to Database Systems

Free University of Bozen-Bolzano



2

Introduction

• As for any index, three alternatives for data entries K∗:
– Data record with key value K

– 〈K, r〉, where r is rid of a record with search key value K

– 〈K, [r1, . . . , rn]〉, where [r1, . . . , rn] is a list or rid’s of records

with search key value K

.

• Choice orthogonal to indexing technique used to locate entries K∗.

• Tree-structured indexing techniques support both range searches and

equality searches.

• ISAM: static structure;

B+-tree: dynamic, adjusts gracefully under inserts and deletes.

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



3

Range Searches

• “Find all employees with sal > 1500”
– If data is in sorted file, do binary search to find first such employee,

then scan to find others

– Cost of binary search can be quite high

• Simple idea: create an “index” file

Page 1 Page 2 Page N

k2 kN

Page 3

k1

Data File

Index File

; can do binary search on (smaller) index file!

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



4

ISAM (= Indexed Sequential Access Method)

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Index file may still be quite large.

But we can apply the idea repeatedly!

Index
Pages

Pages
Overflow 

page Primary pages

Leaf

; Leaf pages contain data entries

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



5

Comments on ISAM

File creation: Leaf (data) pages allocated sequentially, sorted by search

key; then index pages allocated, then space for overflow pages.

Index entries: 〈search key value, page id〉; ‘direct’ search for data

entries, which are in leaf pages

Search: Start at root; use key comparisons to go to leaf.

Cost ∝ log
F

N where F = # entries/index page (‘fanout’) and

N = # leaf pages

Insert: Find leaf data that entry belongs to, and put it there

Delete: Find leaf and remove from leaf;

if empty overflow page, de-allocate

; Static tree structure: inserts/deletes affect only leaf pages

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



6

Example ISAM Tree

Each node can hold 2 entries

No need for ‘next-leaf-page’ pointers (Why?)

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



7

After Inserting 23
∗, 48

∗, 41
∗, 42

∗, . . .

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



8

Then Deleting 42
∗, 51

∗, 97
∗

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

Note that 51∗ appears in index levels, but not in leaf!

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



9

B+-Tree: The Most Widely Used Index

• Insert/delete at log
F

N cost (F = ‘fan out’ and N = # leaf pages);

keep tree height-balanced.

• Minimum 50% occupancy (except for root).

• Each node contains d ≤ m ≤ 2d entries (d is the order of the tree).

• Supports equality and range-searches efficiently.

Index

Data Entries

("Sequence set")

(Directs search)

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



10

Example B+-Tree

• Search begins at root, and key comparisons direct it to a leaf

(as in ISAM)

• Search for 5∗, 15∗, all data entries with key ≥ 24∗

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

; Based on the search for 15∗, we know it is not in the tree!

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



11

B+-Trees in Numbers

• Average fill-factor: 66% (= ln 2)

• Typical order: 100
– average fanout = 133

• Typical capacities:
– Height 4: 1334 = 312,900,700 records

– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:
– Level 1 = 1 page = 8 KBytes

– Level 2 = 133 pages = 1 MByte

– Level 3 = 17,689 pages = 133 MBytes

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



12

Inserting a Data Entry into a B+-Tree

• Find correct leaf L

• Put data entry onto L

– If L has enough space, done!

– Else, must split L (into L and a new node L′)

∗ Redistribute entries evenly, copy up middle key

∗ Insert index entry pointing to L′ into parent of L

• This can happen recursively
– To split index note, redistribute entries evenly,

but push up middle key (contrast with leaf splits!)

• Splits “grow” three; root split increases height
– Tree growth: gets wider or one level taller at top

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



13

Inserting 8
∗ into Example B+-Tree

• Observe how

minimum

occupancy is

guaranteed in

both leaf and

index page splits.

2* 3* 5* 7* 8*

5

Entry to be inserted in parent node.
(Note that 5 is
continues to appear in the leaf.)

andcopied up

• Note difference

between

copy up and

push up!

What’s the

reason?

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is

this with a leaf split.)

pushed up
and appears once in the index. Contrast

and

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



14

. . . After Inserting 8∗

2* 3*

Root
17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

• Notice that root was split, leading to increase in height

• In this example, we can avoid split be re-distributing entries;

however, this is usually not done in practice

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



15

Deleting a Data Entry from a B+-Tree

• Start at root, find leaf L where entry belongs

• Remove the entry
– If L is at least half-full, done!

– If L has only d − 1 entries ,

∗ Try to re-distribute , borrowing from sibling

(adjacent node with same parent as L)

∗ If re-distribution fails, merge L and sibling

• If merge occurred, must delete entry (pointing to L or sibling) from

parent of L

• Merge could propagate to root, decreasing height

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



16

. . . after (Inserting 8∗, then) Deleting 19∗ and 20∗

2* 3*

Root
17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

• Deleting 19∗ is easy

• Deleting 20∗ is done with re-distribution.

Notice how middle key is copied up!

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



17

. . . and then Deleting 24∗

• Must merge

• observe “toss” of

index entry (on right),

and “pull down” of

index entry (below)

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root 30135 17

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



18

Example of Non-leaf Re-distribution

• Tree is shown below during deletion of 24∗

(What could be a possible tree?)

• In contrast to previous example, can re-distribute entry form left

child of root to right child

Root

14* 16*

135

17* 18* 20*

17 20

22

33* 34* 38* 39*

30

22* 27* 29*21*7*5* 8*3*2*

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



19

After Re-distribution

• Intuitively, entries are re-distributed by “pushing through” the

splitting entry in the parent node

• It suffices to re-distribute index entry with key 20;

(we have re-distributed 17 as well for illustration)

Root

14* 16*

135

33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*

17

3020 22

7*5* 8*2* 3*

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



20

Bulk Loading of a B+-Tree

• If we have a large collection of records, and we want to create a

B+-tree on some filed, doing so by repeatedly inserting records is

very slow

• Bulk loading can be done much more efficiently

• Initialisation: Sort all data entries, insert pointer to first (leaf) page

in a new (root) page

3* 4* 6* 9* 10* 11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



21

Bulk Loading of a B+-Tree (Cntd.)

3* 4* 6* 9* 10* 11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

6 10Root Data entry pages not yet in B+ tree

3* 4* 6* 9* 10* 11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages not yet in B+ tree6

10

12

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



22

Bulk Loading of a B+-Tree (Cntd.)

• Index entries for leaf pages always entered into right-most index page

just above leaf level.

When this fills up, it splits.

(Split may go up right-most path to the root)

• Much faster than repeated inserts, especially when one considers

locking!

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



23

Bulk Loading of a B+-Tree (Cntd.)

3* 4* 6* 9* 10* 11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages 

not yet in B+ tree
3523126

10 20

3* 4* 6* 9* 10* 11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree

Data entry pages 

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



24

Summary of Bulk Loading

• Option 1: multiple inserts
– Slow

– Does not give sequential storage of leaves

• Option 2: Bulk Loading
– Has advantages for concurrency control

– Fewer I/O’s during build

– Leaves will be stored sequentially (and linked, of course)

– Can control “fill factor” on pages

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



25

Storage and Access Cost for an Average B+-tree

Example: Relation Orders with attribute Orders.CustId

Assumptions:

Page Size: 4KBytes (including 96 Bytes page header)

Occupancy of Page: 70 %

Number of records in Orders: 10,000,000

Number of distinct Customer ID’s: 100,000

(for every customer, there is an equal number of orders)

Length of a Customer ID: 24 Bytes

Length of an rid: 6 Bytes

Length of a pointer in B+-tree: 6 Bytes

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



26

We Conclude:

Length of Rid List: 24 + 100 × 6 Bytes = 624 Bytes

Number of Rid Lists on an Index Page: b.7 × (4096 − 96)/624c = 4

Number of Index Pages: d100, 000/4e = 25, 000

Length of a “Signpost” to a Non-leaf Node: 24 + 6 Bytes = 30 Bytes

Fanout: b.7 × (4096 − 96)/30c = 93

Height of Index: dlog
93

25, 000e + 1 = 4

(3 Levels for non-leaf nodes plus leaf level)

Number of Pages in Index: 25, 000 pages on Level 4,

d25, 000/93e = 269 non-leaf nodes on Level 3

d269/93e = 3 non-leaf nodes on Level 2 plus

1 root node

Storage Space: 25, 270 × 4 KBytes ≈ 100 MBytes

; Reading all orders for a CustId requires 4 + 100 = 104 page accesses

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



27

Tree-structured Indexes: Summary

• Ideal for range-searches, also good for equality searches

• ISAM is a static structure
– Only leaf pages modified; overflow pages needed

– Overflow chains can degrade performance unless size of data set

and data distribution stay constant

• B+-tree is a dynamic structure
– Inserts/deletes leave tree height-balanced (log

F
N cost)

– High fanout F means depth rarely more than 3 or 4

– Almost always better than maintaining a sorted file

– Typically, 66% (= ln 2) occupancy on average

– If data entries are data records, splits can change rids!

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



28

Tree-structured Indexes: Summary

• Bulk loading can be much faster than repeated inserts for creating a

B+-tree on a large data set

• Most widely used index in database management systems because of

its versatility. On of the most optimized components of a DBMS.

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano



29

References

These slides are based on Chapter 10 of the book Database Management

Systems by R. Ramakrishnan and J. Gehrke, and on slides by the authors

published at

www.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano


