Datalog

Free University of Bozen-Bolzano, 2009

Werner Nutt

(Based on slides by Thomas Eiter and Wolfgang Faber)

Foundations of Databases

1

Motivation

- Relational Calculus and Relational Algebra were considered to be "the" database languages for a long time
- Codd: A query language is "complete," if it yields Relational Calculus
- However, Relational Calculus misses an important feature: recursion
- Example: A metro database with relation links:line, station, nextstation
 What stations are reachable from station "Odeon"?
 Can we go from Odeon to Tuileries?
 etc.
- It can be proved: such queries cannot be expressed in Relational Calculus
- This motivated a logic-programming extension to conjunctive queries: datalog

Example: Metro Database Instance

links	line	station	nextstation	
'	4	St.Germain	Odeon	
	4	Odeon	St.Michel	
	4	St. Michel	Chatelet	
	1	Chatelet	Louvres	
	1	Louvres	Palais Royal	
	1	Palais-Royal	Tuileries	
	1	Tuileries	Concorde	

Datalog program for first query:

$$\begin{array}{lcl} \texttt{reach}(\mathtt{X},\mathtt{X}) & \leftarrow & \texttt{links}(\mathtt{L},\mathtt{X},\mathtt{Y}) \\ \texttt{reach}(\mathtt{X},\mathtt{X}) & \leftarrow & \texttt{links}(\mathtt{L},\mathtt{Y},\mathtt{X}) \\ \texttt{reach}(\mathtt{X},\mathtt{Y}) & \leftarrow & \texttt{links}(\mathtt{L},\mathtt{X},\mathtt{Z}),\texttt{reach}(\mathtt{Z},\mathtt{Y}) \\ \texttt{answer}(\mathtt{X}) & \leftarrow & \texttt{reach}(\texttt{`Odeon'},\mathtt{X}) \end{array}$$

Note: recursive definition

Intuitively, if the part right of " \leftarrow " is true, the rule "fires" and the atom left of " \leftarrow " is concluded.

Datalog

Foundations of Databases

3

The Datalog Language

- datalog is akin to Logic Programming
- The basic language (considered next) has many extensions
- There exist several approaches to defining the semantics:

Model-theoretic approach:

View rules as logical sentences, which state the query result

Operational (fixpoint) approach:

Obtain query result by applying an inference procedure, until a fixpoint is reached

Proof-theoretic approach:

Obtain proofs of facts in the query result, following a proof calculus (based on resolution)

Datalog vs. Logic Programming

Although Datalog is akin to Logic Programming, there are important differences:

- There are no functions symbols in datalog. Consequently, no potentially infinite data structures, such as lists, are supported
- Datalog has a purely declarative semantics. In a datalog program,
 - the order of clauses is irrelevant
 - the order of atoms in a rule body is irrelevant
- Datalog programs adhere to the active domain semantics (like Safe Relational Calculus, Relational Algebra)
- Datalog distinguishes between
 - database relations ("extensional database", edb) and
 - derived relations ("intensional database", idb)

Datalog

Foundations of Databases

Syntax of "plain datalog", or "datalog"

Definition. A datalog rule r is an expression of the form

$$R_0(\vec{x}_0) \leftarrow R_1(\vec{x}_1), \dots, R_n(\vec{x}_n) \tag{1}$$

5

- where $n \geq 0$, R_0, \ldots, R_n are relations names, and $\vec{x}_0, \ldots, \vec{x}_n$ are vectors of variables and constants (from \mathbf{dom})
- every variable in \vec{x}_0 occurs in $\vec{x}_1, \ldots, \vec{x}_n$ ("safety")

Remarks.

- ullet The *head* of r, denoted H(r), is $R_0(ec{x}_0)$
- The *body* of r, denoted B(r), is $\{R_1(\vec{x}_1), \ldots, R_n(\vec{x}_n)\}$
- The rule symbol "←" is often also written as ": -"

Definition. A datalog program is a finite set of datalog rules.

Datalog Programs

Let P be a datalog program.

- ullet An extensional relation of P is a relation occurring only in rule bodies of P
- ullet An *intensional relation* of P is a relation occurring in the head of some rule in P
- The extensional schema of P, edb(P), consists of all extensional relations of P
- ullet The *intensional schema* of P, idb(P), consists of all intensional relations of P
- The schema of P, sch(P), is the union of edb(P) and idb(P).

Remarks.

- Sometimes, extensional and intensional relations are explicitly specified. It is
 possible then for intensional relations to occur only in rule bodies (but such
 relations are of no use then).
- In a Logic Programming view, the term "predicate" is used as synonym for "relation" or "relation name."

Datalog

Foundations of Databases

The Metro Example /1

7

Datalog program ${\cal P}$ on metro database scheme

 $\mathcal{M} = \{ \text{links:line, station, nextstation} \}:$

$$\begin{split} reach(\textbf{X}, \textbf{X}) &\leftarrow & links(\textbf{L}, \textbf{X}, \textbf{Y}) \\ reach(\textbf{X}, \textbf{X}) &\leftarrow & links(\textbf{L}, \textbf{Y}, \textbf{X}) \\ reach(\textbf{X}, \textbf{Y}) &\leftarrow & links(\textbf{L}, \textbf{X}, \textbf{Z}), reach(\textbf{Z}, \textbf{Y}) \\ answer(\textbf{X}) &\leftarrow & reach('Odeon', \textbf{X}) \end{split}$$

Here,

$$edb(P) = \{links\} (= \mathcal{M}),$$

 $idb(P) = \{reach, answer\},$
 $sch(P) = \{links, reach, answer\}$

Datalog

Datalog Syntax (cntd)

ullet The set of constants occurring in a datalog program P is denoted as adom(P)

ullet Given a database instance ${f I}$, we define the *active domain* of P with respect to I as

$$adom(P, \mathbf{I}) := adom(P) \cup adom(\mathbf{I}),$$

that is, as the set of constants occurring in P and ${\bf I}$

Definition. Let $\nu \colon var(r) \cup \mathbf{dom} \to \mathbf{dom}$ be a valuation for a rule r of form (1). Then the *instantiation* of r with ν , denoted $\nu(r)$, is the rule

$$R_0(\nu(\vec{x}_0)) \leftarrow R_1(\nu(\vec{x}_1)), \dots, R_n(\nu(\vec{x}_n))$$

which results from replacing each variable x with $\nu(x)$.

Datalog

Foundations of Databases

9

The Metro Example /2

- \bullet For the datalog program P above, we have that adom(P) = $\{$ Odeon $\}$
- We consider the database instance I:

links	line	station	nextstation	
	4	St.Germain	Odeon	
	4	Odeon	St.Michel	
	4	St. Michel	Chatelet	
	1	Chatelet	Louvres	
	1	Louvres	Palais-Royal Tuileries	
	1	Palais-Royal		
	1	Tuileries	Concorde	

Then $adom(\mathbf{I})=\{$ 4, 1, St.Germain, Odeon, St.Michel, Chatelet, Louvres, Palais-Royal, Tuileries, Concorde $\}$

• Also $adom(P, \mathbf{I}) = adom(\mathbf{I})$.

The Metro Example /3

• The rule

$$\begin{tabular}{lll} reach(St.Germain,Odeon) &\leftarrow &links(Louvres,St.Germain,Concorde),\\ && reach(Concorde,Odeon) \end{tabular}$$

is an instance of the rule

$$reach(X,Y) \leftarrow links(L,X,Z), reach(Z,Y)$$

of P:

take
$$\nu(X)$$
 = St.Germain, $\nu(L)$ = Louvres, $\nu(Y)$ = Odeon, $\nu(Z)$ = Concorde

Datalog

Foundations of Databases 11

Datalog: Model-Theoretic Semantics

General Idea:

- We view a program as a set of first-order sentences
- ullet Given an instance ${f I}$ of edb(P), the result of P is a database instance of sch(P) that extends ${f I}$ and satisfies the sentences (or, is a *model* of the sentences)
- There can be many models
- The intended answer is specified by particular models
- These particular models are selected by "external" conditions

Logical Theory Σ_P

• To every datalog rule r of the form $R_0(\vec{x}_0) \leftarrow R_1(\vec{x}_1), \ldots, R_n(\vec{x}_n)$, with variables x_1, \ldots, x_m , we associate the logical sentence $\sigma(r)$:

$$\forall x_1, \dots \forall x_m \left(R_1(\vec{x}_1) \wedge \dots \wedge R_n(\vec{x}_n) \to R_0(\vec{x}_0) \right)$$

ullet To a program P, we associate the set of sentences $\Sigma_P = \{\sigma(r) \mid r \in P\}$.

Definition. Let P be a datalog program and ${\bf I}$ an instance of edb(P). Then,

- ullet A *model* of P is an instance of sch(P) that satisfies Σ_P
- We compare models wrt set inclusion "⊆" (in the Logic Programming perspective)
- ullet The semantics of P on input ${\bf I}$, denoted $P({\bf I})$, is the least model of P containing ${\bf I}$, if it exists.

Datalog

Foundations of Databases

Example

For program P and instance ${f I}$ of the Metro Example, the least model is:

links	line	station	nextstation	reach		
	4	St.Germain	Odeon		St.Germain	St.Germain
	4	Odeon	St.Michel		Odeon	Odeon
	4	St. Michel	Chatelet			•
	1	Chatelet	Louvres		Concorde	Concorde
	1	Louvres	Palais-Royal		St.Germain	Odeon
	1	Palais-Royal	Tuileries		St.Germain	St.Michel
	1	Tuileries	Concorde		St.Germain	Chatelet
					St.Germain	Louvres
						•
answe	r l			•		

answer

Odeon
St.Michel
Chatelet
Louvres
Palais-Royal
Tuileries
Concorde

Questions

- ullet Is the semantics $P(\mathbf{I})$ well-defined for every input instance \mathbf{I} ?
- How can one compute $P(\mathbf{I})$?

Observation: For any ${f I}$, there is a model of P containing ${f I}$

• Let $\mathbf{B}(P,\mathbf{I})$ be the instance of sch(P) such that

$$\mathbf{B}(P,\mathbf{I})(R) = \left\{ \begin{array}{ll} \mathbf{I}(R) & \text{for each } R \in edb(P) \\ adom(P,\mathbf{I})^{arity(R)} & \text{for each } R \in idb(P) \end{array} \right.$$

- Then: $\mathbf{B}(P,\mathbf{I})$ is a model of P containing \mathbf{I} $\Rightarrow P(\mathbf{I})$ is a subset of $\mathbf{B}(P,\mathbf{I})$ (if it exists)
- ullet Naive algorithm: explore all subsets of ${f B}(P,{f I})$

Datalog

Foundations of Databases 15

Elementary Properties of $\overline{P}(\mathbf{I})$

Let P be a datalog program, ${\bf I}$ an instance of edb(P), and ${\cal M}({\bf I})$ the set of all models of P containing ${\bf I}$.

Theorem. The intersection $\bigcap_{M \in \mathcal{M}(\mathbf{I})} M$ is a model of P.

Corollary.

1.
$$P(\mathbf{I}) = \bigcap_{M \in \mathcal{M}(\mathbf{I})} M$$

- 2. $adom(P(\mathbf{I})) \subseteq adom(P,\mathbf{I})$, that is, no new values appear
- 3. $P(\mathbf{I})(R) = \mathbf{I}(R)$, for each $R \in edb(P)$.

Consequences:

- ullet $P(\mathbf{I})$ is well-defined for every \mathbf{I}
- ullet If P and ${f I}$ are finite, the $P({f I})$ is finite

Why Choose the Least Model?

There are two reasons to choose the least model containing ${f I}$:

- 1. The Closed World Assumption:
 - If a fact $R(\vec{c})$ is not true in all models of a database ${\bf I}$, then infer that $R(\vec{c})$ is false
 - This amounts to considering I as complete
 - ... which is customary in database practice
- 2. The relationship to Logic Programming:
 - Datalog should desirably match Logic Programming (seamless integration)
 - Logic Programming builds on the minimal model semantics

Datalog

Foundations of Databases 17

Relating Datalog to Logic Programming

- ullet A logic program makes no distinction between edb and idb
- ullet A datalog program P and an instance ${f I}$ of edb(P) can be mapped to the logic program

$$\mathcal{P}(P, \mathbf{I}) = P \cup \mathbf{I}$$

(where ${f I}$ is viewed as a set of atoms in the Logic Programming perspective)

Correspondingly, we define the logical theory

$$\Sigma_{P,\mathbf{I}} = \Sigma_P \cup \mathbf{I}$$

- The semantics of the logic program $\mathcal{P} = \mathcal{P}(P, \mathbf{I})$ is defined in terms of *Herbrand interpretations* of the language induced by \mathcal{P} :
 - The domain of discourse is formed by the constants occurring in ${\mathcal P}$
 - Each constant occurring in ${\mathcal P}$ is interpreted by itself

Herbrand Interpretations of Logic Programs

Given a rule r, we denote by $\mathit{Const}(r)$ the set of all constants in r

Definition. For a (function-free) logic program \mathcal{P} , we define

• the Herbrand universe of \mathcal{P} , by

$$\mathbf{HU}(\mathcal{P}) = \bigcup_{r \in \mathcal{P}} \mathit{Const}(r)$$

• the Herbrand base of \mathcal{P} , by

$$\mathbf{HB}(\mathcal{P}) = \{R(c_1,\ldots,c_n) \mid R \text{ is a relation in } \mathcal{P},$$

$$c_1,\ldots,c_n \in \mathbf{HU}(\mathcal{P}), \text{ and } ar(R) = n\}$$

Datalog

Foundations of Databases 19

Example

```
\begin{split} \mathcal{P} &= \{ & \text{arc}(\mathtt{a},\mathtt{b}). \\ & \text{arc}(\mathtt{b},\mathtt{c}). \\ & \text{reachable}(\mathtt{a}). \\ & \text{reachable}(\mathtt{Y}) \leftarrow \text{arc}(\mathtt{X},\mathtt{Y}), \text{reachable}(\mathtt{X}). \, \} \end{split} \begin{aligned} \mathbf{HU}(\mathcal{P}) &= & \{\mathtt{a},\mathtt{b},\mathtt{c}\} \\ \mathbf{HB}(\mathcal{P}) &= & \{\text{arc}(\mathtt{a},\mathtt{a}),\, \text{arc}(\mathtt{a},\mathtt{b}),\, \text{arc}(\mathtt{a},\mathtt{c}), \\ & \text{arc}(\mathtt{b},\mathtt{a}),\, \text{arc}(\mathtt{b},\mathtt{b}),\, \text{arc}(\mathtt{b},\mathtt{c}), \\ & \text{arc}(\mathtt{c},\mathtt{a}),\, \text{arc}(\mathtt{c},\mathtt{b}),\, \text{arc}(\mathtt{c},\mathtt{c}), \\ & \text{reachable}(\mathtt{a}),\, \text{reachable}(\mathtt{b}),\, \text{reachable}(\mathtt{c}) \} \end{aligned}
```

Grounding

- A rule r' is a *ground instance* of a rule r with respect to $\mathbf{HU}(\mathcal{P})$, if $r' = \nu(r)$ for a valuation ν such that $\nu(x) \in \mathbf{HU}(\mathcal{P})$ for each $x \in var(r)$.
- The *grounding* of a rule r with respect to $\mathbf{HU}(\mathcal{P})$, denoted $\mathit{Ground}_{\mathcal{P}}(r)$, is the set of all ground instances of r wrt $\mathbf{HU}(\mathcal{P})$
- ullet The *grounding* of a logic program ${\mathcal P}$ is

$$\mathit{Ground}(\mathcal{P}) = \bigcup_{r \in \mathcal{P}} \mathit{Ground}_{\mathcal{P}}(r)$$

Datalog

Foundations of Databases 21

Example

```
\begin{aligned} \textit{Ground}(\mathcal{P}) &= \{ \texttt{arc}(\mathtt{a},\mathtt{b}). \ \texttt{arc}(\mathtt{b},\mathtt{c}). \ \texttt{reachable}(\mathtt{a}). \\ &\quad \texttt{reachable}(\mathtt{a}) \leftarrow \texttt{arc}(\mathtt{a},\mathtt{a}), \texttt{reachable}(\mathtt{a}). \\ &\quad \texttt{reachable}(\mathtt{b}) \leftarrow \texttt{arc}(\mathtt{a},\mathtt{b}), \texttt{reachable}(\mathtt{a}). \\ &\quad \texttt{reachable}(\mathtt{c}) \leftarrow \texttt{arc}(\mathtt{a},\mathtt{c}), \texttt{reachable}(\mathtt{a}). \\ &\quad \texttt{reachable}(\mathtt{a}) \leftarrow \texttt{arc}(\mathtt{b},\mathtt{a}), \texttt{reachable}(\mathtt{b}). \\ &\quad \texttt{reachable}(\mathtt{b}) \leftarrow \texttt{arc}(\mathtt{b},\mathtt{b}), \texttt{reachable}(\mathtt{b}). \\ &\quad \texttt{reachable}(\mathtt{c}) \leftarrow \texttt{arc}(\mathtt{b},\mathtt{c}), \texttt{reachable}(\mathtt{b}). \\ &\quad \texttt{reachable}(\mathtt{a}) \leftarrow \texttt{arc}(\mathtt{c},\mathtt{a}), \texttt{reachable}(\mathtt{c}). \\ &\quad \texttt{reachable}(\mathtt{b}) \leftarrow \texttt{arc}(\mathtt{c},\mathtt{b}), \texttt{reachable}(\mathtt{c}). \end{aligned}
```

Herbrand Models

- ullet A Herbrand-interpretation I of ${\mathcal P}$ is any subset $I\subseteq {f HB}({\mathcal P})$
- ullet A $\it Herbrand-model$ of $\cal P$ is a Herbrand-interpretation that satisfies all sentences in $\Sigma_{P,{f I}}$

Equivalently, $M \subseteq \mathbf{HB}(\mathcal{P})$ is a Herbrand model if

ullet for all $r\in \mathit{Ground}(\mathcal{P})$ such that $B(r)\subseteq M$ we have that $H(r)\subseteq M$

Datalog

Foundations of Databases 23

Example

The Herbrand models of program ${\mathcal P}$ above are exactly the following:

- $M_1 = \{ arc(a,b), arc(b,c), \\ reachable(a), reachable(b), reachable(c) \}$
- $M_2 = \mathbf{HB}(\mathcal{P})$
- ullet every interpretation M such that $M_1\subseteq M\subseteq M_2$ and no others.

Logic Programming Semantics

- ullet Proposition. $HB(\mathcal{P})$ is always a model of \mathcal{P}
- **Theorem.** For every logic program there exists a least Herbrand model (wrt " \subseteq "). For a program \mathcal{P} , this model is denoted $\mathit{MM}(\mathcal{P})$ (for "minimal model"). The model $\mathit{MM}(\mathcal{P})$ is the semantics of \mathcal{P} .
- ullet Theorem (Datalog \leftrightarrow Logic Programming). Let P be a datalog program and ${f I}$ be an instance of edb(P). Then,

$$P(\mathbf{I}) = \mathit{MM}(\mathcal{P}(P, \mathbf{I}))$$

Datalog

Foundations of Databases 25

Consequences

Results and techniques for Logic Programming can be exploited for datalog. For example,

- proof procedures for Logic Programming (e.g., SLD resolution) can be applied to datalog (with some caveats, regarding for instance termination)
- datalog can be reduced by "grounding" to propositional logic programs

Fixpoint Semantics

Another view:

"If all facts in ${f I}$ hold, which other facts must hold after firing the rules in P?"

Approach:

- ullet Define an *immediate consequence operator* ${f T}_P({f K})$ on db instances ${f K}$.
- Start with K = I.
- ullet Apply \mathbf{T}_P to obtain a new instance: $\mathbf{K}_{new} := \mathbf{T}_P(\mathbf{K}) = \mathbf{I} \cup$ new facts.
- Iterate until nothing new can be produced.
- The result yields the semantics.

Datalog

Foundations of Databases 27

Immediate Consequence Operator

Let P be a datalog program and ${\bf K}$ be a database instance of sch(P).

A fact $R(ec{t})$ is an $\emph{immediate}$ consequence for \mathbf{K} and P, if either

- ullet $R \in edb(P)$ and $R(ec{t}) \in \mathbf{K}$, or
- \bullet there exists a ground instance r of a rule in P such that $H(r)=R(\vec{t})$ and $B(r)\subseteq \mathbf{K}.$

Definition. The $immediate\ consequence\ operator$ of a datalog program P is the mapping

$$\mathbf{T}_P \colon inst(sch(P)) \to inst(sch(P))$$

where

 $T_P(\mathbf{K}) = \{ A \mid A \text{ is an immediate consequence for } \mathbf{K} \text{ and } P \}.$

Example

Consider

```
P = \{ \quad \texttt{reachable(a)} \\ \quad \texttt{reachable(Y)} \leftarrow \texttt{arc(X,Y)}, \texttt{reachable(X)} \} where edb(P) = \{\texttt{arc}\} \text{ and } idb(P) = \{\texttt{reachable}\}. \mathbf{I} = \mathbf{K}_1 = \{\texttt{arc(a,b)}, \texttt{arc(b,c)}\} \\ \quad \mathbf{K}_2 = \{\texttt{arc(a,b)}, \texttt{arc(b,c)}, \texttt{reachable(a)}\} \\ \quad \mathbf{K}_3 = \{\texttt{arc(a,b)}, \texttt{arc(b,c)}, \texttt{reachable(a)}, \texttt{reachable(b)}\} \\ \quad \mathbf{K}_4 = \{\texttt{arc(a,b)}, \texttt{arc(b,c)}, \texttt{reachable(a)}, \texttt{reachable(b)}, \texttt{reachable(c)}\}
```

Datalog

Foundations of Databases 29

Example (cntd)

Then,

```
\begin{array}{lll} \mathbf{T}_P(\mathbf{K}_1) &=& \{ \mathtt{arc}(\mathtt{a},\mathtt{b}),\,\mathtt{arc}(\mathtt{b},\mathtt{c}),\mathtt{reachable}(\mathtt{a}) \} \;=\; \mathbf{K}_2 \\ \mathbf{T}_P(\mathbf{K}_2) &=& \{ \mathtt{arc}(\mathtt{a},\mathtt{b}),\,\mathtt{arc}(\mathtt{b},\mathtt{c}),\mathtt{reachable}(\mathtt{a}),\,\mathtt{reachable}(\mathtt{b}) \} \;=\; \mathbf{K}_3 \\ \mathbf{T}_P(\mathbf{K}_3) &=& \{ \mathtt{arc}(\mathtt{a},\mathtt{b}),\,\mathtt{arc}(\mathtt{b},\mathtt{c}),\mathtt{reachable}(\mathtt{a}),\,\mathtt{reachable}(\mathtt{b}),\,\mathtt{reachable}(\mathtt{c}) \} = \mathbf{K}_4 \\ \mathbf{T}_P(\mathbf{K}_4) &=& \{ \mathtt{arc}(\mathtt{a},\mathtt{b}),\,\mathtt{arc}(\mathtt{b},\mathtt{c}),\mathtt{reachable}(\mathtt{a}),\,\mathtt{reachable}(\mathtt{b}),\,\mathtt{reachable}(\mathtt{c}) \} = \mathbf{K}_4 \end{array}
```

Thus, \mathbf{K}_4 is a *fixpoint* of \mathbf{T}_P .

Definition. K is a *fixpoint* of operator T_P if $T_P(K) = K$.

Datalog

Properties

Proposition. For every datalog program P we have:

- 1. The operator T_P is monotonic, that is, $K \subseteq K'$ implies $T_P(K) \subseteq T_P(K')$;
- 2. For any $\mathbf{K} \in inst(sch(P))$ we have:

 ${\bf K}$ is a model of Σ_P if and only if ${\bf T}_P({\bf K})\subseteq {\bf K}$;

3. If $\mathbf{T}_P(\mathbf{K}) = \mathbf{K}$ (i.e., \mathbf{K} is a fixpoint), then \mathbf{K} is a model of Σ_P .

Note: The converse of 3. does not hold in general.

Datalog

Foundations of Databases 31

Datalog Semantics via Least Fixpoint

The semantics of P on database instance \mathbf{I} of edb(P) is a special fixpoint:

Theorem. Let P be a datalog program and ${f I}$ be a database instance. Then

- 1. \mathbf{T}_P has a least (wrt " \subseteq ") fixpoint containing \mathbf{I} , denoted $lfp(P, \mathbf{I})$.
- 2. Moreover, $lfp(P, \mathbf{I}) = MM(\mathcal{P}(P, \mathbf{I})) = P(\mathbf{I})$.

Advantage: Constructive definition of $P(\mathbf{I})$ by fixpoint iteration

Proof of Claim 2, first equality (Sketch): Let $M_1:=\mathit{lfp}(P,\mathbf{I})$ and $M_2:=\mathit{MM}(\mathcal{P}(P,\mathbf{I})).$

Since M_1 is a fixpoint of \mathbf{T}_P , it is a model of Σ_P , and since it contains \mathbf{I} it is a model of $\mathcal{P}(P,\mathbf{I})$. Hence, $M_2\subseteq M_1$. Since M_2 is a model of $\mathcal{P}(P,\mathbf{I})$, it holds that $\mathbf{T}_P(M_2)\subseteq M_2$. Note that for every model of $\mathcal{P}(P,\mathbf{I})$ we have, due to the monotonicity of \mathbf{T}_P , that $\mathbf{T}_P(M)$ is model. Hence, $\mathbf{T}_P(M_2)=M_2$, since M_2 is a minimal model. This implies that M_2 is a fixpoint, hence $M_1\subseteq M_2$.

Fixpoint Iteration

For a datalog program P and database instance \mathbf{I} , define the sequence $(\mathbf{I}_i)_{i\geq 0}$ by

$$\mathbf{I}_0 = \mathbf{I}$$

$$\mathbf{I}_i = \mathbf{T}_P(\mathbf{I}_{i-1}) \quad \text{ for } i > 0.$$

- ullet By monotoncity of ${f T}_P$, we have ${f I}_0\subseteq {f I}_1\subseteq {f I}_2\subseteq \cdots \subseteq {f I}_i\subseteq {f I}_{i+1}\subseteq \cdots$
- ullet For every $i\geq 0$, we have $\mathbf{I}_i\subseteq \mathbf{B}(P,\mathbf{I})$
- ullet Hence, for some integer $n \leq |\mathbf{B}(P,\mathbf{I})|$, we have $\mathbf{I}_{n+1} = \mathbf{I}_n$ (=: $\mathbf{T}_P^{\omega}(\mathbf{I})$)
- It holds that $\mathbf{T}_P^{\omega}(\mathbf{I}) = \mathit{lfp}(P, \mathbf{I}) = P(\mathbf{I}).$

This can be readily implemented by an algorithm.

Datalog

Foundations of Databases 33

Example

$$P = \{ & \texttt{reachable(a)} \\ \\ & \texttt{reachable(Y)} \leftarrow \texttt{arc(X,Y)}, \texttt{reachable(X)} \} \\ \\ & \mathbf{I} = \{ \texttt{arc(a,b)}, \, \texttt{arc(b,c)} \} \\ \\ \end{cases}$$

Then,

$$\begin{array}{rcl} \mathbf{I}_0 &=& \{\operatorname{arc}(\mathtt{a},\mathtt{b}),\,\operatorname{arc}(\mathtt{b},\mathtt{c})\} \\ \mathbf{I}_1 &=& \mathbf{T}_P^1(\mathbf{I}) &=& \{\operatorname{arc}(\mathtt{a},\mathtt{b}),\,\operatorname{arc}(\mathtt{b},\mathtt{c}),\operatorname{reachable}(\mathtt{a})\} \\ \mathbf{I}_2 &=& \mathbf{T}_P^2(\mathbf{I}) &=& \{\operatorname{arc}(\mathtt{a},\mathtt{b}),\,\operatorname{arc}(\mathtt{b},\mathtt{c}),\operatorname{reachable}(\mathtt{a}),\,\operatorname{reachable}(\mathtt{b})\} \\ \mathbf{I}_3 &=& \mathbf{T}_P^3(\mathbf{I}) &=& \{\operatorname{arc}(\mathtt{a},\mathtt{b}),\,\operatorname{arc}(\mathtt{b},\mathtt{c}),\operatorname{reachable}(\mathtt{a}),\,\operatorname{reachable}(\mathtt{b}),\,\operatorname{reachable}(\mathtt{c})\} \\ \mathbf{I}_4 &=& \mathbf{T}_P^4(\mathbf{I}) &=& \{\operatorname{arc}(\mathtt{a},\mathtt{b}),\,\operatorname{arc}(\mathtt{b},\mathtt{c}),\operatorname{reachable}(\mathtt{a}),\,\operatorname{reachable}(\mathtt{b}),\,\operatorname{reachable}(\mathtt{c})\} \\ &=& \mathbf{T}_P^3(\mathbf{I}) \end{array}$$

Thus, $\mathbf{T}_P^{\omega}(\mathbf{I}) = \mathit{lfp}(P, \mathbf{I}) = \mathbf{I}_4.$

Proof-Theoretic Approach

Basic idea: The answer of a datalog program P on \mathbf{I} is given by the set of facts which can be *proved* from P and \mathbf{I} .

Definition. A proof tree for a fact A from $\mathbf I$ and P is a labeled finite tree T such that

- ullet each vertex of T is labeled by a fact
- the root of T is labeled by A
- ullet each leaf of T is labeled by a fact in ${f I}$
- ullet if a non-leaf of T is labeled with A_1 and its children are labeled with A_2,\dots,A_n , then there exists a ground instance r of a rule in P such that $H(r)=A_1$ and $B(r)=\{A_2,\dots,A_n\}$

Datalog

Foundations of Databases 35

Example (Same Generation)

```
P = \{ \quad r_1: \quad \mathtt{sgc}(\mathtt{X}, \mathtt{X}) \leftarrow \mathtt{person}(\mathtt{X}) \\ r_2: \quad \mathtt{sgc}(\mathtt{X}, \mathtt{Y}) \leftarrow \mathtt{par}(\mathtt{X}, \mathtt{X}1), \mathtt{sgc}(\mathtt{X}1, \mathtt{Y}1), \mathtt{par}(\mathtt{Y}, \mathtt{Y}1) \, \} where edb(P) = \{\mathtt{person}, \mathtt{par}\} and idb(P) = \{\mathtt{sgc}\}
```

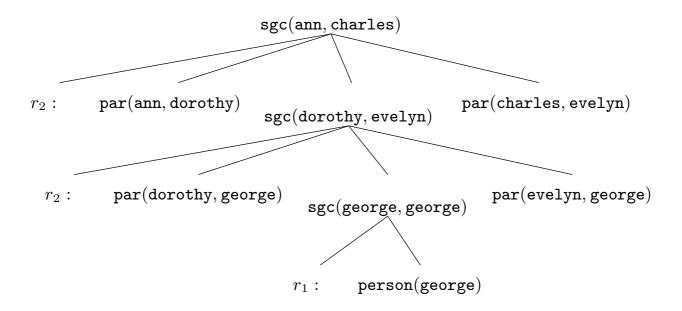
Consider I as follows:

$$\mathbf{I}(person) = \{ \langle ann \rangle, \langle bertrand \rangle, \langle charles \rangle, \langle dorothy \rangle, \\ \langle evelyn \rangle, \langle fred \rangle, \langle george \rangle, \langle hilary \rangle \}$$

$$\mathbf{I}(par) = \{ \langle dorothy, george \rangle, \langle evelyn, george \rangle, \langle bertrand, dorothy \rangle, \\ \langle ann, dorothy \rangle, \langle hilary, ann \rangle, \langle charles, evelyn \rangle \}.$$

Example (Same Generation)/2

Proof tree for A = sgc(ann, charles) from I and P:



Datalog

Foundations of Databases 37

Proof Tree Construction

Different ways to construct a proof tree for A from P and ${f I}$ exist

• Bottom Up construction: From leaves to root

Intimately related to fixpoint approach

- Define $S \vdash_P B$ to prove fact B from facts S if $B \in S$ or by a rule in P
- Give $S=\mathbf{I}$ for granted
- Top Down construction: From root to leaves

In Logic Programming view, consider program $\mathcal{P}(P, \mathbf{I})$.

– This amounts to a set of logical sentences $H_{\mathcal{P}(P,\mathbf{I})}$ of the form

$$\forall x_1 \cdots \forall x_m (R_1(\vec{x}_1) \vee \neg R_2(\vec{x}_2) \vee \neg R_3(\vec{x}_3) \vee \cdots \vee \neg R_n(\vec{x}_n))$$

– Prove $A=R(\vec{t})$ via resolution refutation, that is, that $H_{\mathcal{P}(P,\mathbf{I})}\cup\{\neg A\}$ is unsatisfiable.

Datalog and SLD Resolution

- Logic Programming uses SLD resolution
- SLD: Selection Rule Driven Linear Resolution for Definite Clauses
- For datalog programs P on \mathbf{I} , resp. $\mathcal{P}(P, \mathbf{I})$, things are simpler than for general logic programs (no function symbols, unification is easy)
- Also non-ground atoms can be handled (e.g., sgc(ann, X))

Let $SLD(\mathcal{P})$ be the set of ground atoms provable with SLD Resolution from \mathcal{P} .

Theorem. For any datalog program P and database instance \mathbf{I} ,

$$SLD(\mathcal{P}(P,\mathbf{I})) = P(\mathbf{I}) = \mathbf{T}_{\mathcal{P}(P,\mathbf{I})}^{\infty} = lfp(\mathbf{T}_{\mathcal{P}(P,\mathbf{I})}) = MM(\mathcal{P}(P,\mathbf{I}))$$

Datalog

Foundations of Databases 39

SLD Resolution – Termination

- Notice: Selection rule for next rule / atom to be considered for resolution might affect termination
- Prolog's strategy (leftmost atom / first rule) is problematic

Example:

```
\begin{split} & child\_of(karl,franz). \\ & child\_of(franz,frieda). \\ & child\_of(frieda,pia). \\ & descendent\_of(X,Y) \leftarrow child\_of(X,Y). \\ & descendent\_of(X,Y) \leftarrow child\_of(X,Z), descendent\_of(Z,Y). \\ & \leftarrow descendent\_of(karl,X). \end{split}
```

SLD Resolution – Termination /2

```
\begin{split} & child\_of(karl,franz). \\ & child\_of(franz,frieda). \\ & child\_of(frieda,pia). \\ & descendent\_of(X,Y) \leftarrow child\_of(X,Y). \\ & descendent\_of(X,Y) \leftarrow descendent\_of(X,Z), child\_of(Z,Y). \\ & \leftarrow descendent\_of(karl,X). \end{split}
```

Datalog

Foundations of Databases 41

SLD Resolution – Termination /3

```
\begin{split} & \text{child\_of}(\text{karl}, \text{franz}). \\ & \text{child\_of}(\text{franz}, \text{frieda}). \\ & \text{child\_of}(\text{frieda}, \text{pia}). \\ & \text{descendent\_of}(X, Y) \leftarrow \text{child\_of}(X, Y). \\ & \text{descendent\_of}(X, Y) \leftarrow \text{descendent\_of}(X, Z), \\ & \text{descendent\_of}(X, Y). \\ & \leftarrow \text{descendent\_of}(\text{karl}, X). \end{split}
```