
Foundations of Databases

Query Processing and Optimization

Free University of Bozen – Bolzano, 2009

Werner Nutt

(Most slides adapted from Thomas Eiter and Leonid Libkin)

Foundations of Databases 1

Query Processing and Optimization

• Query optimization: finding a good way to evaluate a query

• Queries are declarative, and can be translated into procedural languages in

more than one way

• Hence one has to choose the best (or at least good) procedural query

• This happens in the context of query processing

• A query processor turns queries and updates into sequences of operations on

the database

Query Processing and Optimization

Foundations of Databases 2

Query Processing and Optimization Stages

• Queries are translated into an extended relational algebra (operator + execution

method): Which algebra expressions will allow for an efficient execution?

• Algebraic operators can be implemented by different methods (Examples?):

Which algorithm should be used for each operator?

• How do operators pass data (write into main memory, write on disk, pipeline into

other operators)?

Issues:

• Translate the query into extended relational algebra (“query plans”)

• Esimate the execution of the plans: We need to know how data is stored, how it

accessed, how large are intermediate results, etc.

Decisions are based on general guidelines and statistical information

Query Processing and Optimization

Foundations of Databases 3

Overview of Query Processing

• Start with a declarative query:

SELECT R.A, S.B, T.E

FROM R,S,T

WHERE R.C=S.C AND S.D=T.D AND R.A>5 AND S.B<3 AND T.D=T.E

• Translate into an algebra expression:

πR.A,S.B,T.E(σR.A>5∧S.B<3∧T.D=T.E(R 1 S 1 T))

• Optimization step: rewrite to an equivalent but more efficient expression:

πR.A,S.B,T.E(σA>5(R) 1 σB<3(S) 1 σD=E(T)))

Why may this be more efficient? Is there a still more efficient plan?

Query Processing and Optimization

Foundations of Databases 4

Overview of Query Processing (contd)

• When evaluating an expression with pushed selections,

the main choice to make is the order of joins (may influence selections).

• First query plan (out of two):

R S T

A>5 B<3 D=E

A,B

first join S and T , and then join the result with R.

Query Processing and Optimization

Foundations of Databases 5

Overview of query processing (contd)

• Alternative query plan:

R S T

A>5 B<3 D=E

A,B

First join R and S, then join the result with T .

• Both query plans produce the same result (why?).

Query Processing and Optimization

Foundations of Databases 6

Why choose one and not the other?

Query Processing and Optimization

Foundations of Databases 7

Optimization by Algebraic Equivalences

• Given a relational algebra expression E, find another expression E′ equivalent

to E that is easier (faster) to evaluate.

• Basic question: Given two relational algebra expressions E1, E2, are they

equivalent?

• If there were a method to decide equivalence, we could turn it into one to decide

whether an expression E is empty, i.e., whether E(I) = ∅ for every instance I.

How does one show this?

• Problem: Testing whether E ≡ ∅ is undecidable for expressions of full relational

algebra i.e., including union and difference. (Any idea why?)

• Good news:

We can still list some useful equalities.

Equivalence is decidable for important classes of queries (SPJR, SPC)

Query Processing and Optimization

Foundations of Databases 8

Optimization by Algebraic Equivalences (cntd)

Systematic way of query optimization: Apply equivalences

• 1 and× are commutative and associative, hence applicable in any order

• Cascaded projections can be simplified: If the attributes A1, . . . , An are among

B1, . . . , Bm, then

πA1,...,An
(πB1,...,Bm

(E)) = πA1,...,An
(E)

• Cascaded selections might be merged:

σC1
(σC2

(E)) = σC1∧C2
(E)

• Commuting selection with join. If c only involves attributes from E1, then

σC(E1 1 E2) = σC(E1) 1 E2

• etc

We will not treat this here.

Query Processing and Optimization

Foundations of Databases 9

Optimization by Algebraic Equivalences (contd)

• Rules combining σ, π with ∪ and \

• Commuting selection and union:

σC(E1 ∪E2) = σC(E1) ∪ σC(E2)

• Commuting selection and difference:

σC(E1 \E2) = σC(E1) \ σC(E2)

• Commuting projection and union:

πA1,...,An(E1 ∪E2) = πA1,...,An(E1) ∪ πA1,...,An(E2)

• Question: what about projection and difference?

Is πA(E1 \E2) equal to πA(E1) \ πA(E2)?

Query Processing and Optimization

Foundations of Databases 10

Optimization of Conjunctive Queries

• Reminder:

Conjunctive queries

= SPJR queries

= simple SELECT-FROM-WHERE SQL queries

(only AND and (in)equality in the WHERE clause)

• Extremely common, and thus special optimization techniques have been

developed

• Reminder: for two relational algebra expressions E1, E2,

“E1 = E2” is undecidable.

• But for conjunctive queries, even E1 ⊆ E2 is decidable.

• Main goal of optimizing conjunctive queries: reduce the number of joins.

Query Processing and Optimization

Foundations of Databases 11

Optimization of Conjunctive Queries: An Example

• Given a relation R with two attributes A,B

• Two SQL queries:
Q1 Q2

SELECT DISTINCT R1.B, R1.A SELECT DISTINCT R3.A, R1.A

FROM R R1, R R2 FROM R R1, R R2, R R3

WHERE R2.A=R1.B WHERE R1.B=R2.B AND R2.B=R3.A

• Are they equivalent?

• If they are, we can save one join operation.

• In relational algebra:

Q1 = π2,1(σ2=3(R×R))

Q2 = π5,1(σ2=4∧4=5(R×R×R))

Query Processing and Optimization

Foundations of Databases 12

Optimization of Conjunctive Queries (contd)

• We will show that Q1 and Q2 are equivalent!

• We cannot do this by using our equivalences for relational algebra expression.

(Why?)

• Alternative idea: CQs are like patterns that have to be matched by a database. If

a CQ returns an answer over a db, a part of the db must “look like” the query.

• Use rule based notation to find a representation of part of the db:

Q1(x, y) :– R(y, x), R(x, z)

Q2(x, y) :– R(y, x), R(w, x), R(x, u)

Query Processing and Optimization

Foundations of Databases 13

Containment is a Key Property

Definition. (Query containment) A query Q is contained in a query Q′ (written

Q ⊆ Q′) if Q(I) ⊆ Q′(I) for every database instance I.

Translations:

• If we can decide containment for a class of queries, then we can also decide

equivalence.

• IfQ is a class of queries that is closed under intersection, then the containment

problem forQ can be reduced to the equivalence problem forQ.

Query Processing and Optimization

Foundations of Databases 14

Checking Containment of Conjunctive Queries: Ideas

• We want to check containment of two CQs Q, Q′

• We consider CQs without equalities and inequalities

(How serious is this restriction?)

• We also assume that Q and Q′ have the same arity and identical vectors of

head variables, that is, they are defined as Q(~x) :– B, Q′(~x) :– B′

• Intuition: a conjunctive query Q(~x) :– B returns an answer over instance I

if I “matches the pattern B”

• Instead of checking containment over all instances, we consider only finitely

many test instances (or better, one!)

Query Processing and Optimization

Foundations of Databases 15

Tableau Notation of Conjunctive Queries

• Tableaux notation blurs the distinction between query and database instance

• We first consider queries over a single relation

Q1(x, y) :– R(y, x), R(x, z)

Q2(x, y) :– R(y, x), R(w, x), R(x, u)

• Tableaux:

A B

y x

x z

x y ← answer line

A B

y x

w x

x u

x y ← answer line

• Variables in the answer line are called “distinguished”

Query Processing and Optimization

Foundations of Databases 16

Tableau Homomorphisms

• Tableaux (as well as database instances or first order structures) are compared

by homomorphisms

• Idea: T ′ is more general than T if there is a homomorphism from T ′ to T

• Reminder : Terms are variables or constants

• A homomorphism δ from Tableau T1 to tableau T2 is a mapping

δ : {variables of T1} → {terms of T2}

such that

– δ(x) = x for every distinguished x

– if (t1, ..., tk) is a row in T1, then (δ(t1), ..., δ(tk)) is a row in T2,

where δ is extended to constants such that δ(a) = a for every constant a

Query Processing and Optimization

Foundations of Databases 17

Tableaux for Queries with Multiple Relations

• So far we assumed that there is only one relation R, but what if there are many?

• Construct a tableau for the query:

Q(x, y):–S(x, y), R(y, z), R(y,w), R(w, y)

• We create rows for each relation:

S:
A B

x y
R:

A B

y z

y w

w y

x y

• Formally, a tableau is just a database where variables can appear in tuples, plus

a set of distinguished variables.

Query Processing and Optimization

Foundations of Databases 18

Tableaux Homomorphisms: General Case

• Let T1, T2 be tableaux with the same distinguished variables

• A homomorphism δ from T1 to T2 is a mapping

δ : {variables of T1} → {terms of T2}

such that

– δ(a) = a for every constant

– δ(x) = x for every distinguished variable

– if ~t is a row of R in T1, then δ(~t) is a row of R in T2, for every relation R

Query Processing and Optimization

Foundations of Databases 19

The Homomorphism Theorem for Tableaux

Homomorphism Theorem : Let Q, Q′ be two conjunctive queries without equalities

and inequalities that have the same distinguished variables and let T , T ′ be their

tableaux. Then

Q ⊆ Q′ ⇔ there exists a homomorphism from T ′ to T

Query Processing and Optimization

Foundations of Databases 20

Proof: Necessity

• Assume that Q ⊆ Q′

• Note that T , ignoring the declaration of distinguished variables, can be seen as

a database instance (if we view variables as constants)

• Note also that ~x ∈ Q(T)

• Since Q ⊆ Q′, it follows that ~x ∈ Q′(T)

• Since ~x ∈ Q′(T), there is a valuation ν′ such

– ν′ satisfies Q′ over T

– ν′(~x) = ~x

• Thus, we obtain a homomorphism δ′ from T ′ to T

by defining δ′(y) = ν′(y) for every variable y in Q′

Query Processing and Optimization

Foundations of Databases 21

Proof: Sufficiency

• Assume there is a hom δ′ from T ′ to T . We will show that Q ⊆ Q′

• We denote the body of Q as B and the body of Q′ as B′

• Let I be a db instance. We show that Q(I) ⊆ Q′(I)

• Let ~a ∈ Q(I). We show that ~a ∈ Q′(I)

• Since ~a ∈ Q(I), there is a valuation ν : var(Q)→ dom(I) such that

– ν satisfies B, the body of Q

(that is, “ν(B) ⊆ I” in logic programming perspective)

– ν(~x) = ~a

Query Processing and Optimization

Foundations of Databases 22

Proof: Sufficiency (cntd.)

• Let ν′ := ν ◦ δ. Then ν′ is a valuation for Q′

• Moreover, if R(~t) is an atom of B′, then

– δ(R(~t)) = R(δ(~t)) is an atom of B, since δ is a homomorphism, and

– ν′(R(~t)) = ν(R(δ(~t))) is an atom in I, since ν satisfies B over I,

that is, ν′(R(~t)) is an atom in I

• In summary, since R(~t) was arbitrary, we have that ν′(B′) ⊆ I, that is,

ν′ satisfies B′ over I

• Also ν′(~x) = ν(δ(~x)) = ν(~x) = ~a

• Hence, ~a ∈ Q′(I)

Query Processing and Optimization

Foundations of Databases 23

Applying the Homomorphism Theorem: Q1 ≡ Q2

A B

y x

x z

x y

A B

y x

w x

x u

T1 T2

x y

A B

y x

x z

x y

A B

y x

w x

x u

T1 T2

x y

f(x)=x, f(y)=y

f(u)=z, f(w)=y

Hence Q1 Q2

f(x)=x, f(y)=y

f(z)=u

Hence Q2 Q1

Query Processing and Optimization

Foundations of Databases 24

Query Containment: Exercise

Find all containments and equivalences among the following conjunctive queries:

q1(x, y) :– r(x, y), r(y, z), r(z,w)

q2(x, y) :– r(x, y), r(y, z), r(z, u), r(u,w)

q3(x, y) :– r(x, y), r(z, u), r(v,w), r(x, z), r(y, u), r(u,w)

q4(x, y) :– r(x, y), r(y, 3), r(3, z), r(z,w)

Query Processing and Optimization

Foundations of Databases 25

Query Containment: Complexity

Given two conjunctive queries, how hard is it to test whether Q ⊆ Q′?

• It is easy to transform them into tableaux, from either SPJ relational algebra

queries, or SQL queries, or rule-based queries.

• However, a polynomial algorithm for deciding “equivalence” is unlikely to exist:

Theorem. Given two tableaux, deciding the existence of a homomorphism between

them is NP-complete.

Proof Ideas: Reductions of graph problems like Hamiltonian Path or Clique.

Also, reduction of 3SAT. (This one is interesting, because it can be modified to

prove that containment is harder for generalisations of conjunctive queries, such

as CQs with comparisons or CQs over databases with nulls.)

• In practice, query expressions are small, and thus conjunctive query optimization

is nonetheless feasible in polynomial time

Query Processing and Optimization

Foundations of Databases 26

The 3-Colorability Problem

Instance: A graph G = (V,E)

Question: Can G be colored with the three colours { r, g, b } in such a way that

two adjacent vertices have a distinct colour?

The 3-colorability problem is NP-hard

Observation:

A graph G is 3-colourable if and only if there is a graph homomorphism from

G to the simplex S3, which consists of of three vertices that are connected

to each other.

Query Processing and Optimization

Foundations of Databases 27

Reduction of 3-Colorability to Containment

• Given graph G = (V,E), where

– V = { v1, . . . , vn } and

– E = { (vil , vjl
) | il < jl, 1 ≤ l ≤ m }

• We construct queries Q, Q′ as follows

– Q() :– e(r, b), e(b, r), e(r, g), e(g, r), e(b, g), e(g, b)

– Q′() :– e(xi1 , xj1), . . . , e(xim , xjm)

where x1, . . . , xn are new variables and

there is one atom e(xil , xjl
) for each edge (vil , vjl

) ∈ E

• Clearly, Q ⊆ Q′ if and only if there is a graph homomorphism from G to S3

Query Processing and Optimization

Foundations of Databases 28

Minimizing Conjunctive Queries

Goal: Given a conjunctive query Q, find an equivalent conjunctive query Q′ with the

minimum number of joins.

Questions: How many such queries can exist? How different are they?

Assumption: We consider only CQs without equalities and inequalities.

We call these queries simple conjunctive queries (SCQs) .

If nothing else is said in this chapter, CQs are simple CQs

Terminology: If

Q(~x) :– R1(~u1), . . . , Rk(~uk)

is a CQ, then Q′ is a subquery of Q if Q′ is of the form

Q′(~x) :– Ri1(~ui1), . . . , Ril(~uil)

where 1 ≤ i1 < i2 < . . . < il ≤ k.

Query Processing and Optimization

Foundations of Databases 29

Minimization: Background Theory

Proposition 1. Let q be a SCQ with n atoms and q′ be an equivalent SCQ with m

atoms where m < n. Then there exists a subquery q0 of q such that q0 has at most

m atoms in the body and q0 is equivalent to q.

Proposition 2. Let q and q′ be two equivalent minimal SCQs. Then q and q′ are

identical up to renaming of variables.

Conclusions:

• There is essentially one minimal version of each SCQ Q.

• We can obtain it by dropping atoms from Q’s body.

Query Processing and Optimization

Foundations of Databases 30

An Algorithm for Minimizing SCQs

Given a conjunctive query Q, transform it into a tableau T .

Minimization algorithm:

T ′ := T ;

repeat until no change

choose a row ~t in T ′;

if there is a homomorphism δ : T ′ → T ′ \ {~t}

then T ′ := T ′ \ {~t}

end

Output: The query Q′ corresponding to the tableau T ′

Query Processing and Optimization

Foundations of Databases 31

Questions about the Algorithm

• Does it terminate?

• Is Q′ equivalent to Q?

• Is Q′ of minimal length among the queries equivalent to Q?

Query Processing and Optimization

Foundations of Databases 32

Minimizing SPJ/Conjunctive Queries: Example

• R with three attributes A,B,C

• SPJ query

Q = πAB(σB=4(R)) 1 πBC(πAB(R) 1 πAC(σB=4(R)))

• Translate into relational calculus (instead of normalizing):
`

∃z1 R(x, y, z1)∧y = 4
´

∧ ∃x1

“

`

∃z2 R(x1, y, z2)
´

∧
`

∃y1 R(x1, y1, z)∧y1 = 4
´

”

• Simplify, by substituting the constant, and putting quantifiers forward:

∃x1, z1, z2 (R(x, 4, z1) ∧R(x1, 4, z2) ∧R(x1, 4, z) ∧ y = 4)

• Conjunctive query:

Q(x, y, z) :–R(x, 4, z1), R(x1, 4, z2), R(x1, 4, z), y = 4

Query Processing and Optimization

Foundations of Databases 33

Minimizing SPJ/Conjunctive Queries (contd)

• Tableau T :

A B C

x 4 z1

x1 4 z2

x1 4 z

x 4 z

• Minimization, step 1: Is there a homomorphism from T to

A B C

x1 4 z2

x1 4 z

x 4 z

?

• Answer: No. For any homomorphism δ, we have δ(x) = x (why?), thus the image of

the first row is not in the smaller tableau.

Query Processing and Optimization

Foundations of Databases 34

Minimizing SPJ/Conjunctive Queries (contd)

• Step 2: Is T equivalent to

A B C

x 4 z1

x1 4 z

x 4 z

?

• Answer: Yes. Homomorphism δ: δ(z2) = z, all other variables stay the same.

• The new tableau is not equivalent to

A B C

x 4 z1

x 4 z

or

A B C

x1 4 z

x 4 z

• Because δ(x) = x, δ(z) = z, and the image of one of the rows is not present.

Query Processing and Optimization

Foundations of Databases 35

Minimizing SPJ/Conjunctive Queries (contd)

• Minimal tableau:

A B C

x 4 z1

x1 4 z

x 4 z

• Back to conjunctive query:

Q′(x, y, z) :– R(x, y, z1), R(x1, y, z), y = 4

• An SPJ query:

σB=4(πAB(R) 1 πBC(R))

• Pushing selections:

πAB(σB=4(R)) 1 πBC(σB=4(R))

Query Processing and Optimization

Foundations of Databases 36

Review of the Journey

• We started with

πAB(σB=4(R)) 1 πBC(πAB(R) 1 πAC(σB=4(R)))

• Translated into a conjunctive query

• Built a tableau and minimized it

• Translated back into conjunctive query and SPJ query

• Applied algebraic equivalences and obtained

πAB(σB=4(R)) 1 πBC(σB=4(R))

• Savings: one join.

Query Processing and Optimization

Foundations of Databases 37

Minimization of Conjunctive Queries: Multiple Relations

• We consider again the query:

Q(x, y):–B(x, y), R(y, z), R(y,w), R(w, y)

• The tableau was:

B:
A B

x y
R:

A B

y z

y w

w y

x y

Query Processing and Optimization

Foundations of Databases 38

Minimization with Multiple Relations

• The algorithm is the same as before, but one has to try rows in different

relations. Consider the homomorphism where δ(z) = w, and δ is the identity

for all other variables. Applying this to the tableau for Q yields

B:
A B

x y
R:

A B

y w

w y

x y

• This can’t be further reduced, as for any homomorphism δ, δ(x)= x, δ(y)= y.

• Thus Q is equivalent to

Q′(x, y) :– B(x, y), R(y, w), R(w, y)

• One join is eliminated.

Query Processing and Optimization

Foundations of Databases 39

Conjunctive Queries with Equalities and Disequalities

• Equality/Disequality atoms x = y, x = a, x 6= z, etc

• Let T , T ′ be the tableaux of the parts of conjunctive queries Q and Q′ with

ordinary relations

• Sufficiency: Q ⊆ Q′ if there exists a homomorphism δ : T ′ → T such that for

each (dis)equality atom t1θt2 in Q′, we have that δ(t1)θδ(t2) is logically

implied by the equality and disequality atoms in Q

• However, existence of a homomorphims is no more a necessary condition for

containment.

• It holds under certain conditions, though.

Note: Deciding whether a set of equality/disequality atoms A logically implies an

equality/disequality atom is (relatively) easy.

Query Processing and Optimization

Foundations of Databases 40

Queries with Comparisons

For queries with comparison atoms s ≤ t we have to refine our semantics

• An ordered domain is a nonempty setD with a linear order (written “≤D”)

• LetD be fixed. Wlog, dom = D. That is, from now on, database instances

have constants from D.

• Real database languages support many domains, ordered and not ordered, by

typing relation symbols and admitting only queries that are well-typed.

Query Processing and Optimization

Foundations of Databases 41

Queries with Comparisons (ctnd)

We consider conjunctive queries

Q(~s) :– R,C

• with tuples of terms in the head

• whose bodies consist of a set of relational atoms R

and a set of comparisons C

• whose constants are elements ofD

• whose comparisons are interpreted overD

The semantics of such queries is defined in a straightforward manner

Query Processing and Optimization

Foundations of Databases 42

Queries with Comparisons: Examples

Q(x) :– P (x,w), P (x, x), R(x, u), w ≥ 5, x ≤ 2

Q′(x) :– P (x, y), R(y, z), y ≤ 3

How can we determine containment?

Query Processing and Optimization

Foundations of Databases 43

Query Homomorphism: Definition

Instead of tableau homomorphims, one often defines query homomorphisms.

An homomorphism from Q′(~x) :– R′, C′

to

Q(~x) :– R, C

is a substitution δ such that

• δ(~x) = ~x

• δ(R′) ⊆ R

• C |= δ(C ′).

Here, δ(~x), δ(R′) and δ(C ′) are the extensions of δ to complex syntactic entities.

Note that we view R, R′, C , and C ′ as sets of atoms.

How should we have to define “ |= ”?

Query Processing and Optimization

Foundations of Databases 44

Query Homomorphism: Example

Q′(x) :– P (x, y), R(y, z),

y ≤ 3

Q(x) :– P (x,w), P (x, x), R(x, u),

w ≥ 5, x ≤ 2

An homomorphism from Q′ to Q is

δ(x) = x, δ(y) = x, δ(z) = u.

Query Processing and Optimization

Foundations of Databases 45

Homomorphisms: The General Case

Existence of a homomorphism is not a necessary, but a sufficient condition for

containment.

Theorem: Let Q, Q′ be two conjunctive queries, possibly with comparisons and

inequalities, such that Q and Q′ have the same distinguished variables. Then

Q ⊆ Q′ if there exists a homomorphism from Q′ to Q.

Query Processing and Optimization

Foundations of Databases 46

Containment of Queries with Comparisons

Classical example:

Q′() :– P (u, v), u ≤ v

Q() :– P (y, z), P (z, y)

• Q is contained in Q′,

• but there is no homomorphism from Q′ to Q.

Query Processing and Optimization

Foundations of Databases 47

Checking Containment of Queries with Comparisons: Idea

Q′() :– P (u, v), u ≤ v

Q() :– P (y, z), P (z, y)

Replace Q with an equivalent union of queries:

Q{ y<z }() :– P (y, z), P (z, y), y < z

Q{ y=z }() :– P (y, z), P (z, y), y = z

Q{ y>z }() :– P (y, z), P (z, y), y > z

(Case Analysis)

Check whether Qi ⊆ Q′ for all Qi

Query Processing and Optimization

Foundations of Databases 48

Linearizations

We now make this idea formal.

• LetD be an ordered domain, D be a set of constants from D, W be a set of

variables, and let T := D ∪W denote their union.

• A linearization of T overD is a set of comparisons L over the terms in T such

that for any s, t ∈ T exactly one of the following holds:

– L |=D s < t

– L |=D s = t

– L |=D s > t.

• L partitions the terms into classes such that

(i) the terms in each class are equal and

(ii) the classes are arranged in a strict linear order

Query Processing and Optimization

Foundations of Databases 49

Linearizations (cntd)

• Remark: A class of the induced partition contains at most one constant

• Remark: Whether or not L is a linearization may depend on the domain.

Consider e.g.,

{ 1 < x, x < 2 }

• A linearization L of T overD is compatible with a set of comparisons C if

L ∪ C is satisfiable overD

Query Processing and Optimization

Foundations of Databases 50

Linearizations of Conjunctive Queries

• When checking containment of two queries, we have to consider linearizations

that contains the constants of both queries

• Let

Q(~s) :– R, C

be a query with

– set of comparisons C ranging over I

– W be the set of variables occurring in q

– D be a set of constants from I that comprise the constants of q

• Then we denote with LD(Q) the set of all linearizations of D ∪W that are

compatible with the comparisons C of Q

Query Processing and Optimization

Foundations of Databases 51

Linearizations of Conjunctive Queries (cntd)

Let Q be as above. Let L be a linearization of T = D ∪W compatible with C .

• Note: L defines an equivalence relation on T , where each equivalence class

contains at most one constant

• A substitution φ is canonical for L if

– it maps all elements in an equivalence class of L to one term of that class

– if a class contains a constant, then it maps the class to that constant.

• Then QL is obtained from Q by means of a canonical substitution φ for L as

QL(φ(~s)) :– φR, φL,

that is,

– we first replace C with L

– and then “eliminate” all equalities by applying φ

Query Processing and Optimization

Foundations of Databases 52

Linearizations of Conjunctive Queries (cntd)

Consider

QL(φ(~s)) :– φR, φL,

• We call QL a linearization of q w.r.t. L

• There may be more than one linearization of q w.r.t. L, but all linearizations are

identical up to renaming of variables

• Note that φ is a homomorphism from q to QL

Query Processing and Optimization

Foundations of Databases 53

Linear Expansions

• A linear expansion of q over D is a family of queries (QL)L∈LD(Q), where

each QL is a linearization of q w.r.t. L.

• If Q and D are clear from the context, or do not matter, we write simply (QL)L.

Query Processing and Optimization

Foundations of Databases 54

Containment of Queries with Comparisons

Theorem (Klug 88): If

– Q, Q′ are conjunctive queries with comparisons overD

with set of constants D

– (QL)L is a linear expansion of Q over D,

then:

Q ⊆ Q′ ⇔ for every QL in (QL)L,

there is an homomorphism from Q′ to QL

Theorem (van der Meyden 92): Containment with comparisons is ΠP
2 -complete.

Query Processing and Optimization

Foundations of Databases 55

Query Optimization and Functional Dependencies

• Additional equivalences hold if db instances satisfy integrity constraints

• We consider here functional dependencies

• Example: Let R have attributes A,B,C . Assume that I(R) satisfies A→ B.

• Then it holds that

(πAB(R) 1 πAC(R))(I) = R(I)

(We have considered the expressions πAB(R) 1 πAC(R) and R as queries.)

• Tableaux can help with these optimizations!

• πAB(R) 1 πAC(R) as a conjunctive query:

Q(x, y, z) :– R(x, y, z1), R(x, y1, z)

Query Processing and Optimization

Foundations of Databases 56

Query Optimization and Functional Dependencies (contd)

• Tableau:

A B C

x y z1

x y1 z

x y z

• Using the FD A→ B infer y = y1

• Next, minimize the resulting tableau:

A B C

x y z1

x y z

x y z

→

A B C

x y z

x y z

• And this says that the query is equivalent to Q′(x, y, z):–R(x, y, z), that is, R

• This is known as the “chase” technique

Query Processing and Optimization

Foundations of Databases 57

Query Optimization and Functional Dependencies (contd)

• General idea: simplify the tableau using functional dependencies and then

minimize.

• Given: a conjunctive query Q, and a set of FDs F

• Algorithm:

Step 1. Construct the tableau T for Q

Step 2. Apply algorithm CHASE(T, F)

Step 3. Minimize output of CHASE(T, F)

Step 4. Construct a query from the tableau produced in Step 3

Query Processing and Optimization

Foundations of Databases 58

The CHASE

We assume that all FDs are of the form X → A, where A is a single attribute. For

simplicity, we also assume that the tableau has only a single relation. The

generalisation is straightforward.

for each X → A in F do

for each t1, t2 in T such that t1.X = t2.X and t1.A 6= t2.A do

case t1.A, t2.A of

one nondistinguished variable⇒

replace the nondistinguished variable by the other term

one distinguished variable, one distinguished variable or constant⇒

replace the distinguished variable by the other term

two constants⇒

output⊥ and STOP

end

end.

Query Processing and Optimization

Foundations of Databases 59

Query Optimization and Functional Dependencies: Example 2

• R is over A,B,C ; F = {B → A }

• Q = πBC(σA=4(R)) 1 πAB(R)

• Q as a conjunctive query:

Q(x, y, z) :– R(4, y, z), R(x, y, z1)

• Tableau:

A B C

4 y z

x y z1

x y z

CHASE
→

A B C

4 y z

4 y z1

4 y z

minimize
→

A B C

4 y z

4 y z

• Final result: Q(x, y, z) :– R(x, y, z), x = 4, that is, σA=4(R).

Query Processing and Optimization

Foundations of Databases 60

Query Optimization and Functional Dependencies: Example 3

• Same R and F ; the query is:

Q = πBC(σA=4(R)) 1 πAB(σA=5(R))

• As a conjunctive query:

Q(x, y, z) :– R(4, y, z), R(x, y, z1), x = 5

• Tableau:

A B C

4 y z

5 y z1

5 y z

CHASE
→ ⊥

• Final result: ⊥ (the empty query)

• This equivalence does not hold without the FD B → A

Query Processing and Optimization

Foundations of Databases 61

Query Optimization and Functional Dependencies: Example 4

• Sometimes simplifications are quite dramatic

• Same R, FD is A→ B, the query is

Q = πAB(R) 1 πA(σB=4(R)) 1 πAB(πAC(R) 1 πBC(R))

• Convert into conjunctive query:

Q(x, y) :– R(x, y, z1), R(x, y1, z), R(x1, y, z), R(x, 4, z2)

Query Processing and Optimization

Foundations of Databases 62

Query Optimization and Functional Dependencies: Example 4 (contd)

• Tableau:

A B C

x y z1

x y1 z

x1 y z

x 4 z2

x y

CHASE
→

A B C

x 4 z1

x 4 z

x1 4 z

x 4 z2

x 4

minimize
→

A B C

x 4 z

x 4

Query Processing and Optimization

Foundations of Databases 63

Query Optimization and Functional Dependencies: Example 4 (contd)

•

A B C

x 4 z

x 4

is translated into Q(x, y) :– R(x, y, z), y = 4

• or, equivalently πAB(σB=4(R)).

• Thus,

πAB(R) 1 πA(σB=4(R)) 1 πAB(πAC(R) 1 πBC(R)) = πAB(σB=4(R))

in the presence of FD A→ B.

• Savings: 3 joins!

• This cannot be derived by algebraic manipulations, nor conjunctive query

minimization without using CHASE.

Query Processing and Optimization

Foundations of Databases 64

Questions about the CHASE

• Does the CHASE algorithm terminate? What is the run time?

• What is the relation between a tableau and its CHASE’d version?

• Query containment wrt a set of FD’s:

– How can we define this problem?

– Can we decide this problem?

• Query minimsation wrt to a set of FDs

• Consider SCQs: we know from previous exercises that all such queries are

satisfiable. Is the same true if we assume only database instances that satisfy a

given set of FDs F?

Query Processing and Optimization

