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Satisfiability, implication, and equivalence problems involving conjunctive inequalities are important
and widely encountered database problems that need to be efficiently and effectively processed. In this
article we consider two popular types of arithmetic inequalities, (X op Y) and (X op C), where X and Y
are attributes, C is a constant of the domain or X, and op [ {,, #, 5, Þ, ., $}. These inequalities are
most frequently used in a database system, inasmuch as the former type of inequality represents a
u—join, and the latter is a selection. We study the satisfiability and implication problems under the
integer domain and the real domain, as well as under two different operator sets ({,, #, 5, $, .} and
{,, #, 5, Þ, $, .}). Our results show that solutions under different domains and/or different operator
sets are quite different. Out of these eight cases, excluding two cases that had been shown to be
NP-hard, we either report the first necessary and sufficient conditions for these problems as well as
their efficient algorithms with complexity analysis (for four cases), or provide an improved algorithm
(for two cases). These iff conditions and algorithms are essential to database designers, practitioners,
and researchers. These algorithms have been implemented and an experimental study comparing the
proposed algorithms and those previously known is conducted. Our experiments show that the
proposed algorithms are more efficient than previously known algorithms even for small input.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—query pro-
cessing; I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving—deduction; I.1.2.
[Algebraic Manipulation]: Algorithms—analysis of algorithms; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and Problems—complexity of
proof procedure

General Terms: Algorithms, Theory, Language

Additional Key Words and Phrases: Deduction, reasoning, satisfiabilty, implication, equiva-
lence

1. INTRODUCTION

Efficiently and effectively solving the satisfiability problem (whether there
exists a contradiction in a formula consisting of conjunctive inequalities)
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and the implication problem (whether one formula implies another for-
mula) is central to many database problems. Examples of the database
application areas involving such problems are distributed query processing
where relations are horizontally fragmented based on selections [Yu and
Chang 1984; Ceri and Pelagatti 1984; Meghini and Thanos 1991; Shasha
and Wang 1991; Ullman 1989], global query optimization (optimizing a
group of queries by identifying common subexpressions) [Jarke and Koch
1984; Kim 1984; Sellis 1986], enforcing inference or data consistency
(testing the applicability of rules, constraints, or triggers) [Chakravarthy et
al. 1990; King 1981; Sun and Yu 1994; Yu and Sun 1989], updating
databases through views (computing queries from derived relations and
views) [Astrahan et al. 1976; Blakeley et al. 1986a, 1986b], and evaluating
queries in deductive database or logic-based systems [Ullman 1989], among
many others.
The following definitions formally define the problems.

Definition 1.1 An inequality is of the form either (X op Y) or (X op C),
where C is a constant of the domain of X, X and Y are attributes/variables
of the integer domain or the real domain, and op [ {,, #, 5, ., $, Þ}. An
unequality is an inequality involving the operator Þ.

These two basic types of inequalities are quite representative in rela-
tional and deductive database systems. In fact, the inequalities of the first
type specify u—joins, and the inequalities of the second type are selections.

Definition 1.2 A formula can be recursively defined as follows: true and
false are formulae; an inequality is a formula; A ∧ B (i.e., A and B) is a
formula if A and B are formulae; A ∨ B (i.e., A or B) is a formula if A and
B are formulae; ¬A (i.e., the negation of A) is a formula if A is a formula;
(A) is a formula if A is a formula; nothing else is a formula. “∨” and “∧” are
called connectives. A formula is normalized if it contains neither parenthe-
ses nor negations.

It is clear that a formula can always be equivalently transformed into
normalized form. In this study we therefore assume a formula is normal-
ized without losing generality.

Definition 1.3 {C1/X1, C2/X2, . . . , Cn/Xn} is said to be an assignment
for a formula if every occurrence of Xi in the formula is simultaneously
replaced by Ci, 1 # i # n.

An assignment satisfies a formula if and only if the formula evaluates
true under the assigned values. There exists a contradiction in a formula if
and only if there does not exist an assignment that satisfies the formula. In
the latter case, we also say the formula is unsatisfiable.

Example 1.1 The formula ((X , 9) ∧ (X . 3) ∧ (Y 5 1)) is satisfiable,
because the assignment {4/X, 1/Y} satisfies the formula; the formula
((X , 3) ∧ (X . 1) ∧ (X Þ 2)) is satisfiable if the domain is real, but
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unsatisfiable if the domain of X is integer; and the formula ((X , 3) ∨
(X . 1)) is a tautology, because it evaluates true under any assignment.

In this article we only focus on conjunctive formulae. Solutions to
problems involving disjunctive formulae are generally more difficult.
Throughout this study, let S and T be two conjunctive formulae. S and T
are also considered to be two sets of inequalities in order to simplify our
presentation, where conjunctions among set members (inequalities) are
assumed. There are three problems to be studied: implication, satisfiabil-
ity, and equivalence as defined in the following.

Definition 1.4 Implication. S implies T, denoted as S f T, if and only
if every assignment that satisfies S also satisfies T.

Satisfiability/Contradiction. S is satisfiable if and only if there exists
at least one assignment for S that satisfies S. Otherwise, there is a
contradiction in S.

Equivalence. S and T are equivalent if and only if S implies T and T
implies S.

Because the equivalence between S and T is defined on the basis of
implication between S and T, it is sufficient for us to study only the
implication and satisfiability problems. We are interested in identifying the
most efficient algorithms for these problems. We study these problems
under different restrictions, and the following are the major types of
restrictions that can be placed:

Operator Set. Operators of inequalities can be put into two different
groups: OP¬Þ '

def {,, #, 5, $, .} or OPall '
def {,, #, 5, Þ, $, .}, where

'
def stands for “defined as.”

Problems with inequalities involving OP¬Þ are likely to be solved more
efficiently, whereas problems with inequalities involving OPall are usually
more difficult to solve. The intuition as to why there exists such a
difference is that Þ is basically a sort of negation, whereas in logic,
negations introduce complexity of solutions. By applying the following
equivalence transformations, the operator set can be further reduced.

~X 5 C! ; ~X # C! ∧ ~X $ C!; ~X , C! ; ~X # C! ∧ ~X Þ C!;

~X . C! ; ~X $ C! ∧ ~X Þ C!; ~X 5 Y! ; ~X # Y! ∧ ~X $ Y!;

~X , Y! ; ~X # Y! ∧ ~X Þ Y!; ~X . Y! ; ~X $ Y! ∧ ~X Þ Y!.

Due to the conjunction of inequalities, OP¬Þ and OPall can be equivalently
reduced to: OP¬Þ '

def {,, #, $, .}, and OPall '
def {#, Þ, $}. The

equivalence is in the sense that applying these transformations does not
change the size of a formula in big-O notation.

272 • S. Guo et al.

ACM Transactions on Database Systems, Vol. 21, No. 2, June 1996.



Variables/Constants Domains. We assume that all variables and con-
stants will have the same type of domains (either integer or real). The
general satisfiability and implication problems in the integer domain have
been shown to be NP-hard [Rosenkrantz and Hunt 1980]. However, the
study of these problems under the real domain has not been addressed in
the literature. As we found in this study, solutions to the problems under
the real domain differ significantly from those under the integer domain.

In this article, we study “Is S satisfiable?” and “Does S imply T?” We
assume that any variable in T, say X, is also included in the variables of S,
unless X appears in inequalities (X op X) [ T only (in this case, the
inequality must be either a tautology that can be removed or a contradic-
tion that makes the formula unsatisfiable). The sizes of S and T (the
number of inequalities of S and T, denoted as uS u and uT u, respectively) are
used as the basic measurement of the problem size. We also assume that
accessing a variable only takes constant time. The similar assumption has
been widely adopted in analyses of algorithms.1 In addressing the implica-
tion problem, we assume that the same restriction or assumption is applied
to both S and T simultaneously. We elect not to discuss situations where S
and T have different restrictions (because it is rather unlikely that such a
situation exists in practice) and the explosion of the combinations of
different situations.
The rest of this article is organized as follows: in Section 2 a comparison

with previous results is made after we briefly review the previous work.
Our contributions are pointed out. The relationship among algorithms for
solving satisfiability and implications problems is also provided. Section 3
discusses the satisfiability problem, and Section 4 addresses the implica-
tion problem. In Section 5, we provide a C11 implementation and experi-
mental results. Finally, we conclude this study in Section 6.

2. RELATED WORK AND OUR CONTRIBUTIONS

Because solving the satisfiability and implication problems is central to
database systems, these problems have received fairly intensive studies.2

Rosenkrantz and Hunt [1980] discuss the satisfiability and equivalence
of conjunctive mixed predicates containing inequalities of the form (X op
C), (X op Y), or (X op Y 1 C), where only the integer domain is assumed.
In that paper, the general satisfiability and implication problems (op is
OPall) are shown to be NP-hard in the integer domain. An O( uS u3) algo-
rithm is also given for the restrictive satisfiability and implications prob-
lems where “Þ” is not allowed (op is OP¬Þ) in inequalities. Later, Sun et
al. [1989] discuss the same implication problems (Does S imply T), and
extend the results by providing an algorithm with the same complexity to
solve the problem even if “Þ” is allowed in inequalities in T (but not in S).

1Please see Aho et al. [1983], Cormen et al. [1990], Tarjan [1972, 1983], and Weiss [1995].
2Please see Aho et al. [1979a, 1979b], Johnson and Klug [1983, 1984], Klug [1988], Rosen-
krantz and Hunt [1980], Sun et al. [1989], Sun and Weiss [1994], and Ullman [1989].
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The restrictive implication of conjunctive queries involving inequalities
of the form (X OP¬Þ Y) where both integer and real domains are
considered has been studied in Aho et al. [1979a, 1979b], and Johnson and
Klug [1983, 1984]. Klug [1988] generalizes the implication problem by
including inequalities of the form (X OP¬Þ C) as well as (X OP¬Þ Y),
whereas it only assumes the dense totally ordered domains (e.g., the real
domain) and does not allow the integer domain.
Ullman [1989] gives an algorithm with the complexity of O( uS u3 1 uT u) for

the implication of conjunctive predicates containing only inequalities of the
form (X OPall Y) for both integer and real domains (selections are left out).
Sun and Weiss [1994] provide an improved algorithm with the complexity
O( uS u2.376 1 uT u) for this situation.
In this article we study the satisfiability and implication problems

involving inequalities of the form either (X op Y) or (X op C) under both
integer and real domains and under OP¬Þ and OPall, respectively. As
shown in Table I, we have either reported the first efficient algorithms or
improved the previous best known algorithms for various situations (impli-
cation versus satisfiability problem, integer versus real domain, OP¬Þ

versus OPall). More precisely, the following contributions are significant to
this study (also see Table I):

—We report the first linear algorithm for the general satisfiability in the
real domain involving OPall.

—We improve the previous best known O( uS u3) [Rosenkrantz and Hunt
1980; Sun et al. 1989] to O( uS u) for the restricted satisfiability in the
integer domain involving OP¬Þ.

—We improve the previous best known O( uS u3 1 uT u) [Rosenkrantz and
Hunt 1980; Sun et al. 1989] to O( uS u2 1 uT u) for the restricted implication
in the integer domain involving OP¬Þ.

—We report the first O( uS u2 1 uT u) algorithm for the restricted implication
in the real domain.

Table I. Comparison of Our Results with Previous Best Known Results

Problems Domains Operators Our Results Previous Results

Is S Satisfiable
(satisfiability

integer OP¬Þ uSu(Sec. 3.1) uSu3 [Rosenkrantz
and Hunt 1980]

problem) OPall NP-hard [Rosenkrantz
and Hunt 1980]

real OP¬Þ uSu(Sec. 3.1)
OPall uSu(Sec. 3.2)

Does S Imply T
(implication

integer OP¬Þ uSu2 1 uTu (Sec. 4.1) uSu3 1 uTu [Sun
et al. 1989]

problem) OPall NP-hard [Sun
et al. 1989]

real OP¬Þ uSu2 1 uTu (Sec. 4.1)
OPall min(uSu2.376 1 uTu, uSupuTu)

(Sec. 4.2)
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—An O( uS u2.376 1 uT u) algorithm is proposed to solve the general implication
in the real domain involving OPall. Our algorithm extends the previous
best known O( uS u2.376 1 uT u) algorithm [Sun and Weiss 1994] which only
allow the inequalities of the form (X op Y).

As a summary, Table I gives the results and comparisons with previous
best known results.
Before we proceed to detailed discussions, we first present the following

two theorems that relate time complexity bounds of algorithms for satisfi-
ability and implication problems.

THEOREM 2.1 If the time complexity for solving the implication “Does S
imply T?” is bounded by O( f(n, uS u, uT u)), then the time complexity for
solving the satisfiability “Is S satisfiable?” is bounded by O( f(n, uS u, 1)),
where n is the number of distinct variables used in S and T, and f is a
function.

Theorem 2.1 merely states that the algorithm that solves an implication
problem can be used to solve the satisfiability problem. The following
theorem states that the algorithm used to solve the satisfiability problem
also can be used to solve the implication problem.

THEOREM 2.2. Let S and T be two formulae involving conjunctive in-
equalities. S implies T if and only if for each inequality t [ T, S ∧ ¬t is
unsatisfiable. If the time complexity for solving the satisfiability “Is S
satisfiable?” is bounded by O( f(n, uS u)), then the time complexity for solving
the implication “Does S imply T?” is bounded by O( uT u z f(n, uS u)).

This theorem follows from the fact that S implies T if and only if S ∧
¬T 5 (S ∧ ¬t1) ∨ . . . ∨ (S ∧ ¬t uT u) is unsatisfiable.
We have implemented all these algorithms, and conducted a comparative

study in Section 5. The C11 programs for the algorithms can be obtained
by anonymous ftp from ^archive.fiu.edu& under ^weisun& directory, which
may be of assistance to database designers, practitioners, and researchers.

3. IS S SATISFIABLE?

We first discuss the restricted satisfiability problem (i.e., OP¬Þ is used for
inequalities). In Section 3.2 the general satisfiability problem is discussed
(i.e., OPall is used for inequalities).

3.1 The Restricted Satisfiability Problem

We first consider the integer domain. Then we extend to the real domain.
With the integer domain, it is sufficient to consider op [ {,, #} for

inequalities of the type (X op Y) [ S because of symmetry, and op [
{#, $} for inequalities of the type (X op C), because (X , C) is equivalent
to (X # C 2 1) and (X . C) is equivalent to (X $ C 1 1).

Definition 3.1.1 A labeled directed graph for an inequality set S, de-
noted as GS 5 (VS, ES), is a directed graph with each node X in VS
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one-to-one corresponding to a distinct variable X in S, and each edge from
node X to node Y and labeled with R, denoted as (X, Y, R) [ ES,
one-to-one corresponding to an inequality (X R Y) [ S, where the label R
is either , or #.

GS captures some important properties that are useful in the construc-
tion of our algorithms. For any two nodes X and Y in GS, if there exists a
directed path from X to Y, then, clearly, (X , Y) or (X # Y) is implied by
S. The “,” or “#” is determined by the labels of the edge(s) in the path.
Furthermore, if (X $ C) [ S, then either (Y . C) or (Y $ C) is implied by
S; if (Y # C) [ S, then either (X , C) or (X # C) is implied by S. These
observations are used later to decide if S is satisfiable.
Based on GS, we can also deduce if (X 5 Y) for two distinct nodes X and

Y. It is clear that if X and Y are reachable via paths from each other, (X 5
Y) is implied by S by transitivity. We say that all such variables as well as
the edges among them form a strongly connected component, or SCC.
Clearly, if an edge labeled with “,” is found in an SCC, S is unsatisfiable.
Otherwise, we “collapse” each SCC into a single node. This collapsing is in
the fact the use of a single variable in the SCC, called the representative
variable/node of the SCC, to represent all variables in the SCC. The
purpose of the collapsing is to obtain an acyclic graph for an easier
subsequent computation and presentation.
Let GScollapsed

be the acyclic graph after the preceding collapsing, and
Scollapsed be the set of inequalities whose variables are replaced by the
representative variables of SCCs. Clearly, S and Scollapsed are equivalent.
For all (X # Ci) and (X $ C9i) [ Scollapsed, let Cup

X 5min(Ci) and
Clow
X 5 max(C9i) for variable X. The closed range [Clow

X , Cup
X ], called the

(closed) minimum range for X, indicates the domain range qualified by the
set of inequalities of the form (X{#, $}C) for variable X. However, this
range is not the “real” minimum range due to the restrictions imposed by
other inequalities. For example, given {(X # 6), (X # Y), (Y # 5), (Y $
2), (Y $ 0)}, the minimum ranges for X and Y are (2`, 6] and [2, 5],
respectively. Because (X # Y) [ S, the “real” minimum range for X should
be (2`, 5].
So we should further compute the “real” minimum range for each

variable X, denoted as [Alow
X , Aup

X ]. We construct the “real” range for each
variable X in Scollapsed as follows: X is selected one by one according to its
topological ordering in GScollapsed

. Alow
X 5max(Ci, Clow

X ) for all Ci, where
Ci 5 Alow

Xi is the assigned value for X ’s parent Xi
3 if the edge from Xi to X

is labeled with “#”, or Ci 5 Alow
Xi 11 if the edge is labeled with “,.” Then

we select X one by one according to its inverse topological ordering in
GScollapsed

. Aup
X 5 min(Cj, Cup

X ) for all Cj, where Cj is equal to Aup
Xi , the

assigned value for X ’s child Xj if the edge from X to Xj is labeled with “#,”

3A node X is called a parent of node Y if there exists a directed edge from X to Y, and Y is
called a child of X.

276 • S. Guo et al.

ACM Transactions on Database Systems, Vol. 21, No. 2, June 1996.



or Cj 5 Aup
Xj 2 1 if the edge is labeled with “,.” Example 3.1.1 helps

explain the procedure.
From the construction of Alow

X and Aup
X , we know that they have the

property of minimality in the sense that given any assignment that
satisfies S, the assigned value for any X, say AX in the assignment, falls in
[Alow

X , Aup
X ]. Note that Clow

X # Alow
X and Aup

X # Cup
X . We use °Amin and

°Amax to denote two “minimum” assignments in which X is assigned Alow
X

and Aup
X , respectively.

LEMMA 3.1.1 In the integer domain involving OP¬Þ, a conjunctive for-
mula S is satisfiable if and only if

(1) every SCC in GS does not contain an edge labeled “,”, and
(2) for each variable X in Scollapsed, Alow

X # Aup
X .

PROOF. Condition (1) is obvious. Thus we focus on Condition (2).
Necessity: Let °AS be a satisfiable assignment for S, and the assigned

value for any variable X in °AS is CX. CX must fall in the “real” minimum
range of X, namely, Alow

X # CX # Aup
X .

Sufficiency: We only need to prove that °Amin or °Amax satisfies S.
Because Clow

X # Alow
X # Aup

X # Cup
X , each (X{#, $}C) [ Scollapsed is

satisfied by °Amin. For any (X , Y) [ S, there exists an edge in GScollapsed

labeled with “,” from X to Y (X is a parent of Y). Because Alow
Y 5max

(Alow
Yi 11, Clow

Y ) for all parents Yi of Y, we have Alow
Y . Alow

X . In other
words, (X , Y) is satisfied by °Amin. Similar reasoning applies for (X # Y) [ S.
As a result, all inequalities in S are satisfied by °Amin. e

The algorithm to determine if S is satisfiable is given in the following
steps.

Algorithm 1

Step 1: Perform the transformation on each inequality in S such that only (X{,,
#}Y) and (X{#, $}C) exist in S. If (X Þ Y) or (X Þ C) is found, report
NP-hard problem and exit. At the same time, eliminate the trivial inequal-
ities, namely, (X op X) and (C1 op C2) in S. If (X{,, ., Þ}X), or (C{,, .,
Þ}C), or (C1{,, #, 5}C2) with C1 . C2, or (C1{., $, 5}C2) with C1 ,

C2, then report that S is unsatisfiable, and exit.

Step 2: Construct the minimum range [Clow
X , Cup

X ] for each X by scanning all (X{#,
$}C).

Step 3: Construct the labeled directed graph GS; detect all SCCs. If any “,” is
found in any SCC, then S is unsatisfiable; exit. Otherwise, collapse SCCs
and obtain an acyclic graph GScollapsed

.

Step 4: Topologically sort all nodes of the graph. Then the “real” minimum ranges
[Alow

X , Aup
X ] are computed.

Step 5: If any Alow
X . Aup

X , S is unsatisfiable. Otherwise, report that S is
satisfiable.
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THEOREM 3.1.1. In the integer domain involving OP¬Þ, the satisfiability
problem can be solved in O( uS u) time.

PROOF. Steps 1 and 2 can be done in one scan of each inequality in S;
SCCs can be found in two depth-first-searches of GS. Finding the topologi-
cal ordering of all variables of GScollapsed

takes O( uS u) time. Finding all the
“real” minimum ranges requires two traversals of GScollapsed

(one in topolog-
ical order and one in inverse-topological order of nodes) and the cost is
O( uS u). Testing if all Alow

X # Aup
X takes O( uS u) time. e

Example 3.1.1. Consider the set of inequalities S:

S 5 {X1 , X2,
X2 # X3 ,
X3 # X2 ,
X4 , X7 ,
X5 , X4 ,
X6 # X7 ,
X7 , 8,
X8 # X6,

X1 , X5 ,
X2 # 5,
X3 # X4 ,
X4 # 6,
X5 , X6 ,
X6 $ 5,
X7 $ 1,
X8 . 3}

X1 # X8 ,
X2 . 1,
X3 # 7,
X4 $ 4,
X5 # 6,
X6 # 12,

X1 , 5,

X3 $ 1,

X5 $ 2,

.

Figure 1 gives the construction of °Amin. We note that (X1 , 5) is
equivalent to (X1 # 4) in the integer domain, and a similar transformation
is applied to other selections. X2 and X3 constitute an SCC, thus they are
collapsed into a single node, denoted as X23. The pair inside each node
denotes the minimum range for that node. The pair outside each node
denotes the “real” minimum range. For node X1, Alow

X1 5 2`, because
Clow
X1 5 2` and X1 does not have any parent. For node X8, Alow

X8 5 4,
because X1 is the only parent of X8, Alow

X1 5 2` and Clow
X8 5 4. For node X4,

Alow
X4 5 4, because Clow

X4 5 4 (note that although X5 and X23 are X4’s

Fig. 1. Construction of assignment satisfying GS in the integer domain.
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parents, they will yield smaller Alow
X4 5 3 and Alow

X4 5 2, thus it is ignored).
We note that Alow

X7 5 (5) is different from Clow
X7 (1) because Alow

X4 is 4 with a
“,” label on the edge, which will yield Alow

X7 5 5 (in fact, Alow
X7 5 5 is also a

result of Alow
X6 5 5 and its “#” label on the edge).

We proceed to solve the satisfiability problem in the real domain using a
similar strategy. We construct the same GS and GScollapsed

as we did in the
previous integer domain case.
We note that in the real domain, we can not transform (X , C) to

(X # C 2 1). Instead, we need to mark the minimum ranges to be “,” (“open
bound”) or “#” (“closed bound”).
Consider a set of inequalities for variable X: {(X op C1), (X op C2), . . . , (X

op Ck)} in S, op [ {,, #}. We identify Cup
X 5 mini51

k (Ci). If (X , Cup
X ) [ S,

then Cup
X is open (i.e., the end point of the bound is not qualified by the

inequalities); otherwise, Cup
X is closed (i.e., the end point of the bound is

qualified by the inequalities). Similarly, either an open or a closed Clow
X can be

obtained. In other words, the difference between this case and the correspond-
ing case in the integer domain lies in the openness and/or the closedness of the
bounds.
Similarly, the “real” minimum ranges are also computed with “open” or

“closed” markers on the bounds. Alow
X 5 max(Ci, Clow

X ), Ci 5 Alow
Xi for all

parents Xi of X. First we need to decide the marker of Ci before that of
Alow
X . Ci is “closed” if the edge between Xi and X is labeled with “#” and

Alow
Xi is “closed”; otherwise Ci is “open.” Alow

X is “open” if one of max(Ci,
Clow
X ) is “open;” otherwise Alow

X is “closed.” Aup
X 5 min(Cj, Cup

X ),
Cj 5 Aup

Xj for all X ’s children Xj. The marking of Cj and Aup
X is similar.

Example 3.1.2 Using Example 3.1.1, suppose that all variables and
constants are in the real domain. Figure 2 gives the construction of °Amin
and °Amax.

LEMMA 3.1.2 In the real domain involving OP¬Þ, a conjunctive formula
S is satisfiable if and only if,

Fig. 2. Construction of assignment satisfying GS in the real domain.

Satisfiability and Implication Problems • 279

ACM Transactions on Database Systems, Vol. 21, No. 2, June 1996.



(1) every SCC in GS does not contain an edge labeled “,”, and
(2) for each variable X in Scollapsed, Alow

X , Aup
X , or Alow

X 5 Aup
X and both Aup

X

and Alow
X are “closed”.

A proof can be easily constructed from that of Lemma 3.1.1. An algorithm
to evaluate if S is satisfiable in the real domain is provided in the followup.

Algorithm 2

Step 1: Perform the transformation on each inequality in S such that only (X{,,
#}Y) and (X{,, ., #, $}C) exists in S. If (X Þ Y) or (X Þ C) is found,
the satisfiability will be handled in another algorithm as described in the
next section, so exit. At the same time, eliminate the trivial inequalities,
namely, (X op X) and (C1 op C2) in S. If (X{,, ., Þ}X), or (C{,, .,
Þ}C), or (C1{,, #, 5}C2) with C1 . C2, or (C1{., $, 5}C2) with C1 ,

C2, then report that S is unsatisfiable, and exit.

Step 2: Construct the minimum range Clow
X , Cup

X for each X by scanning all (X{,,
., #, $}C).

Step 3: Construct the labeled directed graph GS, detecting all SCCs. If any “,” is
found in any SCC, then S is unsatisfiable; exit. Otherwise, collapse SCCs
and obtain an acyclic graph GScollapsed

.

Step 4: Topologically sort the graph. Then the “real” minimum ranges Alow
X , Aup

X

are computed.

Step 5: If any Alow
X . Aup

X or Alow
X 5 Aup

X with either bound is “open,” S is
unsatisfiable. Otherwise, report that S is satisfiable.

3.2 The General Satisfiability Problem

In the integer domain, this problem has been proved to be NP-hard
[Rosenkrantz and Hunt 1980]. The known NP-complete problem of deter-
mining whether an undirected graph is three colorable [Cormen et al. 1990;
Garey et al. 1976] is reduced to an instance of this satisfiability problem.
In the remainder of this subsection we consider only the real domain. It

is sufficient to consider op [ {#, Þ} for inequalities of the type (X op Y) [
S and op [{#, $, Þ} for inequalities of the type (X op C) [ S. For all (X #
Y) and (X{#, $}C) in S, we construct GS, GScollapsed

, the minimum ranges,
and the “real” minimum ranges of S as we did in Section 3.1. Clearly, if any
SCC of GS contains nodes X and Y, and (X Þ Y) is in S, then S is
unsatisfiable.

LEMMA 3.2.1 In the real domain involving OPall , a conjunctive formula
S is satisfiable if and only if,

(1) for each (X Þ Y) [ S, X and Y do not belong to the same SCC, and
(2) for each variable X of S, either (Alow

X , Aup
X ) or (Alow

X 5 Aup
X and (X Þ

Alow
X ) [ S).
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PROOF.
Necessity: Necessity is proved by constructing a satisfiable assignment of

S. We first collapse S to Scollapsed. The collapsing will not affect (X Þ Y)
inasmuch as X and Y are in different SCCs. For each X [ Scollapsed with
Alow
X 5 Aup

X , X 5 Alow
X is implied. We further replace all occurrences of X

by Alow
X for all inequalities of Scollapsed. The replacement will not result in

trivial inequalities of the form (C Þ C) and C 5 Alow
X , due to (X Þ Alow

X ) [y
S. Let S9collapsed be the set after the replacement. The collapsing and the
replacement do not change the satisfiability of S, namely, if an assignment
satisfies Scollapsed, it must satisfy S9collapsed, and the inverse is true. Let
G9Scollapsed

be the labeled directed graph of S9collapsed (all the labels are “#”).
For each variable X, we have Alow

X , Aup
X . Let °A be an assignment of

S9collapsed with each X assigned the value Alow
X 1 dX. dX is a positive real

small enough to satisfy Alow
X 1 dX , Aup

X . Furthermore, for each parent Xi
of X, we assure that dXi

, dX. These d can always be constructed because
the real domain is a dense domain. Clearly, °A satisfies G9Scollapsed

.
Because the unequalities of S comprise a finite set, we can modify the d

(each of them has infinite choices), to ensure that G9Scollapsed
is satisfied and

the unequalities are also satisfied.
Sufficiency: If S is satisfiable, it is easy to verify Condition (1) and Alow

X #
Aup
X by contradictions. If Alow

X 5 Aup
X and (X Þ Alow

X ) [ S, it is impossible that
an assignment exists that satisfies (X 5 Alow

X ) and (X Þ Alow
X ) concurrently.

This contradicts the hypothesis that S is satisfiable. e

An algorithm to evaluate if S is satisfiable in the real domain is provided
in the following.

Algorithm 3

Step 1: Perform the transformation on each inequality in S such that only (X{#,
Þ}Y) and (X{#, $, Þ}C) exist in S. At the same time, eliminate the trivial
inequalities, namely, (X op X) and (C1 op C2) in S. If (X{,, ., Þ}X), or
(C{,, ., Þ}C), or (C1{,, #, 5}C2) with C1 . C2, or (C1{., $, 5}C2)
with C1 , C2, then report that S is unsatisfiable; exit.

Step 2: Construct the minimum range [Clow
X , Cup

X ] for each X by scanning all (X{#,
$}C).

Step 3: Construct the labeled directed graph GS; detect all SCCs. If any “Þ” is
found in any SCC, then S is unsatisfiable; exit. Otherwise, collapse SCCs
and obtain an acyclic graph GScollapsed

.
Step 4: Topologically sort all nodes on the graph. Then, the “real” minimum ranges

Alow
X , Aup

X are computed.
Step 5: If any (Alow

X . Aup
X ) or (Alow

X 5 Aup
X and (X Þ Alow

X ) [y S), S is
unsatisfiable. Otherwise, report that S is satisfiable.

THEOREM 3.2.1 In the real domain involving OPall , the satisfiability
problem is solvable in O(uS u) time.

PROOF. Steps 1 and 2 can be done in one scan of S. SCCs can be detected
by two depth-first-searches in O( uS u) time. The unequalities in SCCs can be
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checked by one scan of the unequalities in S. Steps 4 and 5 can be done in
O( uS u) time. As a result, the total time complexity is O( uS u). e

4. DOES S IMPLY T?

We first discuss the restricted implication problem (i.e., OP¬Þ is used for
inequalities). In Section 4.2, the general implication problem is discussed
(i.e., OPall is used for inequalities).

4.1. The Restricted Implication Problem

We consider the integer domain first.

LEMMA 4.1.1 In the integer domain involving OP¬Þ, S implies T if and
only if S is unsatisfiable, or

(1) for any (X # Y) [ T there exists a path from X to Y in GScollapsed
, or

Aup
X # Alow

X ;
(2) for any (X , Y) [ T there exists a path from X to Y in GScollapsed

with at
least one edge of the path labeled with “,”, or Aup

X , Alow
Y ;

(3) for any (X # C) [ T, C $ Aup
X ; and

(4) for any (X $ C) [ T, C # Alow
X .

PROOF.
Sufficiency: If S is unsatisfiable, then S implies T. Here we only consider

the situation that S is satisfiable. It is clear that if Conditions (1)–(4) are
true, then any (X # Y), (X , Y), (X # C), or (X $ C) in T are implied by
S; thus S implies T.
Necessity: We show that if S implies T, then Conditions (1)–(4) are true.

For any (X # Y) [ T, if there exists a path from X to Y, then we are done.
Otherwise, we prove that Aup

X # Alow
Y . Suppose Aup

X . Alow
Y . We want to

construct an assignment that satisfies S and has X and Y assigned Aup
X and

Alow
Y , respectively. Let A denote the set of variables reachable from X

(including X) and B the set of variables that have path(s) to Y (including
Y). Note that A and B have no common variable(s) because by assumption a
path does not exist from X to Y. Each variable in A, say XA, is assigned
Aup
XA; each variable in B, say XB, is assigned Alow

XB . Clearly, this assignment
satisfies S and contradicts (X # Y) [ T. A similar argument is applicable
to Condition (2). For Condition (3), if C , Aup

X , then °Amax satisfies S but
does not satisfy (X # C) [ T as X is assigned Aup

X . This is a contradiction.
The proof for Condition (4) is similar. e

An algorithm to evaluate if S implies T in the integer domain is provided
next.

Algorithm 4

Step 1: Use Algorithm 1 to evaluate S. If S is unsatisfiable, then the implication is
true; exit.
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Step 2: Perform the transformation on each inequality in T such that only (X{,,
#}Y) and (X{#, $}C) exist in T. Each variable is also replaced by its
representative variable. If (X Þ Y) or (X Þ C) is found, report NP-hard
problem and exit. At the same time, eliminate the trivial inequalities,
namely, (X op X) and C1 op C2) in T. If (X{,, ., Þ}X), or (C{,, .,
Þ}C), or (C1{,, #, 5}C2) with C1 . C2, or (C1{., $, 5}C2) with C1 ,

C2, then report that the implication is not true; exit.

Step 3: Compute the transitive closure of GScollapsed
and remember (in each depth-

first search) if there exists a path containing “,” edge(s) from the starting
node to each child.

Step 4: For each (X # Y) [ T, if there neither exists a path from X to Y nor
Aup
X # Alow

Y , then the implication is not true; exit.

Step 5: For each (X , Y) [ T, if there neither exists a path containing “,” edge(s)
from X to Y nor Aup

X , Alow
Y , then the implication is not true; exit.

Step 6: For each (X # C) [ T, if C , Aup
X , then the implication is not true; exit.

Step 7: For each (X $ C) [ T, if C . Alow
X , then the implication is not true; exit.

Otherwise, report that the implication is true.

THEOREM 4.1.1 In the integer domain involving OP¬Þ, the implication
problem can be solved in O( uS u2 1 uT u) time.

PROOF. Steps 1 and 2 take O( uS u) time. The transitive closure of GScollapsed

costs O( uS u). Steps 4–7 take O( uT u) time. As a result, the total complexity is
O( uS u2 1 uT

For the real domain, it is sufficient to consider op [ {,, #} for inequali-
ties of the type (X op Y) [ S and op [ {,, ., #, $} for inequalities of the
type (X op C) [ S.

LEMMA 4.1.2 In the real domain involving OP¬Þ, S implies T if and only
if S is unsatisfiable, or

(1) for any (X # Y) [ T there exists a path from X to Y in GS, or Aup
X #

Alow
Y ;

(2) for any (X , Y) [ T there exists a path from X to Y in GS with at least
one edge of the path labeled with “,,” or either Aup

X , Alow
Y or Aup

X 5
Alow
Y and one of them is “open”;

(3) for any (X # C) [ T, C $ Aup
X ;

(4) for any (X , C) [ T, C . Aup
X or C 5 Aup

X and Aup
X is “open”;

(5) for any (X $ C) [ T, C # Alow
X ; and

(6) for any (X . C) [ T, C , Alow
X or C 5 Alow

X and Alow
X is “open.”

A proof can be constructed using the same reasoning as in Lemma 4.1.1.
The algorithm to evaluate if S implies T in the real domain is provided in
the following.
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Algorithm 5

Step 1: Use Algorithm 2 to evaluate S. If S is unsatisfiable, then the implication is
true; exit.

Step 2: Perform the transformation on each inequality in T such that only (X{,,
#}Y) and (X{,, ., #, $}C) exist in T. Each variable is also replaced by its
representative variable. If (X Þ Y) or (X Þ C) is found, the implication is
handled in Algorithm 6; exit. At the same time, eliminate the trivial
inequalities, namely, (X op X) and (C1 op C2) in T. If (X{,, ., Þ}X), or (C{,,
., Þ}C), or (C1{,, #, 5}C2) with C1 . C2, or (C1{., $, 5}C2) with C1 , C2,
then report that the implication is not true; exit.

Step 3: Compute the transitive closure of GScollapsed
and remember if there exists a

path containing one or more “,” edges from X to Y.

Step 4: For each (X # Y) [ T, if there neither exists a path from X to Y nor
Aup
X # Alow

Y , then the implication is not true; exit.

Step 5: For each (X , Y) [ T, if there neither exists a path containing “,” edge(s)
from X to Y nor Aup

X , Alow
Y , then the implication is not true; exit.

Step 6: For each (X # C) [ T, if C , Aup
X , then the implication is not true; exit.

Step 7: For each (X , C) [ T, if C , Aup
X , or C 5 Aup

X and Aup
X is “closed”, then the

implication is not true; exit.

Step 8: For each (X $ C) [ T, if C . Alow
X , then the implication is not true; exit.

Step 9: For each (X . C) [ T, if C . Alow
X and Alow

X is “closed,” then the
implication is not true; exit. Otherwise, report that the implication is true.

The complexity is deducted by Algorithm 4, namely O( uS u2 1 uT u).

THEOREM 4.1.2 In the real domain involving OP¬Þ, the implication
problem can be solved in O( uS u2 1 uT u) time.

4.2 The General Implication Problem

For the integer domain, this implication problem is NP-hard by Theorem
2.1 and the corresponding satisfiability problem is NP-hard. In the follow-
ing discussion, we only consider the real domain.
A. Klug [1988] and J. Ullman [1989] proposed an O( uS u3 1 uTu) algorithm

to solve the implication problem involving inequalities of the form (X op
Y).4 This is a special case of our situation because we consider the case that
the two allowed forms of inequalities are (X op Y) and (X op C), where C
is a constant in the domain of X. We first briefly discuss the Klug–Ullman
algorithm on which our approach is based.
Klug and Ullman’s [1989] approach uses an idea similar to the way that

functional dependencies in a relational database system are handled,
where a collection of axioms, Klug–Ullman Axioms, is used [Ullman 1989].
The following eight axioms for inequalities are then shown to be sound

4In fact, this algorithm is also directly applicable to the integer domain for this restricted type
of inequalities.
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(only inferring correct inequalities) and complete (inferring all correct
inequalities) [Ullman 1989].

A1: (X # X)

A2: (X , Y) implies ~X # Y!

A3: (X , Y) implies ~X Þ Y!

A4: (X # Y) and ~X Þ Y! imply ~X , Y!

A5: (X Þ Y) implies ~Y Þ X!

A6: (X , Y) and ~Y , Z! imply ~X , Z!

A7: (X # Y) and ~Y # Z! imply ~X , Z!

A8: (X # Z), (Z # Y), (X # W), (W # Y) and ~W Þ Z! imply ~X Þ Y!.

Then Ullman’s algorithm first computes the inequality closure, denoted
as S1, by applying Axioms A1–A8 until they no longer generate any new
inequalities. The closure computation procedure is as follows:

(1) Convert each , relationship, say (X , Y), into (X # Y) and (X Þ Y).
(2) Compute the transitive closure of the # relationships.
(3) Apply Axiom A8 to infer additional Þ relationships.
(4) Reconstruct the , relationships using Axiom A4; that is, (X , Y) if

(X # Y) and (X Þ Y).

Step (1) only takes O( uS u) time. Step (2) can be done in O( uS u2) time by
performing a depth-first search, from each variable, of the graph GS 5
(VS, ES) whose nodes are the variables and whose arcs are the #
relationships [Aho et al. 1983]. Step (3) can be done in O( uS u3) time: for each
pair X and Y, we find all those Z such that (X # Z # Y), in O( uS u) time,
just by enumerating the Zs and checking whether (X # Z) and (Z # Y) are
both known. Then we check if any two such Zs are related by Þ. That takes
O( uS u) time. Note that it is sufficient to check the original Þ pairs, that is,
those given in S and those added in Step (1). It is not necessary to check
the new pairs added in Step (3). The total time for Step (3) is O( uS u) times
the number of pairs of variables, which is bounded by uS u2. Thus the time
complexity of the algorithm is O(S uS u3). The total time complexity of
Ullman’s algorithm to test whether S implies T is O( uS u3 1 uT u).
For our strategy, it is sufficient to consider op [ {#, Þ} for inequalities of

the type (X op Y) [ S and op [ {#, $, Þ} for inequalities of the type (X
op C) [ S. We first construct an inequality set SNEW from S as follows: let
(C1, C2, . . . , Ck) be all the distinct constants in ascending order of their
values, which are used in all inequalities of the form (X op Ci) in S. We
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introduce k dummy variables (W1, W2, . . . , Wk) to represent these k
distinct constants, and 2k 2 2 inequalities, SADDED 5 {(W1 # W2), (W2 #
W3), . . . , (Wk21 # Wk), (W1 Þ W2), (W2 Þ W3), . . . , (Wk21 Þ Wk)} to
represent the relationships among the newly introduced variables. For each
(X op Ci) [ S, we transform it into (X op Wi), where Wi represents the
dummy variable for Ci. Let S9 be the inequality set after the preceding
transformation, and SNEW 5 S9 ø SADDED. GSNEW

is constructed for the
new inequality set SNEW in the same way that GS is constructed from S.
Now SNEW only contains inequalities of the form (X op Y); therefore the
closure of SNEW, denoted as SNEW

1 , is computed [Ullman 1989]. After
SNEW

1 is computed, dummy variables are replaced back with corresponding
constants. It can be directly observed that after the preceding transforma-
tion, the size of SNEW is still bounded by O( uS u). Note that in the satisfiabil-
ity evaluation of S, we already have computed the minimum and “real”
minimum ranges.

LEMMA 4.2.1 In the real domain involving OPall , S implies T if and only
if S is unsatisfiable, or

(1) for any (X # Y) [ T, (X # Y) [ SNEW
1 , or Aup

X # Alow
Y ;

(2) for any (X Þ Y) [ T, (X Þ Y) [ SNEW
1 ;

(3) for any (X # C) [ T, C $ Cup
X ;

(4) for any (X $ C) [ T, C # Clow
X ; and

(5) for any (X Þ C) [ T, (X Þ C) [ SNEW
1 or C , Clow

X or C . Cup
X .

PROOF. Conditions (1) and (2) directly follow the soundness and com-
pleteness of the Klug–Ullman Axioms. The proof for other conditions can be
done easily. e

However, the time complexity by directly applying Lemma 4.2.1 is
exactly the same as that of Ullman’s algorithm. We now provide a more
efficient algorithm with the complexity O( uS u2.376 1 uT u). The following
algorithm is based on the one given in Sun and Weiss [1994] which handles
only inequalities of the form (X op Y).
First of all, we can see from Ullman’s algorithm that the test whether an

inequality of (X # Y) [ T is implied by S can be decided easily in O( uS u2)
time. The more difficult part is to test whether an inequality of (X Þ Y) [
T is implied by S (due to the Axiom 8). Thus we focus on solving this
problem. An example is also provided at the end of this subsection to
illustrate our approach.
Given SNEW (it is sufficient to consider the operators [ {#, Þ}), we first

construct a directed graph G9SNEW
5 (VS, ES), where VS 5 A ø B ø C and

ES 5 EAB ø EBC; vW [ A and vW [ C iff W is a variable of SNEW; vXY [
B iff (X Þ Y) [ SNEW; (vW, vXY) [ EAB iff (W # X) and (W # Y) are
implied by SNEW; and (vXY, vZ) [ EBC iff (X # Z) and (Y # Z) are implied
by SNEW. This graph is used exclusively to deduce unequalities explicitly
(in S) and implicitly implied by S. Example 4.2.1 shows how such a graph
can be constructed.
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uA u, uB u, and uC u are bounded by O( uSNEWu), thus uVSu is bounded by
O( uSNEWu). We can easily observe that the in-degree of any node in A is
zero, the out-degree of any node in C is zero, and B may contain nodes with
nonzero in-degree and/or nonzero out-degree. Clearly uESu is bounded by
O( uSNEWu) and can be computed in O( uSNEWu2) time as follows: we first
compute the transitive closure (wrt #) of SNEW in O( uSNEWu2), then for each
(X Þ Y) [ SNEW, we examine each variable, say W, in SNEW. If (W # X)
and (W # Y) are implied by SNEW (it takes constant time after the
transitive closure is computed), we add the edge (vW, vXY) [ EAB. EAB can
be constructed in O( uSNEWu2). In a similar manner, EBC can be constructed.
The following lemma is essential for testing whether (X Þ Y) is implied by
SNEW [Sun and Weiss 1994].

LEMMA 4.2.2 In the real domain involving OPall, (X Þ Y) is implied
by SNEW if and only if

—(X Þ Y) [ SNEW, or
—there exists a path from X to Y of length 2 in G9SNEW

, namely, v [ VS, such
that (vX, v), (v, vY) [ ES.

The algorithm to evaluate if S implies T in the real domain is provided.

Algorithm 6

Step 1: Use Algorithm 3 to evaluate S. If S is unsatisfiable, then the implication is
true; exit.

Step 2: Perform the transformation on each inequality in T such that only (X{#,
Þ}Y) and (X{#, $, Þ}C) exist in T. Each variable is also replaced by its
representative variable. At the same time, eliminate the trivial inequali-
ties, namely, (X op X) and C1 op C2) in T. If (X{,, ., Þ}X), or (C{,, .,
Þ}C), or (C1{,, #, 5}C2) with C1 . C2, or (C1{., $, 5}C2) with C1 ,

C2, then report that the implication is not true; exit.

Step 3: Construct G9SNEW
and its adjacency matrices. Perform the matrix multiplica-

tion algorithm. For the deduced unequalities, replace the dummy variables
back with the corresponding constants.

Step 4: Construct GScollapsed
and compute the transitive closure of GScollapsed

.

Step 5: For each (X # Y) [ T, if there neither exists a path from X to Y nor
Aup
X # Alow

Y , then the implication is not true; exit.

Step 6: For each (X Þ Y) [ T, if it is not in S or deduced in Step 3, the implication
is not true; exit.

Step 7: For each (X # C) [ T, if C , Aup
X , then the implication is not true; exit.

Step 8: For each (X $ C) [ T, if C . Alow
X , then the implication is not true; exit.

Step 9: For each (X Þ C) [ T, if it neither is in S nor deduced in Step 3, nor C ,

Clow
X or C . Cup

X , then the implication is not true; exit. Otherwise, report
that the implication is true.

THEOREM 4.2.1. In the real domain involving OPall , the implication
problem can be solved in O(min( uS u2.376 1 uT u, uS upuT u)) time.

Satisfiability and Implication Problems • 287

ACM Transactions on Database Systems, Vol. 21, No. 2, June 1996.



PROOF. The second component of O( uS upuT u) directly follows from Theo-
rem 2.2. Identifying all paths of length 2 can be obtained by multiplying
two uS u 3 uS u adjacency matrices. It has been shown that the multiplication
of two n 3 n matrices can be computed in O(n2.376) time [Coppersmith and
Winograd 1987]. After the number of paths of length 2 for all pairs of nodes
in G9SNEW

have been computed, it only takes constant time to test whether
(X Þ Y) is implied by SNEW. Note that uSNEWu is bounded by O( uS u).
Constructing G9SNEW

takes O( uSNEWu2) time, computing the transitive clo-
sure (wrt #) for G9SNEW

can be done in O( uSNEWu2) time, and computing all
paths of length 2 in G9SNEW

needs O( uSNEWu2.376). And for each (X # Y) or
(X Þ Y) [ T, it only takes constant time to test whether it is implied by
SNEW. Overall, the algorithm takes O( uSNEWu2.376 1 uT u). e

Example 4.2.1 Consider S 5 {(X1 $ X2), (X2 $ X3), (X1 $ 5), (X1 $
X3), (X2 # 3), (X2 Þ X3)}. S is clearly satisfiable (e.g., {6/X1, 2/X2, 1/X3}
is an assignment that satisfies S). SNEW 5 {(X1 $ X2), (X2 $ X3), (X1 $
W2), (X1 $ X3), (X2 # W1), (X2 Þ X3), (W1 # W2), (W1 Þ W2)}, where
W1 and W2 represent integers 3 and 5, respectively. After computing all
transitive relationships of GSNEW

, the following can be obtained.

X1 # X1

X2 # X1

X3 # X1

W1 # X1

W2 # X1

X2

X2 X3

W1

W1

W1

W2

W2

W2

W2

GSNEW
and G9SNEW

of S are shown in Figure 3.
There are ten paths in G9 of length 2: ((X3, X23), (X23, X1)), ((X3, X23),

(X23, X2)), ((X3, X23), (X23, W1)), ((X3, X23), (X23, W2)), ((X2, W12),
(W12, X1)), ((X2, W12), (W12, W2)), ((X3, W12), (W12, X1)), ((X3, W12),

Fig. 3. Deduction of unequalities.
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(W12, W2)), ((W1, W12), (W12, X1)), ((W1, W12), (W12, W2)). Thus the
deduced Þ inequalities are: (X3 Þ X1), (X3 Þ X2), (X3 Þ W1), (X3 Þ W2),
(X2 Þ X1), (X2 Þ W2), (W1 Þ X1), and (W1 Þ W2).

5. IMPLEMENTATION AND EXPERIMENT

We have implemented all the algorithms proposed in Sections 3 and 4. The
implementation is integrated into a Microsoft Windows-based graphic user
interface front-end. The C11 programs can be obtained by anonymous ftp
from ^archive.fiu.edu& under ^weisun& directory.
In our implementation, we further extended the algorithms to solve the

restricted problems with unequalities allowed in the inequality set in some
situations. In the processing of a restricted satisfiability problem “Is S
satisfiable?” in the integer domain, the unequalities in S are not touched
until the satisfiability of S without the unequalities is decided. If the
answer is “unsatisfiable,” then the answer to the original problem is
unsatisfiable. For the situation of a “satisfiable” answer, if the “real”
minimum ranges of X and Y for each (X Þ Y) [ S have an empty
intersection, (X Þ Y) is satisfied by any assignment that satisfies S
without the unequalities. For each (X Þ C) in S, if C does not fall in the
“real” minimum range of X, (X Þ C) is satisfied. If all the unequalities are
satisfied, the final answer is “satisfiable,” otherwise, the algorithm reports
NP-hard.
For the restricted implication “S implies T” in the integer domain, our

algorithm can handle the unequalities in some cases. The satisfiability of S
is decided by the preceding algorithm. If the result is NP-hard, then
NP-hard is reported for the corresponding implication problem. If the result
is “unsatisfiable,” the implication is true. Otherwise, we consider all the
unequalities in T: for each (X Þ Y) in T, if it is in S, or the “real” minimum
ranges of X and Y have empty intersection, the unequality is implied. For
each (X Þ C) in T, if it is in S, or C does not fall in the “real” minimum
range of X, then the unequality is implied. If all the unequalities in T are
implied by S, the final answer to the implication is true; otherwise, the
algorithm reports NP-hard.
It is noted here that a query may have hundreds of joins in a database

system, especially in a deductive or logic-based system, because these
database systems typically contain hundreds or thousands of rules in ever
increasingly complex database applications and they are normally imple-
mented on the underlying relational technology. This basically translates
into hundreds or thousands of relational joins [Krishnamurthy et al. 1986;
Gallaire et al. 1984; Ullman 1989]. In addition, query sizes could be huge in
the ever increasingly complex database applications.
We have also implemented the previously known O( uS u3) algorithms for

the restricted satisfiability and implication problems. Based on our imple-
mentation, we have conducted experiments to compare the performance of
our algorithms with that of the previously known ones based on the
computation costs of sample problems whose sizes vary from 3 to 300. We
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measured the computation costs by the CPU time (milliseconds) used to
solve the sample problems as shown in Tables II and III.5

These results clearly show the superiority of the proposed strategies: our
algorithms have good to excellent improvement over previous best known
results for even small-size problems. For medium and large-size problems,
the improvement is obvious and its trend can be expected.
From Table III, a similar observation can be drawn as to the performance

of our algorithm in solving the implication problems.

6. CONCLUSIONS

In this article we have provided a comprehensive and systematic study of
these problems for conjunctive inequalities of the form (X op Y) or (X op

5Our computation data are obtained by running our program on solving the sample problems
on a relatively slow Intel 486 SX-25 standalone IBM-compatible PC; due to that the basic CPU
time measure is 1 MS.

Table II. Performance Comparison of Solving Satisfiability Problems

Sample Problems S031 S032 S033 S034 S035 S036 S037 S038 S039 S0310

No. of Variables 6 5 4 3 3 2 2 2 2 0
Previous Algorithm 29 21 16 11 12 7 7 4 4 2
Our Algorithm 3 3 3 2 2 2 2 3 3 1
Improvements (times) 8.7 6.0 4.3 4.5 5.0 2.5 2.5 0.33 0.33 1.0

(a): Problem Size 3: Average Improvement 5 3.5 (times)

Sample Problems S051 S052 S053 S054 S055 S056 S057 S058 S059 S0510

No. of Variables 10 7 6 4 4 3 2 2 2 0
Previous Algorithm 88 41 35 23 22 13 11 4 4 2
Our Algorithm 4 3 4 3 3 3 4 3 2 2
Improvements (times) 21.0 12.7 7.8 6.7 6.3 3.3 1.8 0.3 1.0 0.0

(b): Problem Size 5: Average Improvement 5 6.1 (times)

Sample Problems S101 S102 S103 S104 S105 S106 S107 S108 S109 S1010

No. of Variables 20 14 10 8 7 4 4 3 1 0
Previous Algorithm 501 222 113 84 87 31 32 22 6 1
Our Algorithm 9 8 8 6 7 8 8 8 1 1
Improvements (times) 54.7 26.8 13.1 13.0 11.4 2.9 3.0 1.8 5.0 0.0

(c): Problem Size 10: Average Improvement 5 13.2 (times)

Sample Problems SAT30 SAT50 SAT100 SAT150 SAT300

Problem Sizes 30 50 100 150 300
No. of Variables 6 10 25 30 40
Previous Algorithm 208 378 4245 7245 5458
Our Algorithm 20 38 85 132 266
Improvements (times) 9.4 8.9 48.9 53.9 19.5

(d): Problem Sizes $30 (including 30, 50, 100, 150, 300)
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C). For each of the cases (the integer domain and the real domain, OP¬Þ

and OPall, satisfiability versus implication problems), excluding the two
cases that have been shown NP-hard, we have either reported the first
necessary and sufficient conditions together with their efficient algorithms
with complexity analysis or provided improved algorithms. These results
are extremely essential for designers and researchers of database and
logic-based systems.
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Table III. Performance Comparison of Solving Implication Problems

Sample Problems I031 I032 I033 I034 I035 I036 I037 I038 I039 I0310

No. of Variables 6 6 4 2 3 3 2 1 1 0
Previous Algorithm 28 21 16 8 11 9 7 6 5 2
Our Algorithm 4 3 3 3 4 4 2 4 3 1
Improvements (times) 6.0 6.0 4.3 1.7 1.8 1.3 2.5 0.5 0.7 1.0

(a): Problem Size 3: Average Improvement 5 2.6 (times)

Sample Problems I051 I052 I053 I054 I055 I056 I057 I058 I059 I0510

No. of Variables 10 7 6 4 4 3 2 1 1 0
Previous Algorithm 87 43 36 27 20 14 11 5 5 1
Our Algorithm 5 5 5 5 3 5 6 4 3 1
Improvements (times) 16.4 7.6 6.2 4.4 5.7 1.8 0.8 0.3 0.7 0.0

(b): Problem Size 5: Average Improvement 5 4.4 (times)

Sample Problems I101 I102 I103 I104 I105 I106 I107 I108 I109 I1010

No. of Variables 20 14 10 8 7 4 4 3 1 0
Previous Algorithm 500 222 126 84 87 31 38 23 6 2
Our Algorithm 12 9 8 6 7 8 10 7 3 1
Improvements (times) 40.7 23.7 14.8 13.0 11.4 2.9 2.8 2.3 1.0 1.0

(c): Problem Size 10: Average Improvement 5 11.4 (times)

Sample Problems IMP30 IMP50 IMP100 IMP150 IMP300

Problem Sizes 30 50 100 150 300
No. of Variables 6 10 25 30 40
Previous Algorithm 212 382 4204 7249 5478
Our Algorithm 24 42 95 135 288
Improvements (times) 7.8 8.1 43.3 52.7 18.0

(d): Problem Sizes $30 (including 30, 50, 100, 150, 300)
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