Coursework Werner Nutt

6. Datalog

Instructions: Work in groups of 2 students. You can write up your answers by hand (provided your handwriting is legible) or using a word processing system like Latex or Word. Experience shows that Word is in general difficult to use for this kind of task.

The first two exercises are a warm-up to become familiar with writing queries in datalog. The rest address questions about the expressive power of datalog.

1. Metro Reachability

Consider to the Metro database. Write datalog programs that yield, respectively, for each pair of stations $\langle a, b \rangle$, the stations c such that c is reachable

- 1. from both a and b;
- 2. from either a or b.

(5 Points)

2. Black and White Paths

We are given two directed graphs G_{black} and G_{white} over the same set V of vertices, represented as binary relations. Write a datalog program P that computes the set of pairs $\langle a,b\rangle$ of vertices such that there exists a path from a to b where black and white edges alternate, starting with a white edge.

(3 Points)

3. Properties Definable by datalog Programs

In this exercise we always mean "directed graphs" when we talk about graphs.

Suppose P is a property of graphs, definable by a datalog program. Show that P is preserved under extensions and homomorphisms. That is, if G is a graph satisfying P, then

1. every supergraph of G satisfies P

(4 Points)

2. if h is a graph homomorphism, then h(G) satisfies P.

(6 Points)

Hint: Suppose there is an EDB schema that has the binary predicate edge as its only element and that P is defined for some IDB predicates, among which there is a nullary predicate ans. A graph G is given by an instance I_G of the EDB.

A graph G has property P if program P returns the answer ans() over the instance \mathbf{I}_G .

For the first part of the question, you consider two graphs G, H, where H is a supergraph of G. For the instances, this means that $\mathbf{I}_G \subseteq \mathbf{I}_H$. The task is to show that P returns ans() over \mathbf{I}_H if P returns \mathbf{I}_G .

For the second part we assume there is a surjective function $h: adom(\mathbf{I}_G) \to adom(\mathbf{I}_H)$ such $edge(c,d) \in \mathbf{I}_G$ if and only if $edge(h(c),h(d)) \in \mathbf{I}_H$. Again, the task is to show that P returns ans() over \mathbf{I}_H if P returns \mathbf{I}_G . An approach to showing could be to use the definition of datalog semantics by proof trees.

4. Which Properties are Definable by a datalog Program?

Which of the following properties of directed graphs is definable by a datalog program?

- 1. There is a trivial cycle (a trivial cycle consists of a single node a and an edge $\langle a, a \rangle$).
- 2. There is a nontrivial cycle.
- 3. For the two distinguished nodes a and b, there is a path between a and b.
- 4. For the two distinguished nodes a and b, there is no path between a and b.
- 5. The number of nodes is even.
- 6. There is a Hamiltonian path.

(12 Points)

Hint: To show that a property is definable, give a suitable datalog program. To show that a property is not definable, use the previous exercise.

Submission: 3 June 2009, 10:30 am, at the lecture or by email