
A Computationally Grounded Dynamic Logic of
Agency, with an Application to Legal Actions

Andreas Herzig1, Tiago de Lima2, Emiliano Lorini1, Nicolas Troquard3

1 University of Toulouse and CNRS, IRIT, Toulouse, France
2 University of Artois and CNRS, Lens, France

3 LOA-ISTC-CNR, Trento, Italy

Abstract. In this article, we propose a Dynamic Logic of Propositional Control
DL-PC in which the concept of ‘seeing to it that’ (abbreviated stit) as studied
by Belnap, Horty and others can be expressed; more precisely, we capture the
concept of the so-called Chellas stit theory and the deliberatibe stit theory, as
opposed to Belnap’s original achievement stit. In this logic, the sentence ‘group
G sees to it that ϕ’ is defined in terms of dynamic operators: it is paraphrased as
‘group G is going to execute an action now such that whatever actions the agents
outside G can execute at the same time, ϕ is true afterwards’. We also prove
that the satisfiability problem is decidable. In the second part of the article we
extend DL-PC with operators modeling normative concepts, resulting in a logic
DL-PCLeg. In particular, we define the concepts of ‘legally seeing to it that’
and ‘illegally seeing to it that’. We prove that the decidability result for DL-PC
transfers to DL-PCLeg.
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1 Introduction

The study of formalisms enabling reasoning about individual and group abilities is a
very active research field in AI and in multiagent systems. For instance, in the last
decade, Alternating-time Temporal Logic (ATL) [5] has been prominent in the logical
analysis of multiagent systems [28, 20, 1]. Albeit complex, ATL satisfiability is decid-
able, and there exist model representation languages, algorithms, and tools for model
checking ATL formulas [4, 3, 21, 27]. These tools allow to verify properties of multia-
gent systems such as whether a set of services can cooperate in a way to achieve some
desired goal.

However, logics of strategic ability are not appropriate when we want to study mul-
tiagent systems involving actual agency. Actual agency is ubiquitous in the description
of agents’ behaviors: the strategising of competing or cooperating agents is based on
what they observe (know, believe) about what the other agents are actually doing. For
instance, a Nash equilibrium is realized when every agent plays the best response to
what is the actual action of the other players. This at least partly explains why logics of
‘seeing to it that’ —abbreviated stit— are most prominent in philosophy of action [19,
10]. Its basic construction are formulas of the form Stitiϕ that read “agent i sees to it
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that ϕ”. The focus is therefore on the result of the action, i.e., ϕ (and not on the action
itself).

A drawback that is common to ATL and stit logics is that their models are not
what has been called ‘computationally grounded’. That is, the semantics of computa-
tions is given in terms of traditional possible worlds semantics, at a level of description
that is not related to what would be an actual computer implementation of it [34]. In
particular, model checking a stit formula is easy, but representing the models is unfea-
sible in practice for any non-trivial multiagent system. This contrasts with, e.g., logic of
propositional control CL-PC, within which the coalition logic fragment of ATL can be
reconstructed [18, 17, 16, 13]. The models of these logics were inspired by the model
representation languages for ATL [4]. They not only have a function associating to each
propositional variable a truth value, but also a function associating to each propositional
variable the agent controlling it, where ‘control’ means that the agent is able to set the
value of the variable to true or false. These logics may legitimately be called computa-
tionally grounded because they are equipped with models that can be readily captured
by a concise syntactic description. This makes it interesting to represent multiagent
systems in terms of models of propositional control.

Our aim in this paper is to provide a logic that both (i) allows to reason about actual
agency and (ii) has models that are computationally grounded.

We use dynamic logics as our starting point. The latter were invented and used in
computer science and artificial intelligence in order to reason about actions performed
by computer programs and artificial agents. Their basic construction are formulas of
the form 〈π〉ϕ, read “there is a possible execution of π such that ϕ is true afterwards”.
The focus is therefore both on the means (viz. the program π) and the result (viz. the
proposition ϕ). Beyond means-end reasoning, one of the advantages of dynamic logics
is that they can have a rich ontology of program operators.1 These operators allow to
express standard program constructions such as if...then...else... or while. How-
ever, dynamic logics also have some shortcomings as a logic of agency. First of all,
agents are not part of its ontology. Second, in its standard reading the modal operator
〈π〉 is not about the performance of an action, but rather about the opportunity to per-
form an action, cf. the above reading of 〈π〉ϕ. Third and just as ATL and stit logics, the
standard dynamic logics with Kripke semantics (such as PDL) are not computationally
grounded.

The first thing we do is to add agents to the picture. It is straightforward to replace
the atomic programs in the grammar of actions by atomic actions of the form (i, e),
where i is the agent performing action e. This alone would be mere cosmetics: inspired
by logics of propositional control, we moreover introduce in the semantics the notion
of an agent’s action repertoire of atomic programs: i can execute e only if e is in i’s
repertoire.

The second thing we do is to complement the ‘can’ modality of dynamic logic by
a ‘do’ operator. The latter operator was used before e.g. in [11, 12]. We then can write

1 Sequence of events, non-determinism, interleaving, unbounded finite iterations, infinite itera-
tions, intersection, negation, converse, etc.
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both 〈α〉ϕ, reading “there is a possible execution of α such that ϕ true afterwards”, and
〈〈α〉〉, reading “α is going to be executed”.

The third thing we do is to use a computationally grounded version of dynamic
logic whose atomic programs are assignments of propositional variables to either true
or false: (i,+p) is i’s action of setting the truth value of p to true, and (i,−p) is i’s
action of setting the truth value of p to false. Hence, the name of an action is not a
simple program name variable like in PDL. The semantics of an assignment action
(i,−p) is hard-coded into its syntactic representation. Therefore, it relieves the system
designer from the tedious (and otherwise impractical) task of specifying manually the
transition system. This is of course what would be sought after in the implementation of
a sensible modelling tool for dynamic logics. In this paper we study our logic directly
over grounded models.

In the dynamic logic literature there are only very few papers about assignments,
that are viewed there as particular programs [25, 33, 32]. More recently assignments
were studied in dynamic epistemic logics [26, 31, 29]. We here combine them with
agents into actions, just as in logics of propositional control. A notion of actual agency
of a coalition of agentsG is captured by what is true of the world whatever the valuation
of the variables under the control of the agents outside G is.

Altogether, we provide (i) a logic of actual agency based on models that are (ii) com-
putationally grounded, but (iii) still as rich as stit models, while (iv) enjoying decidabil-
ity of satisfiability. The latter property contrasts with stit logics: reasoning about coali-
tional agency in the original branching-time stit models is undecidable [14]. (Some
interesting variants are however decidable [6].)

The rest of the paper is organized as follows. In the next section we present the
syntax, semantics and some mathematical properties of our dynamic logic of proposi-
tional control DL-PC; in particular we prove decidability of the satisfiability problem.
In Section 3, we illustrate the logic on a case study of voting and legal voting. We are
naturally led to propose an extension of our logic to model legal and illegal action. We
conclude in Section 4.

2 Dynamic logic of propositional control DL-PC

We now introduce the dynamic logic of propositional control DL-PC by defining its
syntax and semantics.

2.1 Syntax

The vocabulary of the DL-PC contains a set P of propositional variables and a finite
non-empty set A of agent names.

Given a propositional variable p ∈ P, +p denotes the positive assignment of p, i.e.,
the event of setting the value of p to true, and −p denotes the negative assignment of
p, i.e., the event of setting the value of p to false. Given a set of propositional variables
P ⊆ P, the set of all positive assignments of the elements of P is

+P = {+p : p ∈ P}
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and the set of all negative assignments is

−P = {−p : p ∈ P}

The set of assignments of variables from P (for short: the set of P -assignments) is

±P = +P ∪ −P

The set of P-assignments is therefore ±P = +P ∪ −P. We use e for elements of ±P.
An individual action is a couple made up of an agent name and the assignment of

a propositional variable. The set of all individual actions is Act = A × ±P. A group
action is a finite set of actions from Act. The set of all group actions is noted GAct. The
set of sequences of group actions is noted GAct∗. The empty sequence is noted nil, and
the typical elements of GAct∗ are noted σ, σ1, etc. Given a group action α ∈ GAct and
a group of agents G ⊆ A, we define G’s part in α as follows:

αG = α ∩ (G×±P) = {(i, e) : (i, e) ∈ α and i ∈ G}

In particular, α∅ = ∅ and αA = α. Clearly, every αG is also a group action from GAct.
The language of DL-PC is the set of formulas ϕ defined by the following BNF:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | 〈〈α〉〉ϕ | 〈α〉ϕ | StitGϕ | Xϕ

where p ranges over P,G ranges over 2A, and α ranges over GAct. The modal operators
〈α〉 and 〈〈α〉〉 are both dynamic operators. The former is about opportunity while the
latter is about agency: 〈〈α〉〉ϕ reads “α is going to be performed and ϕ will be true after
updating by α”, while 〈αG〉ϕ reads “αG can be performed and ϕ will be true after
updating by α”. The modal operator Stit stands for “seeing-to-it-that”: the formula
StitGϕ reads “group G sees to it that ϕ is true”. X is a temporal ‘next’ operator: the
formula Xϕ is read “next ϕ”.

We use the common abbreviations for ∨, →, ↔ and ⊥. When α is a singleton
{(i, e)} we write 〈〈i, e〉〉ϕ instead of 〈〈{(i, e)}〉〉ϕ. The set of propositional variables
occurring in a formula ϕ is noted Pϕ and the set of agents occurring in ϕ is noted Aϕ.
For example, P〈i,−p〉q = {p, q} and A〈i,−p〉q = {i}.

2.2 Models

While the semantics of PDL is in terms of Kripke models the semantics of DL-PC is
not, and models are simply valuations of propositional logic that are augmented by two
further ingredients: first, every agent has a repertoire of assignments that is available to
him; second, there is a successor function which for every sequence of group actions
tells us which group action is going to take place next. Such models consist therefore
of tuples 〈R,S,V〉, where:

– R ⊆ A×±P (the action repertoire)
– S : GAct∗ −→ GAct such that S(σ) ⊆ R for every σ ∈ GAct∗

(the successor function)
– V ⊆ P (the valuation)
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The valuation V provides the set of propositional variables from P that are true. The
repertoire R is a set of group actions: when (i, e) ∈ R then agent i is able to perform
e. S associates to every finite sequence of group actions σ ∈ GAct the group action
S(σ) ∈ GAct that will occur after σ. So S(nil) is the group action that is going to
be performed now. Our constraint that S(σ) ⊆ R makes that every S(σ) respects R:
for example, when (i, e) ∈ S(nil) then according to S agent i performs e next; we then
require e to be in i’s repertoire, i.e., (i, e) ∈ R. Note that the group action ∅ is consistent
with every repertoire. The set (S(nil))G is group G’s part of the next action, i.e., it is
the group action that G will execute now.

2.3 Updating valuations

Just as in dynamic epistemic logic with assignments [30], the dynamic operators are
interpreted as model updates.

The language of DL-PC allows for group actions with conflicting assignments, like
α = {(i,+p), (j,−p)}, where two agents disagree on the new value of the variable p;
actually these two agents might even be identical. We could stipulate that such a group
action cannot be performed. We take a different route: the value of a variable p changes
only if the agents trying to assign p agree on the new value. The other way round, if
the agents disagree on the new value of a variable then this variable keeps its old truth
value.

The update of the modelM = 〈R,S,V〉 by the group action α ∈ GAct is the new
modelMα = 〈Rα,Sα,Vα〉, where:

Rα = R
Sα(σ) = S(α · σ) (where the symbol ‘·’ stands for concatenation of lists)
Vα = (V \ {p : there is (i,−p) ∈ α and there is no (j,+p) ∈ α}) ∪

(V\ {p : there is (i,+p) ∈ α and there is no (j,−p) ∈ α}

Hence Sα(nil) (the group action that will be executed now inMα) is the group action
that will be executed after α inM; and Vα (the set of variables that are true inMα) is
V without those variables that have been set to false by α, plus the new variables that
have been set to true by α.

Clearly, the updateMα of a DL-PC modelM is also a DL-PC model; in particular,
the successor function Sα respectsR.

2.4 Varying the successor function

The stit operator will be evaluated by varying the successor function.
Given two successor functions S and S ′, we say that S and S ′ agree onG’s strategy,

noted S ∼G S ′, if and only if (S ′(σ))G = (S(σ))G for every sequence of group actions
σ. We also say that S ′ is a G-variant of S.

This extends to models: two modelsM = 〈R,S,V〉 andM′ = 〈R′,S ′,V ′〉 agree
on G’s strategy, noted M ∼G M′, if and only if R = R′, V = V ′, and S ∼G S ′.
Clearly, whenM is a DL-PC model andM∼GM′ thenM′ is also a DL-PC model
(simply because the agreement relation only relates DL-PC models); in particular, its
successor function S ′ respectsR.
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2.5 Truth conditions

LetM = 〈R,S,V〉 be a DL-PC model. The satisfaction relation |= between DL-PC
models and formulas is defined as usual for the Boolean operators, plus:

M |= p iff p ∈ V
M |= 〈〈α〉〉ϕ iff α ⊆ S(nil) andMα |= ϕ

M |= 〈α〉ϕ iff α ⊆ R andMα |= ϕ

M |= StitGϕ iff M′ |= ϕ for everyM′ such thatM′ ∼GM
M |= Xϕ iff MS(nil) |= ϕ

In words, in modelM, group G sees to it that ϕ if and only if ϕ is true in every DL-PC
model that agrees withG’s strategy inM. In other words,G sees to it that ϕ if and only
if ϕ obtains due to the actions selected by G, whatever the other agents choose to do.
This is a stit operator à la Chellas [8].

Let us consider the two cases when G is empty and when it is the set of all agents
A. First, Stit∅ϕ means “ϕ is true whatever the agents choose to do”. This is a modal
operator of historic necessity (quantifying over all possible combinations of agents’
choices) just as in stit logics. Second, StitAϕ is equivalent to ϕ because the only model
M′ such thatM∼AM′ isM itself.

2.6 Validity

As usual, a formula ϕ is valid in DL-PC (notation: |= ϕ) if and only if every DL-PC
model satisfies ϕ. A formula ϕ is satisfiable in DL-PC if and only if 6|= ¬ϕ.

In the sequel we discuss some DL-PC validities. Both 〈〈α〉〉 and 〈α〉 are normal
modal diamond operators; in particular the schemas

〈〈α〉〉(ϕ ∧ ψ)→ (〈〈α〉〉ϕ ∧ 〈〈α〉〉ψ)
〈α〉(ϕ ∧ ψ)→ (〈α〉ϕ ∧ 〈α〉ψ)

are valid. The modal operators StitG are normal modal box operators; in particular, the
schemas StitG> and StitG(ϕ ∧ ψ)↔ (StitGϕ ∧ StitGψ) are valid.

The formulas 〈∅〉> and 〈〈∅〉〉> are both DL-PC valid. The formula schema

〈〈αG〉〉> → 〈αG〉>

is valid (because S(nil) ⊆ R). This is a ‘do implies can’ principle: if α is going to be
performed then α can be performed.

If ϕ is a Boolean formula then 〈{(i,+p), (j,−q)}〉ϕ → ϕ is valid. The schema
is however not valid in general; to see this take e.g. 〈〈(i,+q)〉〉> for ϕ. Its converse
ϕ → 〈{(i,+p), (j,−q)}〉ϕ is invalid even when ϕ is restricted to Boolean formulas:
the group action {(i,+p), (j,−q)} is inexecutable as soon as +p is not in i’s repertoire
or +q is not in j’s repertoire.

An interesting DL-PC validity is Stiti(p ∨ q) → (Stitip ∨ Stitiq). Indeed, when
M |= Stiti(p ∨ q) then either p must be in i’s repertoire, or q, or both. This validity
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distinguishes our logic from the logic of the Chellas stit, where the above principle is
invalid. We refer the reader to [13] for further discussions on this issue.

We also observe that 〈〈α〉〉ϕ → Xϕ is invalid. (To see this, note that ϕ → 〈〈∅〉〉ϕ is
valid and that ϕ should not imply Xϕ.)

Finally, the following valid schema expresses the independence of agents:

StitGStitHϕ→ Stit∅ϕ, for G ∩H = ∅

It was shown in [15] that the above schema is the group counterpart to Xu’s axiom
schema of independence of agents AIA which is central in stit logics (that was formu-
lated for the language where the argument of the stit operator is restricted to single-
tons) [8, 7].

2.7 Decidability

We now prove that satisfiability is decidable.
Here are some definitions that we need for our results. The length of a formula is

the number of symbols we need to write it down, including parentheses, ‘〈’, ‘+’, etc.
We denote the length of a formula ϕ by |ϕ|. For example, |〈i,−p〉q| = 2 + 4 + 1 = 7.
Moreover, we define the size |σ| of a sequence of group actions σ as follows:

|nil| = 0

|α · σ| = card(α) + |σ|

where card(α) is the cardinality of the set α.
The dynamic depth of a formula is the maximal number of nested dynamic operators

and ‘next’ operators, defined inductively as:

δ(>) = δ(p) = 0

δ(¬ϕ) = δ(StitGϕ) = δ(ϕ)

δ(ϕ ∧ ψ) = max(δ(ϕ), δ(ψ))

δ(〈α〉ϕ) = δ(〈〈α〉〉ϕ) = δ(Xϕ) = 1 + δ(ϕ)

We are now going to define the size of a finite DL-PC model. Clearly, a finite
DL-PC model should have a finite repertoire and a finite valuation; but how can a
successor function be finite? A priori, the representation of the function S is an infinite
set of couples 〈σ,S(σ)〉, one per sequence σ ∈ GAct∗. A way out is to consider that a
model is finite when R and V are finite and the value of the successor function S is ∅
almost everywhere. Such functions can be represented in a finite way if we drop those
couples 〈σ,S(σ)〉 where S(σ) = ∅ and view S as a partial function. Then the size of
the finite DL-PC modelM = 〈R,S,V〉 can be defined as the sum of the cardinalities
of each of its elements, i.e.

size(M) = card(R) +Σ{σ:S is defined on σ}|σ · S(σ)|+ card(V)

Proposition 1 (Strong fmp). For every DL-PC formula ϕ, if ϕ is DL-PC satisfiable
then ϕ is satisfiable in a model of size O((|ϕ|)2|ϕ|).
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The above proposition can be proved by (1) restricting the depth of the successor
function to the dynamic depth δ(ϕ) of the formula ϕ, setting each S(σ) such that the
length of the sequence σ is greater than δ(¬ϕ) to ∅, and (2) by restricting repertoire,
successor function and valuation to the vocabulary of ϕ.

Proposition 2 (Decidability of satisfiability). The DL-PC satisfiability problem is de-
cidable.

Proof. This follows by [9, Theorem 6.7] from the above strong fmp (Proposition 1)
and the fact that the set of DL-PC models of a given size is recursive (plus the fact that
model checking is decidable).

One can prove that the satisfiability problem is PSPACE hard by encoding the QBF
satisfiability problem. (This is actually already the case for the fragment of the DL-PC
language without the next operator.) We conjecture that it is also PSPACE complete,
but leave a formal proof to future work.

3 Case study: voting and legal voting

In this section, we present an example to illustrate the kind of scenario that can be
formalized in DL-PC. Our logic allows to distinguish three different concepts: (1) the
concept of action repertoire (i.e., which propositional atoms are controlled by a given
agent or coalition of agents), (2) the concept of agency (i.e., what a given agent or coali-
tion of agents brings about), and (3) the concept of capability (i.e., what a given agent
or coalition of agents can bring about). Moreover, in DL-PC the concepts of agency
and capability are grounded on the notion of action repertoire, in the sense that what a
given agent (or coalition) does and can do is determined by its action repertoire. This
contrasts with existing logics of actions and capabilities such as ATL and Coalition
Logic CL, stit theories, Coalition Logic of Propositional Control CL-PC) [18, 17, 16,
13]. For instance, CL and ATL only consider the concept of capability, while stit the-
ories consider both agency and capability but do not allow to model action repertoires.
Finally, in CL− PC one can represent both action repertoires and capabilities, but it
is not clear how the concept of agency can be expressed in this logic. The aim of the
example is to instantiate the three different concepts that are expressible in DL-PC in a
concrete scenario.

We start with a very simple example of voting. The set of agents is A = {1, 2, 3, 4, 5}.
Each agent is a voter who has to choose between two candidates for an election, candi-
date A and candidate B.

We assume that the set of propositional variables P is made up of variables pi,B and
pi,A, one per agent i ∈ A:

P = {pi,A : i ∈ A} ∪ {pi,B : i ∈ A}

The variables pi,B and pi,A describe the two voting options of agent i: pi,B means
‘agent i has voted for candidate A’ and pi,A means ‘agent i has voted for candidate B’.
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We assume that the candidate obtaining the majority of votes is going to be elected.
This latter statement can be formally expressed by the following two abbreviations:

elected(A)
def
=

∨
G⊆A,card(G)>card(A\G)

(∧
i∈G

pi,A

)

elected(B)
def
=

∨
G⊆A,card(G)>card(A\G)

(∧
i∈G

pi,B

)

So elected(A) and elected(B) have to be read respectively ‘candidateA is elected’ and
‘candidate B is elected’. Moreover, we assume that every agent has his voting options
in his action repertoire, namely the action of voting for candidate A and the action of
voting for candidate B, that is,

R = {+pi,A ∈ P : i ∈ A} ∪ {+pi,B ∈ P : i ∈ A}

Finally, we assume that in the initial state of the system all variables pi,A and pi,B are
set to false as nobody has voted, i.e., V = ∅.

First of all, the concept of capability to achieve ϕ can be modelled in DL-PC by
formulas of the form

♦StitGϕ

where the formula ♦ψ abbreviates¬Stit∅¬ψ. The operator ♦ quantifies over all variants
of the successor function S: it is a modal operator of historic possibility. In our example
we may e.g. express that “the group of agents {1, 2, 3} has the capability of making
candidate B elected” by means of the formula ♦Stit1,2,3Xelected(B). For any model
M = 〈R,S,V〉

M, w |= ♦Stit1,2,3Xelected(B)

Let us now suppose that the agents 1, 2 and 3 decide to vote for candidateAwhereas
agents 4 and 5 decide to vote for B, that is,

S(nil) = {+p1,A,+p2,A,+p3,A,+p4,B ,+p5,B}

It follows that in the next state of the system candidate A is going to be elected:

M |= Xelected(A)

Furthermore, the group of agents {1, 2, 3} sees to it that in the next state candidate A is
elected:

M |= Stit{1,2,3}Xelected(A)

In fact, no matter what the agents 4 and 5 have chosen, the joint action of agents 1, 2,
and 3 ensures that in the next state candidate A will be elected. On the contrary, for
every subgroup G of {1, 2, 3} it is not the case that G sees to it that in the next state A
will be elected, that is:

M |=
∧

G⊂{1,2,3}

¬StitGXelected(A)
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For instance, the group {1, 2} does not see to it that in the next state candidate A will
be elected because the result of the election depends on agent 3’s choice (i.e., if agent 3
had not voted for A, A would not have been elected).

Any common voting procedure raises questions about whether a ballot is valid or
not. Probably the most (in)famous recent example is the Florida election recount in the
2000 US presidential elections. What cannot be denied is that in that year, the American
voters saw to it that G.W. Bush was elected. The simple problem we concern ourselves
here is to be able to recognise in logical terms when the actual actions of a group of
agents yield that the group sees to something legally or not, independently of whether
it actually sees to it.

Before proceeding to our case of legal and illegal voting, we propose next an exten-
sion of DL-PC which formalises the concepts of legal action and illegal action.

3.1 Legal and illegal action

We extend the language of DL-PC with three new constructions. The first two express
legal and illegal action, respectively. The formula LStitGϕ reads “G legally sees to it
that ϕ is true”, and the formula IStitGϕ reads “G illegally sees to it that ϕ is true”.
The last construction is an atom of legal action: LegG reads “the group action currently
chosen by G is legal”. We write Legi instead of Leg{i}.

In order to interpret these operators we extend the definition of DL-PC models of
Section 2 as follows. A model is now a quadruple 〈R,LR,S,V〉, where:

– 〈R,S,V〉 is a DL-PC model;
– LR ⊆ Act = A×±P is a repertoire of legal actions.

The repertoire of legal actions LR represents the actions that the agents are authorised
to perform: (i, e) ∈ LR means that agent i is authorised to perform e. So it may be
the case that i has the ontic (‘physical’) ability to perform e but does not have the legal
ability to perform e; and the other way round.

A group action α ∈ GAct is authorised when α ⊆ LR.
The update ofM = 〈R,LR,S,V〉 by the group action α ∈ GAct is the new model

Mα = 〈Rα,LRα,Sα,Vα〉, where Rα, Sα, and Vα are defined as in Section 2.3, and
LRα = LR. Moreover, when varying the successor function we require that not only
the ontic repertoires but also the legal repertoires are kept constant.

The truth conditions for the new primitives are as follows:

M |= LegG iff (S(nil))G ⊆ LR
M |= LStitGϕ iff M |= StitGϕ andM |= LegG

M |= IStitGϕ iff M |= StitGϕ andM |= ¬LegG

Hence, G legally sees to it that ϕ is true if and only if the action G will execute now is
legal and, with that action, G sees to it that ϕ. Similarly, G illegally sees to it that ϕ is
true if and only if, the action G will execute now is not legal and, with that action, G
sees to it that ϕ.
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Validity and satisfiability are then defined as usual. We call the resulting logic
DL-PCLeg.

The next proposition allows to eliminate the operators of legal action and illegal
action.

Proposition 3 (Reduction of IStitGϕ and LStitGϕ).

1. |= LStitGϕ↔ (StitGϕ ∧ LegG)

2. |= IStitGϕ↔ (StitGϕ ∧ ¬LegG)

Our decidability result for DL-PC can be adapted straightforwardly.

Proposition 4 (Strong fmp). For every DL-PCLeg formula ϕ, if ϕ is DL-PCLeg sat-
isfiable then ϕ is satisfiable in a DL-PCLeg model of size O((|ϕ|)2|ϕ|).

Proposition 5 (Decidability of satisfiability). The DL-PCLeg satisfiability problem is
decidable.

Let us examine some of the properties of the operators of legal action and illegal
action.

First of all, differently from the normal modal box operators StitG, operators of
legal and illegal action do not satisfy the axioms of necessity LStitG> and IStitG>.
This means that an agent or group of agents does not necessarily bring about tautologies
in a legal or illegal way. These stit operators resemble the deliberative stit operator
in this respect, which does not satisfy the axiom of necessity either. However, LStit
and IStit differ from the deliberative stit operator in that they satisfy closure under
conjunction: the schemas

LStitG(ϕ ∧ ψ)↔ (LStitGϕ ∧ LStitGψ)

IStitG(ϕ ∧ ψ)↔ (IStitGϕ ∧ IStitGψ)

are both DL-PCLeg valid.
Another important difference between the Chellas stit operators StitG and legal

action operators IStitG is that the former satisfy group monotony while the latter don’t:
if G ⊆ H then the schema StitGϕ → StitHϕ is valid, whereas LStitGϕ → LStitHϕ
is not. This means that when the group G sees to it that ϕ in a legal way, then this does
not necessarily imply that every supergroup H of G sees to it that ϕ in a legal way.
Indeed, there might be some agent in H \ G whose chosen action is illegal. On the
contrary, group monotony is valid for illegal action:

|= IStitGϕ→ IStitHϕ, for G ⊆ H

Therefore, when a group G sees to it that ϕ in an illegal way then every supergroup H
of G sees to it that ϕ in a illegal way.
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3.2 Legal/illegal ballots

We are now able to take over our voting example and enrich it the normative consider-
ation of Section 3.1. We distinguish not only feasible from unfeasible ballots, but also
legal from illegal ballots.

Let us suppose that agent 1 does not meet the legal requirements for voting in the
election even though he participates in the election. For example, we might imagine that
agent 1 falsely claims to be a citizen of the state but actually does not have citizenship.
This implies that the repertoireLR of legal actions does not coincide with the repertoire
R of ontic actions: we have

LR = R \ {+p1,A,+p1,B}

As before, we assume that the agents 1, 2, and 3 vote for candidate A, while agents 4
and 5 vote for candidate B:

Succ(nil) = {+p1,A,+p2,A,+p3,A,+p4,B ,+p5,B}

Therefore group {1, 2, 3} sees to it in an illegal way that in the next state A is elected:

M |= IStit{1,2,3}Xelected(A)

Indeed, 1’s vote counts as an illegal vote and, consequently, the result of the election is
not legal.

4 Conclusion

We have presented a dynamic logic of propositional control DL-PC which accounts for
both individual and group agency, i.e., the fact that an agent or a group of agents sees
to it that a given state of affairs ϕ is true. We have shown that satisfiability in DL-PC
models is decidable. Our decidability result for DL-PC is interesting because we know
that stit logic with individual and group agency is already undecidable [15]. This makes
DL-PC an interesting alternative to stit logics.

We have presented an extension of DL-PC with the concepts of legal and illegal
action and have proven its decidability. Our logic allows to account for the notion of
normative system, defined as a set of prohibitions about the agents’ behavior. As the
set of illegal actions is the complement of the set of legal actions, a normative system
can also be seen as a set of permissions about the agents’ behavior. This definition of
normative system therefore matches the definition accepted by several authors in the
area of normative systems according to whom such a system is a set of constraints on
the agents’ behaviour, which may or may not be followed by the agents; see e.g. [23, 2,
24].

While we provided a decidability result for our logics, we did not axiomatise their
validities. We leave this to future work.

As the reader may have noticed, our logic is not a dynamic logic in the strict sense
because it lacks sequential and nondeterministic composition, iteration and test. This
may be compared to the situation in dynamic epistemic logics, where the extension of
public announcement logic by the Kleene star leads to undecidability [22]. We conjec-
ture that this is not the case for DL-PC, but again leave this to future work.
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