
From Coalition Logic to STIT1

Jan Broersen2

Department of Information and Computing Sciences
Universiteit Utrecht

Utrecht, The Netherlands

Andreas Herzig3

Institut de Recherche en Informatique de Toulouse
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Abstract

STIT is a logic of agency that has been proposed in the nineties in the domain of philosophy of
action. It is the logic of constructions of the form “agent a sees to it that ϕ”. We believe that STIT
theory may contribute to the logical analysis of multiagent systems. To support this claim, in this
paper we show that there is a close relationship with more recent logics for multiagent systems. We
focus on Pauly’s Coalition Logic and the logic of the cstit operator, as described by Horty. After a
brief presentation of Coalition Logic and a discrete-time version (including a next operator) of the
STIT framework, we introduce a translation from Coalition Logic to the discrete STIT logic, and
prove that it is correct.
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1 Introduction

STIT is a logic of agency that has been proposed in the nineties in the domain
of philosophy of action [2]. It is the logic of constructions of the form “agent
a sees to it that ϕ”.

Several versions of this modality have been studied in the philosophical
literature. Here we use the simplest one, viz. the so-called Chellas’ STIT
operator (cstit) [13]. This operator has been generalized to groups of agents
in [14]. Other versions such as the more complex deliberative STIT operator
can be defined from Chellas’.

The semantics of the STIT operator is based on branching time temporal
structures. In this it differs from the “bringing it about” operator whose
semantics is defined in terms of neighborhood models that do not refer to time
[18,5,16]. As a consequence it is more appropriate to study the interaction of
agency and time in a STIT setting than in a “bringing it about” setting.

Up to now, the STIT operator has been used mainly in the logical analysis
of agency and its relation with deontic concepts [14,13]. However, we believe
that STIT theory may contribute to the logical analysis of multiagent systems
in general. To support this claim, we show in this paper that there is a close
relationship with more recent logics for multiagent systems.

We focus on Pauly’s Coalition Logic (CL) [17]. CL has been introduced
to reason about what single agents and groups of agents are able to achieve.
[A]ϕ reads “group A can enforce an outcome state satisfying ϕ”. As shown by
Goranko in [9], CL is a fragment of Alternating-time Temporal Logic (ATL)
that has been proposed by Alur et al. [1]. In this paper we propose a trans-
lation from CL to a discrete version of STIT that includes a next operator.

In [19], a close examination of the differences and similarities of the models
of STIT theory and ATL is undertaken. It is shown that, under the addition
of some specific conditions, the models of the two systems can be seen to obey
similar properties. However, these properties are not necessarily expressible
in the logics of STIT or ATL. So, although from a philosophical point of view,
it may be interesting to look at properties of models as such, here we are
interested in those properties that are expressible in the logics. While [19]
compares the models underlying the logics of ATL (and thus CL) and STIT,
we directly compare the logics of both systems and give a translation.

In Section 2 we offer a brief presentation of Coalition Logic. Section 3
deals with an adapted discrete-time STIT framework. Section 4 presents the
main result of this note: we describe a translation from CL to STIT, and
prove that it is correct. We discuss it in Section 5. Section 6 concludes with
some perspectives of investigations.
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2 Coalition Logic

In what follows, Atm represents a set of atomic propositions, and Agt is a
nonempty set of agents.

A game model is a tuple M = 〈W, {Σa,w|a ∈ Agt, w ∈ W}, o, v〉, where:

• W is a nonempty set of possible worlds (alias moments or states).

• Σa,w is a nonempty set of choices (alias actions) for each agent a ∈ Agt
and moment w ∈ W . From some (abstract) set of actions, a particular

choice σA,w of a group of agents A ⊆ Agt in a world w is defined as σA,w ∈∏
a∈A Σa,w.

• o is a function o :
∏

a∈Agt Σa,w �→ W yielding a unique outcome state for
every combination of choices by agents in Agt.

• v is a valuation function v : Atm �→ 2W .

If every agent in Agt opts for an action, the next state of the world is
completely determined. Following Pauly, as the occasion arises we slightly
generalize the type of the function o, such that it may take two arguments;
o(σA,w, σ(Agt\A),w) then yields the unique outcome state where the agents in
A ⊆ Agt choose σA,w and the agents in the complementary set Agt\A choose
σ(Agt\A),w. Now we can generalize the function o such that it maps moments
and arbitrary choices of groups A into a set of possible outcome states, by
defining: o(σA,w) = {o(σA,w, σ(Agt\A),w) | σ(Agt\A),w ∈

∏
a∈(Agt\A) Σa,w}.

Figure 1 shows an example. At moment w0, agent a has the choice between
repairing a broken lamp (ρa) or remaining passive (λa). Agent b has the
vacuous choice of remaining passive : (λb). If a chooses not to repair, the
system reaches w1. If a chooses to repair, the system reaches w2. In both w1

and w2 both agents can choose to toggle a light switch or not. So, agent a can
choose to toggle (τa) or not (λa), and agent b can choose to toggle (τb) or not
(λb).

Relation with Pauly’s original game structures

Pauly defines the semantics of CL using models M = (W, E, V ), where W
is a nonempty set of states, E is a playable effectivity function W �→ (2Agt �→
22W

) yielding for every state a function mapping sets of agents A to actions,
understood as the set of states A’s simultaneous actions result in. Playable
effectivity functions are defined to obey some specific conditions, making CL
frames equivalent to game frames (as Pauly proves).

The above definition of game structures differs from Pauly’s in two points.
First of all, we do not have the agent names as a separate set in the models.
Also in the STIT models we define in Section 3, contrary to usual practice in
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STIT semantics, we do not include the set of agents in the models. This is
not necessary, since the agent domains of the functions Σa,w and o are simply
assumed to consist of all agents relevant for the interpretation of formulas (like
the domain of the valuation function v is assumed to consist of all proposition
symbols relevant for the interpretation of formulas). The other difference is
that Pauly uses action sets Σa, while we make these sets not only relative to
agents, but also to worlds (i.e. Σa,w). This difference is only cosmetical. Pauly
uses one set of choices (choice names) per agent (Σa) that is reused in every
world. We do not reuse choices (choice names), but use a separate set Σa,w

for every agent/world pair instead. The underlying philosophical question is
whether or not two choices are always different when performed in different
worlds. It is quite easy to see that the two ways of referring to choices do not
have any influence on the logic. In CL (and in ATL), the actions (choices)
are not made explicit in the object language. Therefore, the logic does not
depend on the way we name or refer to actions (choices) in the models. The
only difference then seems that in Pauly’s setting, the number of choices in
every state of a model is the same, while in our setting this is not necessarily
the case. But also this is not essential, since, without affecting satisfiability,
in any of our models we can always use dummy choices (e.g. duplicates of
existing choices) to make the number of choices equal for each world.

Truth conditions

A formula is evaluated with respect to a model and a moment.

M, w |= p ⇐⇒ w ∈ v(p), p ∈ Atm

M, w |= ¬ϕ ⇐⇒ M, w 
|= ϕ

M, w |= ϕ ∨ ψ ⇐⇒ M, w |= ϕ or M, w |= ψ

The intuitive interpretation of a formula [A]ϕ is that the group of agents
A can enforce, in one move, an outcome moment satisfying ϕ. We define the
semantics of the modality as follows:

M, w |= [A]ϕ ⇐⇒ ∃σA,w ∈
∏

a∈A Σa,w, ∀w′ ∈ o(σA,w),M, w′ |= ϕ.

As usual, |=CL ϕ denotes that M, w |= ϕ for every CL model M and world
w in M.

The following complete axiomatization of CL is given in [17]:

(⊥) ¬[A]⊥

(�) [A]�

(N) ¬[∅]¬ϕ → [Agt]ϕ

(M) [A](ϕ ∧ ψ) → [A]ϕ
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(S) [A1]ϕ ∧ [A2]ψ → [A1 ∪ A2](ϕ ∧ ψ) if A1 ∩ A2 = ∅

(RE) from ϕ ≡ ψ infer [A]ϕ ≡ [A]ψ

λa, λb
λa, σb
σa, λb
σa, σb

σa, σb
λa, λb

σa, σb
λa, λb

λa, σb

σa, λb

σa, λb
λa, σb

w2

f ∧ l

f ∧ ¬l

w0

¬f ∧ ¬l

λa, λb ρa, λb

w3

¬f ∧ ¬lw1

Fig. 1. Example of CL model.

On Figure 1, the proposition f stands for “the light is functioning”, and the
proposition l for “the light is on”. Now, for instance, it holds that M, w0 |=
¬[a][b]l. So, agent a cannot ensure that agent b can ensure that the light is
on. But also M, w0 |= [a][b]¬l. So, agent a does have a possibility (namely,
choosing λa) that ensures that subsequently, b can avoid l. Finally, we also
have that M, w0 |= [a][a, b]l. That is, agent a can ensure (namely, choosing
ρa) that the coalition {a, b} can ensure that the light is on (namely, a choosing
τa and b choosing λb or a choosing λa and b choosing τb).

3 Discrete STIT logic

The semantics of STIT is embedded in the branching time framework. It is
based on structures of the form 〈W, <〉, in which W is a nonempty set of
moments, and < is a tree-like ordering of these moments, such that for any
w1, w2 and w3 in W , if w1 < w3 and w2 < w3, then either w1 = w2 or w1 < w2

or w2 < w1. Moreover, we here constrain the < to be a discrete ordering,
that is to say that, given a moment w1, there exists a (not necessarily unique)
successor moment w2 such that w1 < w2 and there is no moment w3 such that
w1 < w3 < w2.
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A maximal set of linearly ordered moments from W is a history. Thus,
m ∈ h denotes that the moment m is on the history h. We define Hist as the
set of all histories of a STIT structure. Hw = {h|h ∈ Hist, w ∈ h} denotes the
set of histories passing through w. An index is a pair w/h, consisting of a mo-
ment w and a history h from Hw (i.e. a history and a moment in that history).

A STIT model is a tuple M = 〈W, Choice, <, v〉, where:

• 〈W, <〉 is a branching-time structure.

• Choice : Agt × W �→ 22Hist

is a function mapping each agent and each
moment w into a partition of Hw. The equivalence classes belonging to
Choicew

a can be thought of as possible choices or actions available to a at
w. Given a history h, Choicew

a (h) represents the particular choice from
Choicew

a containing h, or in other words, the particular action performed
by a at the index w/h. We must have Choicew

a 
= ∅ and Q 
= ∅ for every
Q ∈ Choicew

a .

• v is valuation function v : Atm �→ 2W×Hist.

In STIT models, moments may have different valuations, depending on
the history they are living in (cf. [14, footnote 2 p. 586]). Thus, at any
specific moment, we have different valuations corresponding to the results of
the different (non-deterministic) actions possibly taken at that moment.

In order to deal with group agency, Horty defines in [13, Section 2.4], the
notion of collective choice. Horty first introduces action selection functions sw

from Agt into 2Hw satisfying the condition that for each w ∈ W and a ∈ Agt,
sw(a) ∈ Choicew

a . So, a selection function sw selects a particular action for
each agent at w.

Then, for a given w, Selectw is the set of all selection functions sw. For
every sw ∈ Selectw, it is assumed that

⋂
a∈Agt sw(a) 
= ∅. This constraint

corresponds to the hypothesis that the agents’ choices are independent, in
the sense that agents can never be deprived of choices due to the choices
made by other agents. 5 Moreover, in order to match CL, we assume that⋂

a∈Agt sw(a) is exactly Hw′ of a next moment w′. As explained in [8], this
determinism is not a limitation of the modelling capabilities of the langauge,
since we could introduce a neutral agent “nature”, in order to accommodate
non-deterministic transitions.

5 Note that from this constraint it follows that two agents cannot possibly have an iden-
tical set of choices at the same moment. It also follows that there are not less than∏

a∈Agt
|Choicew

a | histories passing through a moment w. Moreover, at moments where

the minimal number of histories satisfies this constraint, choices at future moments will be
vacuous and deterministic.
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Using choice functions sw, the Choice function can be generalized to apply
to groups of agents (Choice : 2Agt × W �→ 22Hist

). A collective choice for a
group of agents A ⊆ Agt is defined as:

Choicew
A = {

⋂

a∈A

sw(a)|sw ∈ Selectw}

Semantics

Any STIT formula ϕ is evaluated with respect to a model M and an index
w/h.

M, w/h |= p ⇐⇒ w/h ∈ v(p), p ∈ Atm.

M, w/h |= ¬ϕ ⇐⇒ M, w/h 
|= ϕ

M, w/h |= ϕ ∨ ψ ⇐⇒ M, w/h |= ϕ or M, w/h |= ψ

Historical necessity (or inevitability) at a moment w in a history is defined
as truth in all histories passing through w:

M, w/h |= �ϕ ⇐⇒ M, w/h′ |= ϕ, ∀h′ ∈ Hw.

When �ϕ holds at w then ϕ is said to be settled true at w. �ϕ is defined in
the usual way as ¬�¬ϕ, and stands for historical possibility.

There are several STIT operators; we here just introduce the so-called
Chellas’ STIT which is defined as follows:

M, w/h |= [A cstit : ϕ] ⇐⇒ M, w/h′ |= ϕ, ∀h′ ∈ Choicew
A(h).

Intuitively it means that group A’s current choices ensure ϕ, whatever other
agents outside A do.

As we have discrete time, we can also define the temporal next (X) oper-
ator:

M, w/h |= Xϕ ⇐⇒ ∃w′ ∈ h (w < w′,M, w′/h |= ϕ, 
 ∃w′′ ∈ h (w < w′′ <
w′)).

The next operator is not standard in STIT formalisms, but we will need
it to account for a translation of the nesting of coalition modalities from CL.

We write |=STIT ϕ, if for every STIT model M, every h in M and every
moment w in h we have M, w/h |= ϕ.

As shown in [14], both Chellas’ STIT and historical necessity are S5 modal
operators, and |=STIT �ϕ → [A cstit : ϕ].

Figure 2 is an example of a STIT model. A feature of this model that does
not hold for STIT models in general, is that all indexes m/h for a moment m
have the same valuation of atomic propositions. This is done here to stress the
relation with the CL model of Figure 1, and preludes the translation we give in
the next section. For any history h through w0 we have M, w0/h |= ¬�[a cstit :
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w0

w1 w2

w1.1 w1.2 w1.3 w3.0 w3.1w2.0

a

a a

b b

b

¬f ∧ ¬l

¬f ∧ ¬l f ∧ ¬l

f ∧ l f ∧ l
w2.1

¬f ∧ ¬l¬f ∧ ¬l¬f ∧ ¬l f ∧ ¬l
w1.0

f ∧ ¬l¬f ∧ ¬l

Fig. 2. Example of STIT model.

X�[b cstit : Xl]]. Also we have M, w0/h |= �[a cstit : X�[b cstit : X¬l]] and
M, w0/h |= �[a cstit : X�[{a, b} cstit : Xl]], analogous to the properties we
had in the CL model.

4 From Coalition Logic to STIT logic

The structural similarities between the formulas interpreted over the CL model
of Figure 1 and the formulas interpreted over the STIT model of Figure 2,
suggest the translation that is formalized below.

We define the translation tr from CL formulae to STIT formulae as:

tr(p) = �p, for p ∈ Atm

tr(¬ϕ) = ¬tr(ϕ)

tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ)

tr([A]ϕ) = �[A cstit : Xtr(ϕ)]

Note that |=STIT tr(ϕ) ≡ �tr(ϕ). (The proof uses the fact that the logic
of historical necessity � is S5.)

Theorem 4.1 If ϕ is CL-satisfiable then tr(ϕ) is STIT-satisfiable.

Proof. For any game model MCL = 〈WCL, {Σa,w|a ∈ Agt, w ∈ WCL}, o, vCL〉,
we define M′

CL = 〈TCL, {Σa,w|a ∈ Agt, w ∈ TCL}, o, vCL〉 to be the game
model that results from unravelling the function o into a tree. (Thus, WCL ⊆
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TCL, where the possible difference between these sets are semantically indis-

tinguishable duplicates of worlds in WCL.) From similar results in monotone
modal logic [10] and normal modal logic [4], it is immediately clear that the un-
ravelled model is satisfiable if the original model is. The second step is to asso-
ciate with every game-model M′

CL = 〈TCL, {Σa,w|a ∈ Agt, w ∈ TCL}, o, vCL〉,
a STIT model M′

STIT = 〈WSTIT , Choice, <, vSTIT 〉, satisfying the following
conditions:

• WSTIT = TCL

• w < w′ ⇐⇒ ∃u1, . . . , un (u1 = w, un = w′, ∀i < n (∃σAgt,ui
(o(σAgt,ui

) =
ui+1)))

• ∀a, ∀w, Choicew
a = {{h ∈ Hist | h ∩ o(σa,w) 
= ∅}|σa,w ∈ Σa,w}

Thus, every element of Choicew
a collects the histories (recall that these are

sets of states) passing through the outcomes o(σa,w) for some action σa,w.

• ∀w, ∀h ∈ Hw, vSTIT (w/h) = vCL(w)

It is straightforward to check that M′
STIT is indeed a discrete STIT model,

and that for any game tree model there is always exactly one such an associated
model.

We now prove that M′
STIT satisfies a translated formula if the game tree

model it is associated to satisfies the original formula. That is, we prove
(by structural induction on ϕ) that M′

CL, w |= ϕ only if M′
STIT , w/h |=

tr(ϕ), ∀h ∈ Hw. Cases of atomic formulae, negations and disjunctions are
trivial, and we here only present the case where ϕ = [A]ψ. M′

CL, w |=
[A]ψ means that there exists a σA,w such that for all u ∈ o(σA,w) we have
M′

CL, u |= ψ. So by induction hypothesis, for all u ∈ o(σA,w) and for all
h ∈ Hu, M′

STIT , u/h |= tr(ψ). By construction of Choicew
A, this is true

only if there is a partition choice Q ∈ Choicew
A such that for all histories

h ∈ Q we have M′
STIT , u/h |= tr(ψ). By construction of <, this means

that M′
STIT , w/h |= Xtr(ψ). We also can deduce that for all h ∈ Q we

have M′
STIT , w/h |= [A cstit : Xtr(ψ)]. And then for all h ∈ Hw we have

M′
STIT , w/h |= �[A cstit : Xtr(ψ)]. �

Theorem 4.2 If |=CL ϕ then |=STIT tr(ϕ).

Proof. Instead of a semantical proof, we use the axiomatization of [17]: we
prove that the translations of the axioms are valid, and that the translated
inference rules preserve validity.

It is obvious that the translation of (RE) preserves validity.

The translation of axiom (⊥) is ¬�[A cstit : X⊥], which is equivalent to
�¬[A cstit : X⊥]. To see that this is valid note first that |=STIT ¬[A cstit : ⊥]
because each element of Choicew

a is nonempty, for any a and w. From the
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latter it follows that |=STIT ¬[A cstit : X⊥] (because |=STIT ⊥ ≡ X⊥, and
because the STIT logic satisfies the rule of substitution of equivalences). Then
by the necessitation rule for � (which is valid in STIT models) we get |=STIT

�¬[A cstit : X⊥].

The translation of axiom (�) is �[A cstit : X�]. First, |=STIT [A cstit : �]
because the rule of necessitation holds for [A cstit : ]. Second, |=STIT [A cstit :
X�] (because � ≡ X�, and because STIT satisfies the rule of substitution of
equivalences). Third, |=STIT �[A cstit : X�] because |=STIT ψ → �ψ holds
for any ψ (due to the T-axiom for �).

The translation of (N) is ¬�[∅ cstit : X¬tr(ϕ)] → �[Agt cstit : Xtr(ϕ)].
This is valid in STIT because |=STIT X¬ψ ≡ ¬Xψ and |=STIT ¬[∅ cstit :
¬ψ] → [Agt cstit : ψ] for all ψ, due to our supplementary condition that
Choicew

Agt must be a singleton.

The translation of (M) is �[A cstit : X(tr(ϕ) ∧ tr(ψ))] → �[A cstit :
Xtr(ϕ)]. This is STIT-valid first because X is a normal modal operators,
i.e. |=STIT X(tr(ϕ) ∧ tr(ψ)) → Xtr(ϕ). And second because [A cstit : ] and
� are also normal modal operator: from γ1 → γ2 we can infer [A cstit : γ1] →
[A cstit : γ2] and �[A cstit : γ1] → �[A cstit : γ2].

The translation of axiom (S) is �[A1 cstit : Xtr(ϕ)]∧�[A2 cstit : Xtr(ψ)] →
�[A1 ∪ A2 cstit : X(tr(ϕ) ∧ tr(ψ))], for A1 ∩ A2 = ∅. This is valid in STIT
because the choices of a group A in STIT models are constructed just as the
outcome function of A in CL, viz. by pointwise intersection. �

Theorem 4.3 ϕ is satisfiable in CL iff tr(ϕ) is satisfiable in STIT.

Proof. This is an immediate corollary of theorems 4.1 and 4.2. �

5 Discussion

As we have said, our translation requires the addition of two constraints to
the vanilla STIT:

(i) < must be discrete

(ii) ∀w ∈ W, ∃w′ ∈ W (w < w′ and 
 ∃w′′ ∈ W, w < w′′ < w′,
⋂

a∈Agt sw(w) =
Hw′)
Intersection of all agents’ choices is not only nonempty but must exactly
be the set of histories passing through a next moment.

The first constraint permits us to define the X operator, which in the STIT
context accounts for the notion of outcome. Remark that the introduction of
the next operator is essential. The reason is that the coalition operators of
CL may be nested. If we want to express this nesting of operators in the
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STIT context we must be able a facility to move to the next moment. Thus
a translation that does not use an X cannot work. For instance, the one we
get by replacing the final clause by tr2([A]ϕ) = �[A cstit : tr2(ϕ)]), does not
work because it runs into trouble if we translate nested coalition formulas like
[A](p∧¬[A]p). However, we have to be careful where to insert the X operator
in the translation. For instance, the translation we get by replacing the final
clause by tr3([A]ϕ) = �X[A cstit : tr3(ϕ)] does not work because it leads to
violation of the super additivity principle (S).

The second constraint is a direct translation of the CL constraint stating
that when every agent in Agt opts for an action, the next state of the world is
completely determined. In STIT this amounts to defining that the intersection
of Agt’s choices must be exactly the set of histories passing through this
moment.

Given these extra constraints, the idea behind our translation tr, is that
CL models match with discrete STIT models, where atomic propositions are
historically necessary. Clearly, CL can not support different valuations of the
same atom at one state.

The translation thus depends on the historic necessity of atomic proposi-
tions in STIT worlds. However, a satisfiability preserving translation without
the clause tr(p) = �p, for p ∈ Atm is also possible.

tr4(p) = p, for p ∈ Atm

tr4(¬ϕ) = ¬tr4(ϕ)

tr4(ϕ ∨ ψ) = tr4(ϕ) ∨ tr4(ψ)

tr4([A]ϕ) = X�[A cstit : tr4(ϕ)]

A slightly more elaborate proof that this translation works can be made
along the same lines.

Finally we mention that the translations are close to simulations of the
weak modal operator [A]ϕ in terms of the two normal S5 modal operators �ϕ
and [A cstit : ϕ]. Similar simulations have been given for weak modal logics
[7,6]. Another simulation of the CL operator [A]ϕ was recently given by van
der Hoek and Wooldridge [12]. For reasoning about propositional control, they
simulate (although they do not use this terminology) [A]ϕ by �A�Aϕ, where
the diamond and the box are normal modal operators.

6 Conclusion

We have established that Coalition Logic can be embedded in STIT logic.
CL is a fragment of Alternating-time Temporal Logic. Therefore, it would be
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interesting to investigate translations from ATL to STIT. We believe that this
can be done, by introducing strategies into the STIT framework as done in
[3,13].

A more challenging research avenue is to import deontic concepts that have
been investigated in the STIT framework such as in [14,13] into CL and ATL.
It seems that this can be done in a rather straightforward manner.

Already based on our translation, it has been shown in [11] that the prob-
lem of uniform strategies with imperfect knowledge (devised in [15]) can be
solved in STIT.
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