Logics of agency
Applications of STIT

EASSS 2018
Overview of this chapter

- STIT and obligations: “oughts to do”
- Powers in concurrent games and in STIT
- STIT and knowledge “knowing how to play”
Outline

1. STIT and Deontic Logic

2. Power in STIT theories

3. Knowing how to play
\textbf{BT} structures (reminder)

\textit{BT} structure \(\langle \text{Mom}, < \rangle \):

\begin{itemize}
 \item \textbf{History} = maximally \(<\)-ordered set of moments
 \item \textbf{Hist} = set of all histories
 \item \textbf{H}_m = set of histories passing through the moment \(m \)
 \item Explode \textbf{moments} into \textbf{indexes} (moment/history pairs)
 \begin{itemize}
 \item \(m_0/h_3 \not\models \mathbf{F}p \)
 \item \(m_0/h_1 \models \mathbf{F}p \)
 \end{itemize}
\end{itemize}
A $BT + AC$ model is a tuple $\mathcal{M} = \langle Mom, <, Choice, v \rangle$, where:

- $\langle Mom, < \rangle$ is a BT structure;
- $Choice : \text{Agt} \times Mom \rightarrow \mathcal{P}(\mathcal{P}(\text{Hist}))$

 - $Choice(a, m) = \text{repertoire of choices for agent } a \text{ at moment } m$
 - $Choice$ is a function mapping each agent and each moment m into a partition of H_m
- $Choice(a, m) : Hist \rightarrow \mathcal{P}(Hist)$
 - For $h \in H_m$: $Choice(a, m)(h) = \text{the particular choice of } a \text{ at index } m/h$.

- Independence of agents/choices: Let h, m.

 For all collections of $X_a \in Choice(a, m)(h), \bigcap_{a \in \text{Agt}} X_a \neq \emptyset$.

- No choice between undivided histories: if $\exists m' > m \text{ s.t. } h, h' \in H_{m'}$ then $h' \in Choice(a, m)(h)$.

- v is a valuation function $v : \text{Prop} \rightarrow \mathcal{P}(Mom \times Hist)$.
“Chellas” stit:
\[M, m/h \models [G \text{ cstit}: \varphi] \iff M, m/h' \models \varphi \text{ for all } h' \in \text{Choice}(G, m)(h) \]

historical necessity:
\[M, m/h \models \Box \varphi \iff M, m/h' \models \varphi \text{ for all } h' \in H_m \]
A utilitarian deontic model is a tuple \(\mathcal{M} = \langle \text{Mom}, \prec, \text{Choice}, \text{Value}, v \rangle \), where:

- \(\langle \text{Mom}, \prec, \text{Choice}, v \rangle \) is a BT + AC model;
- \text{Value} maps each history \(h \in Hist \) to a real value \(\text{Value} : Hist \rightarrow \mathbb{R} \).

\(\text{Value}(h) \leq \text{Value}(h') \) means that \(h' \) is at least as desirable as \(h \).
Truth value of ought statements

Let $\mathcal{M} = \langle \text{Mom}, <, \text{Choice}, \text{Value}, v \rangle$.

$\mathcal{M}, m/h \models \Box \varphi \iff \exists h' \in H_m$

\[
\begin{cases}
(1) & \mathcal{M}, m/h' \models \varphi \\
(2) & \forall h'' \in H_m: \text{ if } \text{Value}(h') \leq \text{Value}(h'') \text{ then } \mathcal{M}, m/h'' \models \varphi
\end{cases}
\]

(φ is true for some history, and φ is true for all histories at least as desirable.)
Example: “Reparational” oughts

Obligations rising from violations of previous obligations. Example ((Thomason 1984), (Horty 2001)):

- It ought to be the case at the moment m_1 that a will soon board a plane to visit his aunt.
- A: “a the agent will board the plane”;
- B: “a will call his aunt to say that he is not coming”.

At the moment m_1, three histories unfold.
- In h_1, agent a boards the plane.
- In h_2, a does not board the plane and calls his aunt to tell her that he will not be visiting.
- In h_3, a does not board the plane and does not call his aunt to tell her that he will not be visiting.
Example: “Reparational” oughts (ctd)

- $Value(h_1) = 10$
- $Value(h_2) = Value(h_2) = 4$
- $Value(h_3) = Value(h_3) = 0$
- $m_1/_ \models \Box A \land \neg \Box B$
- $m_2/_ \models \Box B$

(Picture from (Horty 2001))
More theses from (Belnap et al. 2001)

Definition (Restricted complement thesis)
A variety of constructions concerned with agents and agency—including deontic statements, imperatives, and statements of intentions, among others—must take agentives as their complements.

Definition (Stit normal form thesis)
In investigations of those constructions that take agentives as complements, nothing but confusion is lost if the complements are taken to be all and only stit sentences.
Roderick Chisholm suggests:

“S ought to bring it about that p” can be defined as “It ought to be that S brings it about that p.” (Chisholm 1964, p. 150)

Agent a ought to see to it that φ:

$$\Box[a \text{ stit} : \varphi]$$
\(\Diamond A \)

\(\neg \Diamond [acctit : A] \)
Logical principles of utilitarian deontic models

Valid principles:
- \boxdot is a normal modal operator
- $\boxdot \varphi \rightarrow \Diamond \varphi$
- $\boxdot \varphi \rightarrow \Box \Box \varphi$
- $\neg (\Box [a \textit{cstit} : \varphi] \land \Box [b \textit{cstit} : \neg \varphi])$
- $\Box [a \textit{cstit} : \varphi] \rightarrow \Box \varphi$

However,
- $\Box \varphi \rightarrow \Box [a \textit{cstit} : \varphi]$ is not valid
- $\Box \varphi \land \Diamond [a \textit{cstit} : \varphi] \rightarrow \Box [a \textit{cstit} : \varphi]$ is not valid either! (next two slides)
Karen buys a horse

- Karen, wishes to buy a horse, but she has only $10,000 to spend and the horse she wants is selling for $15,000;

- We imagine that Karen offers $10,000 for the horse at the moment m (choice K_1);

- It is up to the owner of the horse to decide whether to accept the offer. The history h_1 represents a scenario in which the owner accepts Karen’s offer, h_2 a scenario in which the offer is rejected;

- A is the statement that Karen will become less wealthy by the amount of $10,000;

- The unique best history is h_1, in which the offer is accepted, and, as a consequence, Karen buys the horse and becomes less wealthy by $10,000;

- Since Karen is less wealthy by $10,000 in the unique best history, we must conclude that it ought to be that she is less wealthy by $10,000;

- Of course, Karen also has the ability (throwing away the money) to see to it that she is less wealthy by $10,000 (choice K_2);

- But we would not wish to conclude that Karen ought to see to it that she is less wealthy by $10,000.
Karen buys a horse (ctd)

\[
\begin{array}{cccccc}
 & h_1 & h_2 & h_3 & h_4 & h_5 \\
1 & A & 0 & 0 & 0 & 0 \\
\neg A & A & A & \neg A \\
m & K_1 & K_2 & K_3 & \text{Choice}^m_{\alpha}
\end{array}
\]

(Picture from (Horty 2001))

- $\lozenge A$
- $\lozenge [acstit : A]$
- $\neg \lozenge [acstit : A]$
Criticism of the utilitarian deontic model (risk seeking)

- An agent a is faced with two options at the moment m: to gamble the sum of five dollars (K_1), or to refrain from gambling (K_2).
- If a gambles, there is a history in which he wins ten dollars, and another in which he loses his stake;
- If a does not gamble, he preserves his original stake;
- the utility associated with each history at m is entirely determined by the sum of money that a possesses at the end;
- The letter A stands for the proposition that a gambles;
- $\circ [a\; cstit\; A]$ holds at m.

(Picture from (Horty 2001))
Criticism of the utilitarian deontic model (missing obligations)

If we change the utilities:

\[\neg \Box [a \textit{csit}: A]. \text{Good.} \]

\[\neg \Box [a \textit{csit}: \neg A]. \]

But we should expect that it is wise not to gamble here.
A first solution with ordered choices

Definition (weak preference over choices)

\[X \leq Y \text{ iff } \forall h \in X, \forall h' \in Y : \text{Value}(h) \leq \text{Value}(h'). \]

A “ought to stit” operator with ordered choices:

\[m/h \models [a \ ostit: A] \text{ iff } \exists K \in \text{Choice}(a, m) \text{ such that} \]

1. \(\{m\} \times K \subseteq \|A\| \) and
2. \(\forall K' \in \text{Choice}(a, m) : K' \leq K. \)
Gambling again

\[\neg[a \ ostit : A] \land \neg[a \ ostit : \neg A]\]

\[a \ ostit : \neg A\]
Further problem with multiagency

\(K_2 \) seems preferable for agent \(a \), but it is not the case that \(K_1 \leq K_2 \).
States: choices of others

We define the “strategic contexts” agent a might face.

$$State(a, m) = Choice(\text{Agt} \setminus \{a\}, m) .$$

When there are two players (e.g., previous example):

$$State(a, m) = Choice(b, m) ,$$

and

$$State(b, m) = Choice(a, m) .$$
Choice dominance

Definition (weak choice dominance)

Let $K, K' \in \text{Choice}(a, m)$. $K \preceq_a K'$ iff $K \cap S \preceq K' \cap S$ for every $S \in \text{States}(a, m)$.

On the previous example: $K_1 \prec_a K_2$.
Optimal choice: a second solution

Define:

$$Optimal(a, m) = \{ K \in Choice(a, m) \mid \forall K' \in Choice(a, m), K \prec_a K' \} .$$

When there is a finite number of choices, this revision of $[a ostit : A]$ of works well:

$$m/h \models [a ostit : A] \text{ iff } \{m\} \times K \subseteq ||A|| \text{ for every } K \in Optimal(a, m) .$$
Further problem with infinite repertories of choices

We’d like to have $[a\ ostit : A]$ and $\neg[a\ ostit : \neg A]$.
But $Optimal(a, m) = \emptyset$...
The “ought to stit” operator

We revise $[a \text{ ostit}: A]$ further into:

$m/h \models [a \text{ ostit}: A]$ iff for every $K \in \text{Choice}(a,m)$, if $\{m\} \times K \not\subseteq \|A\|$, then there is $K' \in \text{Choice}(a,m)$ such that:

1. $K \prec_a K'$, and
2. $\{m\} \times K' \subseteq \|A\|$, and
3. $\{m\} \times K'' \subseteq \|A\|$ for each $K'' \in \text{Choice}(a,m)$ such that $K' \preceq_a K''$.

This is obligation to do. Noted $\bigcirc [a \text{ estit}: A]$ in (Harty 2001, p. 77).
Outline

1. STIT and Deontic Logic
2. Power in STIT theories
3. Knowing how to play
A concurrent game model is a tuple $G = (S, \{\Sigma_a | a \in \text{Agt}\}, o, V)$ where:

- S is a nonempty set of states,
- Σ_a is a nonempty set of choices for every agent $a \in \text{Agt}$,
- $o : S \times \prod_{a \in \text{Agt}} \Sigma_a \rightarrow S$ is an outcome function,
- $V : S \rightarrow \mathcal{P}(\text{Prop})$ is a valuation function.

$G, s \models \{C\} \varphi$ iff $\exists \sigma_C \in \Sigma_C, \forall \sigma_{\overline{C}} \in \Sigma_{\text{Agt}\setminus C}$ s.t. $G, o((\sigma_C, \sigma_{\overline{C}})) \models \varphi$

where for every coalition $C \subseteq \text{Agt}$ we note $\Sigma_C = \Pi_{a \in C} \Sigma_a$.

Axiomatics of Coalition Logic

- Propositional Logic
- \(\langle C \rangle \top \)
- \(\neg \langle C \rangle \bot \)
- \(\neg \langle \emptyset \rangle \neg \varphi \rightarrow \langle \text{Agt} \rangle \varphi \)
- \(\langle C \rangle (\varphi \land \psi) \rightarrow \langle C \rangle \varphi \)
- \(\langle C_1 \rangle \varphi \land \langle C_2 \rangle \psi \rightarrow \langle C_1 \cup C_2 \rangle (\varphi \land \psi) \), when \(C_1 \cap C_2 = \emptyset \)
- if \(\vdash \varphi \leftrightarrow \psi \) then \(\vdash \langle C \rangle \varphi \leftrightarrow \langle C \rangle \psi \)
◊[a astit : ϕ] does not capture any kind of power.
◊[a cstit : ϕ] does.

How to embed Coalition Logic?
A discrete-deterministic STIT

Hypothesis (discreteness)

Given a moment m_1, there exists a successor moment m_2 such that $m_1 < m_2$ and there is no moment m_3 such that $m_1 < m_3 < m_2$.

$m/h \models X\varphi$ iff φ is true at the moment immediately after m on h

Hypothesis (determinism)

$\forall m \in Mom, \exists m' \in Mom (m < m' \text{ and } \forall h \in H_{m'}, \text{Choice}(\text{Agt}, m)(h) = H_{m'})$
Translation of Coalition Logic to discrete-deterministic STIT

\[tr(p) = \square p, \text{ for } p \in \text{Prop} \]
\[tr(\neg \varphi) = \neg tr(\varphi) \]
\[tr(\varphi \lor \psi) = tr(\varphi) \lor tr(\psi) \]
\[tr([C]\varphi) = [C]X tr(\varphi) \]

In STIT terminology

“the coalition C has the power to \varphi”

can be paraphrased by

“it is historically possible that C sees to it that next \varphi”

Theorem ([Broersen, Herzig, Troquard 2006])

\(tr \) is a correct embedding of CL into discrete-deterministic STIT.
Example: Ann and Bill switch the light

- Four states: m_0, m_1, m_2, m_3
- li = light is on (at m_3)
- f = lamp is functioning (at m_2 and m_3)
- At moment m_0, agent a has a choice between *repairing* a broken lamp (ρ_a) or *remaining passive* (λ_a). Agent b has the vacuous choice of *remaining passive* (λ_b).
- If a chooses not to repair, the system reaches m_1. If a chooses to repair, the system reaches m_2.
- In m_1, m_2 and m_3 both a and b can choose to *toggle* a light switch (τ_a and τ_b) or *not toggle* (λ_a and λ_b).
- If a repairs at m_0 then a and b ‘play toggling’ between m_2 and m_3
Game model
Corresponding STIT model
Beyond Coalition Logic

From Alternating-time Temporal Logic to Strategic Chellas stit of ability

ATL (Alur, Henzinger, Kupferman 2002):
- concurrent game models
- $\langle\langle C\rangle\rangle X \varphi \mid \langle\langle C\rangle\rangle \varphi U \psi$

Corresponds to (Broersen, Herzig, Tr. 2006, JLC)):
- Models: discrete-time and deterministic STIT
- $p \leadsto \Box p$,
- $\langle\langle C\rangle\rangle X \varphi \leadsto \Diamond_s [C \text{ scstit: } X \varphi]$,
- $\langle\langle C\rangle\rangle \varphi U \psi \leadsto \Diamond_s [C \text{ scstit: } \varphi U \psi]$.
1. STIT and Deontic Logic
2. Power in STIT theories
3. Knowing how to play
CL models vs. \(BT + AC \) models

Coalition Logic

- Concurrent game models
- Neighborhood models (effectivity structures)
- Idea: associate a strategic game (form) to every world

In \(BT + AC \) models, indexes represent both

- the current state of affairs of the world, and
- the current choice/commitment of agents
Ann toggles

- At m_0, the light is off: $m_0 \models \neg li$
- Ann can toggle or skip
- $m_0 \models \langle Ann \rangle li$
 at m_0, “Ann is able to achieve li”
Poor blind Ann – a CL account

- As before, the light is off: $m_0 \models \neg li$
- Ann is blind and cannot distinguish a world where the light is on from a world where the light is off
- $m_0 \models K_{Ann}[Ann]li$
 at m_0, “Ann knows she is able to achieve li”
Adding knowledge

A logical language of action and knowledge should be able to distinguish the following scenarios:

1. The agent a knows it has a particular action/choice in its repertoire that ensures φ, possibly without knowing which choice to make to ensure φ.

2. The agent a ‘knows how to’ / ‘can’ / ‘has the power to’ ensure φ.
Two readings of “having a strategy”

- \(tr(K_C\{C\} \varphi) = K_C \Diamond [C] X \varphi \)
 Group \(C \) knows (\(K \)) there is (\(\exists \)) a choice s.t. for all (\(\forall \)) possible outcomes \(\varphi \)

 - Alternating-time Epistemic Temporal Logic ATEL
 (Wooldridge, van der Hoek 2002)

- We might want: \(\Diamond K_C [C] X \varphi \)
 There is a choice (\(\exists \)), s.t. group \(C \) knows (\(K \)) that for all (\(\forall \)) possible outcomes \(\varphi \)

 - ATEL does not deal with de re strategies (Jamroga 2003), (Schobbens 2004)
 - Several corrections (Schobbens 2004), (Jamroga, van der Hoek 2004), (Jamroga, Ågotnes 2006, 2007)
 - First semantics with STIT (Herzig, Troquard 2006)
Epistemic STIT

Language.

\[\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid X\varphi \mid [C] \varphi \mid K_a \varphi \]

\(BT + AC + K\)-models are tuples \(\mathcal{M} = (\text{Mom}, <, \text{Choice}, \sim, V)\) where:

- \((\text{Mom}, <, \text{Choice}, V)\) is an \(BT + AC\)-model.

- \(\sim \subseteq (\text{Mom} \times \text{Hist}) \times (\text{Mom} \times \text{Hist})\) is a collection of equivalence relations \(\sim_i\) (one for every agent \(i \in \text{Agt}\)) over indexes.

Extra operators:

- \(\mathcal{M}, m/h \models K_i \varphi\) iff for all \(m'/h' \sim_i m/h\), \(\mathcal{M}, m'/h' \models \varphi\)

Every \(K_i\) is a standard epistemic modality. (Hintikka 1962)
Poor blind Ann again

Epistemic relations are over indexes instead of moments.

- $m_i/h_j \models K_{Ann} \lozenge [Ann] X \phi$
 Ann knows she has an action that leads to a lighten moment.

- $m_i/h_j \not\models \lozenge K_{Ann} [Ann] X \phi$
 Ann does not know how to achieve it.
Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman.
Alternating-time temporal logic.

Jan Broersen, Andreas Herzig, and Nicolas Troquard.
Embedding Alternating-time Temporal Logic in Strategic STIT Logic of Agency.

Jan Broersen, Andreas Herzig, and Nicolas Troquard.
From Coalition Logic to STIT.

Jan Broersen, Andreas Herzig, and Nicolas Troquard.
A normal simulation of coalition logic and an epistemic extension.

Jan Broersen, Andreas Herzig, and Nicolas Troquard.
What groups do, can do, and know they can do: an analysis in normal modal logics.

Valentin Goranko and Wojciech Jamroga.
Comparing semantics of logics for multi-agent systems.

Valentin Goranko, Wojciech Jamroga, and Paolo Turrini.
Strategic games and truly playable effectivity functions.

J. F. Horty.
Agency and Deontic Logic.
References II

Andreas Herzig and Nicolas Troquard.
Knowing how to play: uniform choices in logics of agency.

Wojciech Jamroga and Thomas Ågotnes.
Constructive knowledge: what agents can achieve under imperfect information.

Wojciech Jamroga and Wiebe van der Hoek.
Agents that know how to play.

Marc Pauly.
A modal logic for coalitional power in games.

Pierre-Yves Schobbens.
Alternating-time logic with imperfect recall.

Wiebe van der Hoek and Michael Wooldridge.
Tractable multiagent planning for epistemic goals.