Logics of Agency Chapter 4: Resource sensitive agency

Daniele Porello and Nicolas Troquard KRDB Research Center for Knowledge and Data Free University of Bozen-Bolzano

name.surname@unibz.it

EASSS 2018

Overview of this chapter

- We introduce resource sensitive logics, in particular based on linear logic.
- We propose a resource sensitive version of the bringing it about logic BIAT (based on the four principles that we discussed). [PT14, PT15]
- We show a few examples of modelling resource sensitive actions.
- We approach order-sensitivity: sequences of actions, priority, etc.
- Conclusions.

Resource-sensitive agency:

- Actions require resources to be performed,
- e.g. buying/selling an item, moving in an environment, transforming an environment, using a tool, etc.
- In fact, any action in principle requires spending resources to achieve something.
- In case we need to model explicitly the resources used to perform the action, one strategy is to replace classical logic with resource sensitive logics.

Classical logic and naïve specification of actions

Specifying "hammering": if I place a nail (N) and I provide the right force (F), then I can drive a nail (D) with the hammer.

So assume:

$$\vdash N \land F \rightarrow D$$

In classical logic: we cannot say that one hammering action is about one nail and one hammer, that let me drive in one nail:

Why?

Sequent calculi

Sequent calculi were introduced by Gentzen, 1937 to study the proof theory of logics (in particular, of classical and intuitionistic logic).

A sequent is an expression of the form:

$\Gamma \vdash \Delta$

Where Γ are the hypotheses of the sequent and Δ are the conclusions.

The intuitive meaning of the sequent is:

```
\gamma_1 and \gamma_2 \cdots and \gamma_m entail \delta_1 or \delta_2 or \cdots or \delta_m
```

A logic is then defined by means of two types of rules:

- *Structural Rules*: determine the structure of Γ and △ (e.g. a set, a multiset, a list, a tree, etc.)
- Logical Rules: determine the behaviour of logical connectives (e.g. they distinguish the conjunction from the disjunction).

Sequent calculi and resource-sensitivity

The *structural rules* of *contraction*, *weakening*, and *exchange* define how to deal with formulas in a proof:

$$\frac{\Gamma, A, A, \vdash \Delta}{\Gamma, A \vdash \Delta} (\mathsf{C}) \quad \frac{\Gamma \vdash \Delta}{\Gamma, A \vdash \Delta} (\mathsf{W}) \quad \frac{\Gamma, A, B, \Gamma' \vdash \Delta}{\Gamma, B, A, \Gamma' \vdash \Delta} (\mathsf{E})$$

I.e. W, C, and E entail that Γ and Δ are sets.

W, C, and E determine also the behaviour of logical connectives (Girard, 1987).

In particular they make the following two presentations of logical rules are equivalent:

$$\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \land B} \land \quad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \land$$

(multiplicative and additive presentation)

■ By rejecting structural rules, we are lead to define two conjunctions with different behaviour: multiplying contexts (⊗) or identifying them (&).

STRUCTURAL RULES

Unrestricted use of W and C is problematic for modelling the agency:

Identifying tokens of actions (Contraction)

 $\mathsf{E.g.:} \vdash N \to N \land N$

If I place a nail one, then I place it twice

Introducing arbitrary actions (Weakening)

 $\mathsf{E.g.:} \vdash N \land C \to N$

If I can place a nail, I can place it in any case (regardless of the context *C*)

Insensitivity to the order of action (Exchange)

 $\mathsf{E.g.:} \vdash \mathsf{N} \land \mathsf{F} \to \mathsf{F} \land \mathsf{N}$

If I can place a nail and then apply a force, I can apply a force and then place a nail.

Instantiating classical propositional reasoning in terms of actions leads to unintuitive outcomes.

An example from Girard 1995

Consider a petrol engine, in which petrol P causes the motion M:

 $P \vdash M$

Weakening would enable any motion to be caused by a petrol engine:

$$\frac{\vdash M}{P \vdash M}$$
 (W)

Contraction makes miracles, free motion:

$$\frac{P \vdash P \qquad P \vdash M}{P, P \vdash P \land M} (C)$$

BASIC OBSERVATIONS

Need for *weak propositional logics* (substructural logics, i.e. control Weakening and Contraction) to handle resource-sensitive reasoning, e.g.:

- Bunched Implication (O'Hearn, Pym 1999);
- Relevant Logics (Anderson et Al, 1992)
- Linear Logic (Girard 1987).

Modal logics are the preferred tools to deal with agency and action, and more generally with propositional attitudes, e.g.:

- Group beliefs (Lismont, Mongin 1994, Porello 2018);
- Coalitional powers (Pauly 2002);
- Actual agency (Kanger, Belnap, and others).

We will combine both:

Linear Logic with weak (non-normal) modalities.

Resource-sensitive logics of agency

We propose:

- Minimal modal Linear logic:
 - Semantics
 - Hilbert-style axiomatisation
 - Sequent calculus
 - Cut-elimination
 - PSPACE membership of proof-search.
- Modal Linear Logic of Agency: extend the minimal modal linear logic by providing a resource-sensitive version of the core principles of agency.
- Case study: Resource-sensitive agency instantiated by the use of artefacts (hammers, screwdrivers, ..., web services, ...)

A fragment of (Intuitionistic) Linear Logic, \mathcal{L}_{ILL} , defined by the BNF

$$A ::= \mathbf{1} \mid p \mid A \otimes A \mid A \& A \mid A \multimap A$$

where $p \in Atom$.

 $A \otimes B$: A and B ("tensor"; multiplicative (or intensional) conjunction) $A \otimes B$: A and B ("with"; additive (or extensional) conjunction) $A \rightarrow B$: A implies B ("lollipop"; linear implication)

Let $\perp \in Atom$ a designated atom to mean contradiction.

Negation defined: $\sim A \equiv A \rightarrow \bot$.

Other connectives in full Linear Logic: $\otimes; \oplus; !; ?; \mathbf{0}, \top$.

The meaning of linear logic connectives: A menu

- Price: 27 euros,
- Appetiser: Prosciutto e melone/fichi (depending on season)
- Primo: Spaghetti/Gnocchi,
- Drink: Water (as much as you like)

 $Pz \multimap ((P \otimes M) \oplus (P \otimes F)) \otimes (S \& G) \otimes !W$

- $A \multimap B$: consuming one A, you get one B;
- A ⊗ B: you have one copy of A and one of B. E.g. A ⊗ B ⊭ A: in order to sell A and B, we need someone who buys both A and B.
- $A \oplus B$: you have one of the two but you cannot chose;
- A & B: you have one of the two and you can chose;
- IA: use A ad libitum (! reintroduce structural rules)

Models for ILL: Formally

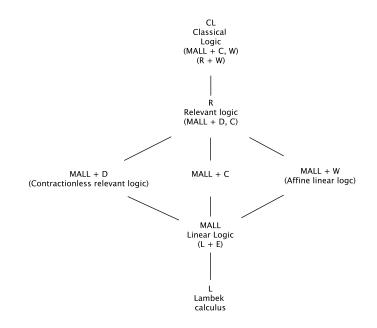
A *Kripke resource model* [Urquhart 1972] is a structure $\mathcal{M} = (M, e, \circ, \prec, V)$, where:

- (M, e, \circ) is a commutative monoid:
 - *M* is a set of resources;
 - is associative and commutative;
 - $\blacksquare m \circ e = m.$
- \blacksquare < is a preorder (reflexive, transitive) on *M*;
- $V : Atom \rightarrow \mathcal{P}(M);$

if m < n, and m' < n', then $m \circ m' < n \circ n'$ (bifunctoriality);

if $m \in V(p)$ and n < m then $n \in V(p)$ (heredity).

HIERARCHY OF LOGICS WRT. RESOURCE-SENSITIVITY



MILL: A MINIMAL MODAL EXTENSION OF ILL

The language of MILL, $\mathcal{L}_{\text{MILL}},$ then becomes

 $A ::= \mathbf{1} | p | A \otimes A | A \multimap A | \Box A$ where $p \in Atom$.

We add a neighborhood function [Chellas 1980] to Kripke resource models:

 $N: M \to \mathcal{P}(\mathcal{P}(M))$

Truth condition:

 $m \models \Box A \text{ iff } ||A|| \in N(m)$ $m \models A \multimap B \text{ iff } \forall n, \text{ if } n \models A, \text{ then } m \circ n \models B.$ $m \models A \otimes B \text{ iff } \exists m_1, m_2, \text{ s.t. } m_1 \circ m_2 < m, m_1 \models A,$ $m_2 \models B.$ $m \models A \& B \text{ iff } m \models A \text{ and } m \models B.$

Definition

A modal Kripke resource model is a structure $\mathcal{M} = (M, e, \circ, \prec, N, V)$ such that:

- (M, e, \circ, \prec) is a Kripke resource frame;
- N is a neighborhood function such that:

```
if X \in N(m) and n < m then X \in N(n)
```

 \blacksquare V is a valuation function.

It is readily checked every $A \in \mathcal{L}_{MILL}$ satisfies heredity:

Proposition

For every formula A, if $m \models A$ and m < m', then $m' \models A$.

Sequent calculus \vdash

 Γ and Γ' are finite multisets of formulas. (Exchange rule holds implicitly.)

$\overline{A \vdash A}$ ax	$\frac{\Gamma, A \vdash C \qquad \Gamma' \vdash A}{\Gamma, \Gamma' \vdash C} \text{ cut}$
$\frac{\Gamma, A, B \vdash C}{\Gamma, A \otimes B \vdash C} \otimes L$	$\frac{\Gamma \vdash A}{\Gamma, \Gamma' \vdash A \otimes B} \otimes R \frac{\Gamma \vdash A}{\Gamma \vdash A \otimes B}$
$\frac{\Gamma \vdash A \qquad \Gamma', B \vdash C}{\Gamma', \Gamma, A \multimap B \vdash C} \multimap L$	$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B} \multimap R$
<u>Γ⊢C</u> Γ,1⊢C 1L	<u>⊢1</u> 1R
<u>A ⊢ B</u>	$\frac{B \vdash A}{A \vdash \Box R} \Box$ (re)

 $\Box A \vdash \Box B$

Hilbert system \vdash_{H}

$$= A \multimap A$$

$$= (A \multimap B) \multimap ((B \multimap C) \multimap (A \multimap C))$$

$$= A \multimap (B \multimap C) \multimap (B \multimap (A \multimap C))$$

$$= A \multimap (B \multimap A \otimes B)$$

$$= A \multimap (B \multimap C) \multimap A \otimes B \multimap C$$

$$= 1$$

$$= 1 \multimap (A \multimap A)$$

$$\neg -rule: if \vdash_{H} A, \vdash_{H} A \multimap B then \vdash_{H} B$$

$$\Box(re): if \vdash_{H} A \multimap B and \vdash_{H} B \multimap A then \vdash_{H} \Box A \multimap \Box B$$

Theoretical results I

Theorem

Correspondences

- *if* \models $\Gamma^* \multimap A$, *then* $\Gamma \vdash A$ (completeness of \vdash)
- \blacksquare $\Gamma \vdash A$ iff $\Gamma \vdash_H A$ (equivalence of Sequents and Hilbert)
- *if* $\Gamma \vdash_H A$, *then* $\models \Gamma^* \multimap A$ (soundness of \vdash_H)

Where $\Gamma^{\star} = \varphi_1 \otimes \cdots \otimes \varphi_n$, for $\varphi_i \in \Gamma$.

Theoretical results II

Theorem

Cut elimination holds for MILL.

I.e. there exists a normal form of proofs of the sequent calculus.

E.g., proof by rediuction steps:

$$\frac{B \vdash C \quad C \vdash B}{\Box B \vdash \Box C} \Box (\text{re}) \quad \frac{C \vdash D \quad D \vdash C}{\Box C \vdash \Box D} \Box (\text{re})$$

is reduced by replacing the cut on $\Box C$ by two "lesser cuts" on C.

$$\frac{\underline{B} \vdash C \qquad C \vdash D}{\underline{B} \vdash D} \operatorname{cut} \qquad \frac{\underline{D} \vdash C \qquad C \vdash B}{\underline{D} \vdash B} \Box \operatorname{(re)} \operatorname{cut}$$

Theoretical results III

Theorem

Proof search complexity for MILL is in PSPACE.

This is a membership result, due to the chose fragment of intuitionistic multiplicative additive linear logic (MALL). A hardness result holds for the full MALL.

ACTUAL AGENCY

 $\square_a A$: "agent *a* brings about *A*."

Principles:

If two statements are equivalent, then bringing about one is equivalent to bringing about the other.

• if $\vdash_{\mathsf{H}} A \multimap B$ and $\vdash_{\mathsf{H}} B \multimap A$ then $\vdash_{\mathsf{H}} \Box_a A \multimap \Box_a B$

2 If something is brought about, then this something holds.

 $\blacksquare \Box_a A \multimap A$

It is not possible to bring about a tautology.

If $\vdash_{\mathsf{H}} A$ then $\vdash_{\mathsf{H}} \Box_a A \multimap \bot$

If an agent brings about two things concomitantly then the agent also brings about the conjunction of these two things.

 $\square \Box_a A \otimes \Box_a B \multimap \Box_a (A \otimes B)$

Sequent rules (extends the calculus for ILL)

Linear BIAT

$$\frac{A \vdash B \qquad B \vdash A}{\Box_a A \vdash \Box_a B} \Box_a(\text{re})$$

$$\frac{\Gamma, A \vdash B}{\Gamma, \Box_a A \vdash B} \operatorname{act}(a) \qquad \frac{\Gamma \vdash \Box_a A \qquad \Delta \vdash \Box_a B}{\Gamma, \Delta \vdash \Box_a (A \otimes B)} \Box_a \otimes$$

$$\frac{\vdash A}{\Box_a A \vdash \bot} \sim \operatorname{nec}$$

Theoretical results for Linear BIAT I

Theorem (Completeness)

The sequent calculus (Hilbert system) for Linear BIAT is sound and complete wrt the class of modal Kripke resource frames that satisfy:

- 1 (~nec) requires: if $X \in N_a(w)$ and $e \in X$, then $w \in V(\bot)$.
- 2 (act(a)) requires: if $X \in N_a(w)$, then $w \in X$.

B Define
$$X \circ Y = \{x \circ y \mid x \in X \text{ and } y \in Y\}$$
 and
 $X^{\uparrow} = \{y \mid y \ge x \text{ and } x \in X\}$:
 $(\Box_a \otimes)$ requires: if $X \in N_a(x)$ and $Y \in N_a(y)$, then
 $(X \circ Y)^{\uparrow} \in N_a(x \circ y)$.

Theoretical results for Linear BIAT II

Theorem (Cut elimination)

Cut elimination holds for Linear BIAT

Theorem

Proof search complexity for Linear BIAT is in PSPACE

AN APPLICATION: ARTEFACTS

- Artefacts are special kind of objects that are characterized by the fact that they are designed to achieve a goal in a particular environment.
- An important aspect of artefacts is their interaction with the environment: with the *agents* that use artefacts to achieve a specific goal and with the *resources* required to achieve that goal.
- A logical modeling of artefacts means:
- the function of the artefact is represented by a logical formula;
- the behaviour of the artefact in the environment is captured by means of a form of reasoning.

Very simple artefact and person-artefact interaction

An electric screwdriver has two components:

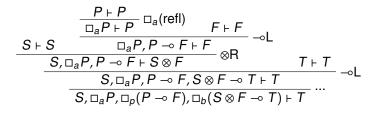
- A power-pistol (*p*) produces some rotational force (*F*) when the button is pushed (*P*): □_p(*P* ⊸ *F*).
- The screwdriver bit (b) tightens a loose screw (S) when a rotational force (F) is applied: $\Box_b(S \otimes F \multimap T)$.

Suppose that:

- We have an electric screwdriver (*p* and *b*);
- We have a loose screw (S);
- **agent** *a* pushes the button of the pistol $(\Box_a P)$.

We can have a tighten screw (T), as the provability of the following sequent shows:

$$S, \Box_a P, \Box_p (P \multimap F), \Box_b (S \otimes F \multimap T) \vdash T$$



We cannot have two tighten screws:

$$S, \Box_a P, \Box_p (P \multimap F), \Box_b (S \otimes F \multimap T)) \nvDash T \otimes T$$

- Formulas encode the function of the artefact
- Provability shows the achievability of the goal in a given environment
- A proof encodes then the actualisation of the behaviour of the artefact in a given environment. The execution of the artefact in a given context.

Order-sensitivity I

We can drop the exchange rule, too.

$$\frac{\Gamma, A, B, \Delta \vdash C}{\Gamma, B, A, \Delta \vdash C} (\mathsf{E})$$

Extension to partially commutative Linear Logic (PCL) (De Groote, Retoreé, et al):

■ non-commutative multiplicative conjunction ⊙:

• $A \odot B$ reads "first A then B";

two order sensitive linear implications \ and / (like in Lambek Calculus).

Talking about sequences of actions in the logics of actual agency:

- $\square_a(A \odot B)$ reads "*a* does *A* followed by *B*";
- $(\square_a A) \odot (\square_b B)$ reads "first *a* brings about *A* then *b* brings about *B*".

The language of modal PCL extends the language of MILL by adding the following operators:

The non-commutative tensor noted by \odot and the two order sensitive implications noted \backslash and /:

 $A ::= \mathbf{1} | p | A \otimes A | A \& A | A \multimap A | A \odot A | A \setminus A | A/A | \Box A$

where $p \in Atom$.

PCL - Structural rules

$$\frac{\Gamma[\Delta_{1}, (\Delta_{2}, \Delta_{3})] \vdash A}{\Gamma[(\Delta_{1}, \Delta_{2}), \Delta_{3})] \vdash A}, a1 \qquad \frac{\Gamma[(\Delta_{1}, \Delta_{2}), \Delta_{3})] \vdash A}{\Gamma[\Delta_{1}, (\Delta_{2}, \Delta_{3})] \vdash A}, a2$$

$$\frac{\Gamma[\Delta_{1}; (\Delta_{2}; \Delta_{3})] \vdash A}{\Gamma[(\Delta_{1}; \Delta_{2}); \Delta_{3})] \vdash A}; a1 \qquad \frac{\Gamma[(\Delta_{1}; \Delta_{2}); \Delta_{3})] \vdash A}{\Gamma[\Delta_{1}; (\Delta_{2}; \Delta_{3})] \vdash A}; a2$$

$$\frac{\Gamma[\Delta_{1}, \Delta_{2}] \vdash A}{\Gamma[\Delta_{2}, \Delta_{1}] \vdash A}, com \qquad \frac{\Gamma[\Delta_{1}; \Delta_{2}] \vdash A}{\Gamma[\Delta_{1}, \Delta_{2}] \vdash A} ent$$

PCL - LOGICAL RULES

$$\frac{\Gamma[A;B] \vdash C}{\Gamma[A \odot B] \vdash C} \odot L \qquad \frac{\Gamma \vdash A}{\Gamma; \Gamma' \vdash A \odot B} \odot R$$

$$\frac{\Gamma \vdash A}{\Delta[\Gamma; A \setminus B] \vdash C} \setminus L \qquad \frac{A; \Gamma \vdash B}{\Gamma \vdash A \setminus B} \setminus R$$

$$\frac{\Gamma \vdash A}{\Delta[B/A; \Gamma] \vdash C} / L \qquad \frac{\Gamma; A \vdash B}{\Gamma \vdash A/B} / R$$

The axioms of MILL hold, plus: we have to rephrase the axiom \Box_a (refl) for mixed commutative and non-commutative context and add an axiom for combining sequences of actions:

$$\frac{\Gamma[A] \vdash B}{\Gamma[\Box_a A] \vdash B} \Box_a(\text{refl}) \quad \frac{\Gamma \vdash \Box_a A}{\Gamma; \Delta \vdash \Box_a (A \odot B)} \Box_a \odot$$

Semantics

- The model is now specified by $\mathcal{M} = (M, e, \circ, \bullet, \ge, N, V)$.
- Bifunctoriality is assumed also for •: if $m \ge n$, and $m' \ge n'$, then $m \bullet m' \ge n \bullet n'$.
- The entropy principle is captured in the models by means of the following constraint: for all $x, y, x \circ y \ge x \bullet y$.
- If *M* satisfies all these conditions, we call it a partially commutative modal Kripke resource model.

The new truth conditions are the following:

 $m \models_{\mathcal{M}} A \odot B$ iff there exist m_1 and m_2 such that $m \ge m_1 \bullet m_2$ and $m_1 \models_{\mathcal{M}} A$ and $m_2 \models_{\mathcal{M}} B$. $m \models_{\mathcal{M}} A \setminus B$ iff for all $n \in M$, if $n \models_{\mathcal{M}} A$, then $n \bullet m \models_{\mathcal{M}} B$. $m \models_{\mathcal{M}} B/A$ iff for all $n \in M$, if $n \models_{\mathcal{M}} A$, then $m \bullet n \models_{\mathcal{M}} B$.

Note: if $m \models A \otimes B$, then by $m_1 \circ m_2 \ge m_1 \bullet m_2$ and heredity, we have $m \models A \odot B$.

$$\frac{S \vdash S}{S; \Box_{i}F \vdash S \odot F} \Box_{i}(\text{refl}) = \frac{F \vdash F}{\Box_{i}F \vdash F} \odot R \qquad T \vdash T}{\frac{(S; \Box_{i}F); S \odot F \setminus T \vdash T}{S; \Box_{i}F; \Box_{s} \bullet (S \odot F \setminus T) \vdash T} \Box_{s} \bullet (\text{refl})}$$

Conclusion and future work

- A logic for reasoning about resource sensitive-agency: the linear propositional part takes care of resource dependencies and the modal part accounts for agency.
- We presented a number of results that show that MILL and Linear BIAT are logically well behaved systems.
- Future work:
 - Extend the intuitionistic fragment to full classical linear logic, relvant logics, bunch implication.
 - Provide a resource-sensitive account of a number of logic of agency, e.g. Coalition Logic.

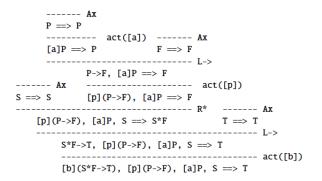
Conclusion and future work I: planning

A logical modelling of resource sensitive planning:

- Formulas encode the resource sensitive description of the actions and the goals.
- Provability shows the achievability of the goal in a given environment
- A proof encodes then the execution of the goal in a given environment.

AN AUTOMATICALLY GENERATED PLAN¹

prove> [b](S*F->T),[p](P->F),[a]P,S ==> T

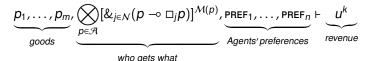


¹http://www.loa.istc.cnr.it/personal/troquard/SOFTWARES/MLLPROVER/mllprover.html

Conclusion and future work II: Agents negotiation

A logical modelling of agent-based economic actions (negotiation) ([PE10a, PE10b]):

- Formulas encode economic actions (buying, selling, etc).
- Provability of a suitable sequent means the possibility of concluding a deal.
- A proof of the sequent encodes the execution of the economic deal.



where $PREF_j$ is a formula expressing buying or selling items involving *j*, e.g.

$$\Box_j(p\otimes q\otimes r)\to u^j$$

Summing up

- We discussed the foundation of the modelling of actions in the tradition of the logic of agency.
- We focussed in particular on STIT and on BIAT.
- We proposed a reformulation of BIAT in the realm of resource sensitive logics.
- We investigated the theoretical properties of those logics.
- We discussed a few modelling examples of the application of a resource sensitive logic of agency.

References I

Daniele Porello and Ulle Endriss.

Modelling combinatorial auctions in linear logic.

In Proceedings of the 12th International Conference on the Principles of Knowledge Representation and Reasoning (KR-2010), May 2010.

Daniele Porello and Ulle Endriss.

Modelling multilateral negotiation in linear logic.

In ECAI 2010 - 19th European Conference on Artificial Intelligence, Lisbon, Portugal, August 16-20, 2010, Proceedings, pages 381–386, 2010.

Daniele Porello and Nicolas Troquard.

A resource-sensitive logic of agency.

In Proceedings of the 21st European Conference on Artificial Intelligence (ECAI 2014), pages 723–728, August 2014.

Daniele Porello and Nicolas Troquard.

Non-normal modalities in variants of linear logic.

Journal of Applied Non-Classical Logics, 25(3):229-255, 2015.