
Data and Process Modelling
Lab 5. UML Classic Diagrams and ORM

Marco Montali

KRDB Research Centre for Knowledge and Data
Faculty of Computer Science

Free University of Bozen-Bolzano

A.Y. 2015/2016

Marco Montali (unibz) DPM - Lab 5.UML-ORM A.Y. 2015/2016 1 / 12



UML: Modeling Standard for OO Software Engineering

• Born from:
I 3 amigos:

F Rumbaugh’s Object-
modeling technique;

F Booch’s OO design;
F Jacobson’s OO software

engineering method.
I Harel’s state-charts.

• OMG standard since 1997.

• Family of notations:
I Structure diagrams: class/object diagram, component, composite

structure, deployment, package, profile.
I Dynamic diagrams:

F Behavior: use case, state machine, activity.
F Interaction: communication, interaction overview, sequence, timing.

Marco Montali (unibz) DPM - Lab 5.UML-ORM A.Y. 2015/2016 2 / 12



UML Class Diagrams
Used for object-oriented logical modelling, with incremental refinements.

• First step: structural conceptual modelling
; alternative to ORM, with three main distinctions:

I No preferred identification schemes.
I Distinction between relationships and attributes.
I ORM much more expressive than UML in terms of graphical

constraints. UML complements the graphical notation with textual
constraints (cf. OCL).

• Second step: logical-level information related to object-oriented
software development.

I Visibility attributes (+: public, –: private, #:protected, ∼: package).
I Relationships navigation.
I Link to behavioral aspects (operations).

Student
- id: long
#name: String
#surname: String

+ registerTo(Exam e)

Marco Montali (unibz) DPM - Lab 5.UML-ORM A.Y. 2015/2016 3 / 12



Object Identification

An object is implicitly identified by an internal object identifier (e.g.,
memory address).

Preferred identification schemes and uniqueness constraints can be added
as annotations (cf. vertical layout for database schemas).

Student
- id: long {P}
#name: String {U1}
#surname: String {U1}

+ registerTo(Exam e)

Marco Montali (unibz) DPM - Lab 5.UML-ORM A.Y. 2015/2016 4 / 12



Attributes

Properties relevant for a class.

Define relations that are “polarized” by the class (not always easy to
decide how).

Multiplicity
By default, attributes are mandatory and single valued. To override the
default, the following annotations can be used:

• 0..1: optional single valued.
• 0..∗ (or simply ∗): zero or more.
• 1..∗: one or more.
• n..∗: at least n.
• n..m: at least n and at most m.

Marco Montali (unibz) DPM - Lab 5.UML-ORM A.Y. 2015/2016 5 / 12



Associations

Fact types of arity ≥ 2.
Unary fact types encoded using boolean attributes.

• Binary associations: depicted as lines, possibly annotated with
multiplicity constraints.

• Higher arity associations: depicted with a diamond, usually without
multiplicity constraints (for the sake of readability).

Person
name: String
ccnumber: String [0..1]

InternetProvider
name: String

PhoneConnection
feature: String [2..5]

owns *

1..1

customer

has contract

owner

target

As in ORM, classes can have an indication about their roles.

Marco Montali (unibz) DPM - Lab 5.UML-ORM A.Y. 2015/2016 6 / 12



Multiplicities on Binary Associations

• Multiplicity constraints cover frequency constraints (including
functionality) and optionality.

• Multiplicity constraints have a “look-across” semantics.
• By default, the multiplicity is ∗ (differently from attributes!).
• UML explicitly accounts for two kinds of part/whole relations:
composition (black diamond), aggregation (white diamond).

I See the discussion about mereology for the subtle issues that emerge
for part/whole relations.

Marco Montali (unibz) DPM - Lab 5.UML-ORM A.Y. 2015/2016 7 / 12



Multiplicities on Binary Associations: Main Cases

360 Chapter 9: Data Modeling in UML 
 
 

 

A B0..1

*

0..1

*

1

1..*

1

A B

A B

A B

A B

A B

A B

1..*A B

n:1
second role mandatory

1:n:
second role mandatory

1:1
second role mandatory

m:n
second role mandatory

n:1
both roles mandatory

1:n
both roles mandatory

1:1
both roles mandatory

m:n
both roles mandatory

1..*

1

A B

A B

A B

A B

A B

A B

A B

A B

1

1..*

1..*

1

1

1..*

A B0..1*

*

*

UML ORM

*

0..1

0..1

*

1

1..*0..1

1

A B

A B

A B

A B

A B

A B

A B

A B

n:1
both roles optional

1:n:
both roles optional

1:1
both roles optional

m:n
both roles optional

n:1
first role mandatory

1:n
first role mandatory

1:1
first role mandatory

m:n
first role mandatory

A B

0..1A B

A B

*A B

A B

0..1A B

1..*A B

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.14 Equivalent constraint patterns in UML and ORM. 

Marco Montali (unibz) DPM - Lab 5.UML-ORM A.Y. 2015/2016 8 / 12



Multiplicities on Binary Associations: Main Cases

Marco Montali (unibz) DPM - Lab 5.UML-ORM A.Y. 2015/2016 9 / 12



Objectification of Associations

Similar to ORM.

Customer
name: String
ccnumber: String [0..1]

InternetProvider
name: String

PhoneConnection
feature: String [2..5]

owns *

1..1

Contract
startDate: Date

Marco Montali (unibz) DPM - Lab 5.UML-ORM A.Y. 2015/2016 10 / 12



Subtyping

The name of an attribute used to discriminate between subclasses can be
placed near the subtype arrow.

• An enumeration type can be introduced to define the cases. This
corresponds to a value constraint in ORM.

Marco Montali (unibz) DPM - Lab 5.UML-ORM A.Y. 2015/2016 11 / 12



From ORM to UML9.8  Mapping from ORM to UML 389 
 
 

 

Employee
(.nr)

is male

is female

Employee
(.nr) is of

Gender
(.code) {‘M’, ‘F’}

(a) (b)

Table 9.3 UMLmap procedure. 

Step Action 

1 
 

2 
 
 

3 
 

4 
 
 

5 
 

6 
 
 

7 

Binarize any sets of exclusive unaries 
 

Model selected object types as classes, and map a selection of their n:1 and 1:1 associ-
ations as attributes. To store facts about a value type, make it a class  
 

Map remaining unary fact types to Boolean attributes or subclasses 
 

Map m:n and n-ary fact types to associations or association classes.  
Map objectified associations to association classes 
 

Map ORM constraints to UML graphic constraints, textual constraints, or notes 
 

Map subtypes to subclasses,  
and if needed, subtype definitions to textual constraints 
 

Map derived fact types to derived attributes/associations, and map semi-derived fact 
types to attributes/associations plus derivation rules 

 
In step 2, we decide which object types to model as classes and which n:1 and 1:1 

ORM associations to remodel as attributes. Typically, entity types that play functional 
fact roles become classes. Functional binary (n:1 and 1:1) associations from an entity 
type A to a value type B, or to an entity type B about which you never want to record 
details, usually map to an attribute of A. If you have specified role names, these can 
usually be used as attribute names, with the object type name becoming the attribute’s 
domain name. 

The mapping in Figure 9.56 illustrates several of these step 2 considerations, as 
well as step 6 (map ORM constraints to UML graphic constraints, textual constraints, 
or notes). The {P} and {U1} annotations for preferred identifier and uniqueness are 
not standard UML. The value constraint on gender codes is captured using an enume-
ration type. 

In rare cases, value types that are independent, play an explicit mandatory role, or 
play a functional fact role in an 1:n fact type map to classes. The example in Figure 
9.57(a) deals with cases where we store title–gender restrictions (e.g., the title ‘Mr’ is 
restricted to the male gender). The example in Figure 9.57(b) uses a multivalued 
attribute to store all the genders applicable to a title (e.g., the title ‘Dr.’ applies to both 
male and female genders). The Title class gives fast access from title to applicable 
gender, but slow access from gender to title. As discussed earlier, multivalued 
attributes should be used sparingly. 
 
 
 
 
 

Figure 9.55 Step 1: replace any set of exclusive binaries by a binary fact type. 

Marco Montali (unibz) DPM - Lab 5.UML-ORM A.Y. 2015/2016 12 / 12


