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Correctness of Designed Models
Are these models correct?
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Petri Nets
• Introduced by Carl Adam Petri in his PhD thesis (1962).
• Original intention: mathematical description of chemical processes.
• Extensively applied to model concurrent systems (e.g., distributed
systems) and analyse their properties.

I General properties (e.g., termination, absence of deadlocks) vs
particular properties (e.g., reachability of a given desired situation).

• Then extensively investigated to tackle the control-flow of BPs and
(web) services behavior.

• Minimal notation: places, transitions, arcs (with multiplicities).
• Several extensions of basic Petri nets, with increasing level of
complexity.

I Time, resources, data (colored Petri nets), hierarchies (process
decomposition), open nets (service interaction),. . .

• Different reasonable restrictions on the structure of the net, with
positive impact on complexity.

I In the BPM context: free-choice nets, workflow nets.
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Petri Net
A bipartite oriented graph with two kinds of nodes (places, transitions)
and arcs annotated with weights (multiplicities).

Petri net
A Petri net is a tuple (P, T, F, W ), where:

• P is a finite set of places;
• T is a finite set of transitions, with P ∩ T = ∅;
• F ⊆ (P × T ) ∪ (T × P ) is a set of arcs forming a flow relation;
• W : F −→ N \ {0} is an (arc) weight function.

• Graphical notation: places = ©, transitions = �/[] , arcs = →.
• Arc types:
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Preset and Postset
Multi-set
Given a set S, B(S) : S −→ N is the set of multi-sets over S.
X ∈ B(S) is a multi-set where, for each a ∈ S, X(a) denotes the number
of times a is included in X.

Multisets are represented using [· · · ], and for compactness elements are
represented using “power notation” (aX(a)): [a, a, a, b, c, b] = [a3, b2, c].

Preset/postset
Given a Petri net (P, T, F, W ) and a ∈ P ∪ T :

• •a =
[
xW (x,a) | W (x, a) is defined and (x, a) ∈ F

]
;

• a• =
[
xW (a,y) | W (a, y) is defined and (a, y) ∈ F

]
.

t12 2

t2

p1 p2

•p1 = [t2]
p1• =

[
t2
1
] •t2 = [p2]

t2• = [p1]
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Tokens and Marking

We populate a Petri net with tokens.

Marking
A marking M of a Petri net (P, T, F, W ) is a multi-set over P : M ∈ B(P ).

The marking identifies how many tokens are currently present in each
place of the net.

t12 2

t2

p1 p2

M0 =
[
p1

1, p3
2
]
.

Vector notation: M0 = (1, 3).
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Firing Rule

Given a marking, the firing rule determines whether a transition can fire
(i.e., be executed) and what is the resulting new marking.

Firing rule
Given a Petri net N = (P, T, F, W ) and a marking M ∈ B(P ):

• a transition t ∈ T is enabled, denoted (N, M)[t〉, if and only if
M ≥ •t;

• an enabled transition t ∈ T can fire leading to marking M ′ ∈ B(P ),
denoted (N, M)[t〉(N, M ′), if and only if M ′ = (M − •t) + t•.

The notions of sub-multi-set ≥, multi-set difference − and multi-set sum
+ are defined following the intuition (component by component).
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Firing Rule - Intuition

The firing of a transition determines an execution step of the net.
• A transition can fire if there are sufficiently many tokens in each of
the input places (as required by the arcs’ weights).

• The result is obtained by removing the necessary tokens from each
input place, and producing the necessary tokens in each output place
(as required by the arcs’ weights).

t12 2

t2

p1 p2 t12 2

t2

p1 p2

firing of t2enabled

not enabled
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Firing Rule - Non-Determinism
• Starting from an initial marking, a sequence of firings determines an
execution of the net.

• At every step, in general there are many enabled transitions.
• One of them is chosen non-deterministically: token game.

t12 2

t2

p1 p2

initial marking
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Reachability graph
By iterating for each possible enabled transition in each produced marking,
a transition system is obtained that represents all the possible executions.

• The transition system is in general infinite-state.
• The transition system includes all the reachable markings, and is
therefore called reachability graph.

t12 2

t2

p1 p2

firing of t2

firing of t1 firing of t2

t12 2

t2

p1 p2 t12 2

t2

p1 p2

firing of t2 firing of t1

t12 2

t2

p1 p2

initial marking

t12 2

t2

p1 p2

firing of t2firing of t1
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Petri Nets and Business Processes
Petri nets are a natural formalism to represent the control-flow of BPs.

Petri Net Concept BP Concept

Place State

Transition Atomic activity/event in the activity life-cycle

Token Object manipulated by a process instance (pa-
tient, order, item, . . . )

Marking Snapshot of a process instance

Initial marking Initial state of a process instance

Enabled transition Executable activity/event

Firing Execution step of the process

Reachability graph Transition system representing all possible ex-
ecutions of the process
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Petri Nets and Workflow Patterns: Sequence
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Petri Nets and Workflow Patterns: And-Split/Join
And-split

And-join
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Petri Nets and Workflow Patterns: Xor-Split/Join
Xor-split

Xor-join
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Petri Nets and Workflow Patterns: Arbitrary Loops
1 or more times

0 or more times
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Example
Translate the following BPMN process diagram into a corresponding Petri
net, and draw the reachability graph starting from a marking where a
single token is put into the starting place.
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Example - Reachability Graph
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Interleaving semantics
for parallelism:
parallelism between B
and C represented as
the sequence B,C or
the sequence C,B.
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Free-Choice Nets

Consider this Petri net:

A

C

B

D

p

pcond

The x-or choice modeled in p is conditioned by place pcond:
• C can be always chosen;
• D can be chosen only if there is a token in pcond.

The choice is not free.

In BPs, choices are instead typically free: they depends only on the data
associated to the x-or place (p), or on the external decision of responsible
resources (deferred choice).
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Free-Choice Net
Free-choice net
A Petri net (P, T, F, W ) is free-choice if, for each f = (p, t) ∈ F :

• |p • | = 1 (f is the unique outgoing arc from p), or
• | • t| = 1 (f is the unique incoming arc to t).

A

C

B

D

(Extended) free-choice net
A Petri net (P, T, F, W ) is (extended) free-choice if, for each p1, p2 ∈ P ,
either p1 • ∩p2• = ∅, or p1• = p2•.

A

C

B

D
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Workflow Net
BPs typically have a starting point and a termination point (explicit end).

Workflow net
A Petri net N = (P, T, F, W ) is a workflow net if
• There are two special places in P :

I an input place pi ∈ P such that
•pi = ∅;

I an output place po ∈ P such that
po• = ∅.

N

workflow
net

pi po

• By adding a transition t∗ from pi to po,
the resulting Petri net N is strongly
connected: every pair of nodes
(transition of places) of N are
connected via a direct path.

N

workflow
net

pi po

t*
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Some Fundamental Properties of Petri Nets

Given a Petri net N and an initial marking M :
• (N, M) is terminating iff there exists k ∈ N such that any firing
sequence from M has a length ≤ k.

• (N, M) is deadlock-free iff for every marking M ′ reachable from M
there exists an enabled transition in M ′.

• Place p of N is k-bounded in (N, M) iff for every marking M ′

reachable from M , M ′ assigns to p at most k tokens.
• (N, M) is k-bounded iff every place of N is k-bounded in (N, M).
• (N, M) is safe iff (N, M) is 1-bounded.
• Transition t of N is live in (N, M) iff for every marking M ′ reachable
from M , there exists a marking M ′′ reachable from M ′ such that t is
enabled in M ′′.

• (N, M) is live iff every transition of N is live in (N, M).
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Workflow Nets and Special Markings

Workflow nets have two interesting markings.

Input/output state
Given a workflow net N :

• The input state i is a marking that assigns only
one token to the input place pi of N .

i

workflow
net

pi po

• The output state o is a marking that assigns
only one token to the output place po of N .

o

workflow
net

pi po
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Workflow Nets and the Soundness Property
Soundness
A workflow net N is sound if and only if:
1. (N, i) is deadlock-free: starting from the initial marking the only

situation in which no transition is enabled is only o.
2. Starting from the input state i, the output state is always reachable:

for every marking M reachable from i, there exists a firing sequence
leading to o.

3. The output place po is marked only in a clean way by o: whenever a
token is put in place po, all the other places are empty.

Theorem (van der Aalst, 1997)
A workflow net N is sound if and only if N is live and bounded.

Theorem (van der Aalst, 1997)
For a free-choice workflow net it is possible to decide soundness in
polynomial time.
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Back to the Reachability Graph

Construction algorithm
Given a Petri net N and an initial marking M0:
1. Label M0 as the root and initialize set New = {M0}.
2. While New 6= ∅:

2.1 Select marking M from New.
2.2 While there exists an enabled transition t at M :

2.2.1 Obtain the marking M ′ that results from firing t at M .
2.2.2 If M ′ does not appear in the graph add it to the graph and insert M ′

into set New.
2.2.3 Draw an arc with label t between M and M ′.

2.3 Remove M from New.

Question
Does this algorithm always terminate?
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Example - Sound Process

A

B

C

D

A

B

C

D
p1 = pi p2

p5 p6

p7 p8 = po

i = (1,0,0,0,0,0,0,0)

(0,1,0,0,0,0,0,0)

(0,0,1,0,1,0,0,0)

A

and-split

(0,0,0,1,1,0,0,0) (0,0,1,0,0,1,0,0)

(0,0,0,1,0,1,0,0)

B C

C B

(0,0,0,0,0,0,1,0)
and-join

(0,0,0,0,0,0,0,1) = o
D

Why? Check reachability graph wrt the three properties for soundness:
1. OK! The only reachable marking without outgoing edges (i.e., no

enabled transitions) is o.
2. OK! Marking o is reachable from all the other markings.
3. OK! The only reachable marking that puts a “1” in the last position

(i.e., that puts a token into po) is o.
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Example - Unsound, Deadlocking Process

A

B

C

D

A

B

C

D
p1 = pi p2

p3

p4 p5 p6 = po

i = (1,0,0,0,0,0)

(0,1,0,0,0,0)

A

(0,0,1,0,0,0)

B

(0,0,0,1,0,0)

C

Why?
1. NO! There are two reachable markings different than o for which

there is no enabled transition.
2. NO! Marking o is not reachable.
3. OK! No reachable marking exists that puts a token in po and at the

same time tokens in other places.
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Example - Unsound, Unbounded Process
A B

A B
p1 = pi p2 p3 p4 = po

Why?
1. OK! All reachable markings have at least one transition

enabled (in fact, exactly one).
2. NO! Marking o is not reachable.
3. NO! There are reachable markings that associate a token

to po and at the same time tokens to other places, such as
(0, 1, 0, 1) and (0, 1, 0, 2).

N.B.: Infinite reachability graph!!!

i = (1,0,0,0)

(0,1,0,0)

A

(0,0,1,0)
B

(0,1,0,1)
and-split

(0,0,1,1)
B

(0,1,0,2)
and-split

(0,0,1,2)
B

(0,1,0,3)
and-split

B
...
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The Problem of Boundedness
The previous example shows that we cannot always construct the
reachability graph. The problem arises when the marked net is unbounded.

Question
How to decide boundedness?

Consider the following example:

t1

t2

p1 p2

t3
p3

Fire t1 and then t2. What happens?
• We obtain a marking that “includes” the starting one.

• The behavior of a Petri net is monotonic: if a transition
is enabled in a marking M , it will be enabled in all
those markings that include M .

• We can imagine to “accelerate” the net, by continuing
to execute t1 and t2.

• The result is that we continue to end up in the same
situation, apart from p3, which continues to accumulate
new tokens ; put ω instead for the actual number.
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Abstract Marking

ω denotes that a place is unbounded. Mathematically:
• Now a marking assigns to each place an element from N ∪ {ω}.
• We extend the multiset operators accordingly:

I ω ≥ ω, and ω > n for every n ∈ N.
I An unbounded place will be unbounded forever: ω + n = ω, ω−n = ω.

Through “acceleration”, we construct a finite abstraction of the
reachability graph that exploits ω markings to denote unbounded places.

• Infinite parts of the reachability graph are finitely summarized.
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Coverability Graph
Construction algorithm
Given a Petri net N and an initial marking M0:
1. Label M0 as the root and initialize set New = {M0}.
2. While New 6= ∅:

2.1 Select marking M from New.
2.2 While there exists an enabled transition t at M :

2.2.1 Obtain the marking M ′ that results from firing t at M .
2.2.2 For every marking M ′′ 6= M ′ on a path from M0 to M ′: if

M ′′ ≤M ′, then for every place p s.t. M ′(p) > M ′′(p), set
M ′(P ) = ω.

2.2.3 If M ′ does not appear in the graph add it to the graph and insert M ′

into set New.
2.2.4 Draw an arc with label t between M and M ′.

2.3 Remove M from New.

Does this algorithm always terminate?

YES! Cf. Dickson’s Lemma.
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Reachability vs Coverability Graph
Does the coverability graph faithfully represent the reachability graph?
NO! When we have a marking that assigns ω to place P , then, for any
number n ∈ N, we now that it will be possible to reach a state in which P
contains at least n tokens.

Observations:
• When ω markings are present, the coverability graph cannot be used to answer

reachability queries, but only coverability queries.
• Different Petri nets could have the same coverability graph due to the abstraction.
• The same Petri net could have different coverability graphs due to

non-determinism.
• Boundedness is correctly decided by checking whether the coverability graph

contains ω markings or not.
• Every run of the Petri net can be executed over the coverability graph, but not the

other way around.
• Hence, liveness cannot be correctly decided by checking the coverability graph.
• A transition is dead if and only if it does not appear in the coverability graph.
• When the marked net is bounded, then the coverability and the reachability graphs

coincide.
Cf. examples on the blackboard!
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Complete Procedure for Soundness

Given a workflow net N (with input state i). . .
1. Construct the coverability graph for (N, i).
2. Use the coverability graph to check whether (N, i) (and, in turn,

(N, i)) is bounded.
3. If not ; return NO.
4. If so (the coverability graph and the reachability graph coincide):

4.1 Check whether (N, i) is live.
4.2 If so ; return YES.
4.3 If not ; return NO.
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Final Remarks

• Reachability graph can be infinite → coverability graph that uses
ω-markings to compactly represent the sources of unboundedness.

• State-explosion problem: the coverability graph can be huge ;

exponential space in the size of the original net.
• Structural analysis is used to check properties without constructing
the coverability graph explicitly.

I Place invariants, traps, . . .
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