
Data and Process Modelling
3. Object-Role Modeling - CSDP Step 6

Marco Montali

KRDB Research Centre for Knowledge and Data
Faculty of Computer Science

Free University of Bozen-Bolzano

A.Y. 2014/2015

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 1 / 36

Other Constraints

CSDP Step 6
Add value, subset, equality, exclusion, and subtype constraints.

• Value (domain) constraint: which values are allowed in a value type
or role.

• Set constraint: how the population of one role (sequence) relates to
the population of another role (sequence).

I Subset (⊆): pop(r1) ⊆ pop(r2).
I Equality (=): pop(r1) = pop(r2).
I Exclusion (X): pop(r1) ∩ pop(r2) = ∅.

• Subtype constraint: specialization/generalization of object types to
point out specific features/factorize common features.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 2 / 36

Value Constraint

• Constrains the possible values that can be assumed by a value type or
a role.

• Can be used only when it is stable.
• Definition by specifying the extension of the allowed values: one or
more enumerations or ranges enclosed in {. . . }.

I Enumeration: explicit list of the allowed values (e.g., {’M’,’F’}).
I Range: implicit continuous list by just specifying the extreme values. In

case of real number, square bracket signifies inclusion of the extreme,
parenthesis exclusion.

• Object type value constraint: next to the value type, or the object
type that is referenced by the value type.

• Role value constraint: next the constrained role.
• Independent object types can be used when we want to store
information about an object type but the list is too large, unstable, or
not known a priori.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 3 / 36

Object Type Value Constraints6.3 Value Constraints and Independent Types 217

WeekDay
(.name)

{‘Sunday’,
 ‘Monday’ …}

Sex
(.code)

Rating
(.nr)

Rating
(.nr)

Grade
(.code)

Extreme
Temperature

(oC:)

SQLchar

(a) Enumeration:

(b) Range:

(c) Multiple:

{‘M’, ‘F’}

{1..7}

{-100..-20,
 40..100}

{1, 2, 3, 4, 5, 6, 7}

{‘A’..‘F’}

{‘a’..’z’,
 ‘A’..’Z’,
 ‘0’..’9',
 ‘_’}

Age
(y:) {0..}

PassScore
(%)

{[50..100]}

NegativeInt
{..-1}

PositiveScore
(%)

{(0..100]}

NegativeTemperature
(oC:)

{[-273.15..0)}

Extreme
Temperature

(oC:)
{[-100..-20],
 [40..100]}

Figure 6.6 Object type value constraints list the possible values of a value type.

Figure 6.6 shows several examples. If we list or enumerate all the possible values,

this is an enumeration, as shown in Figure 6.6(a). If the values may be ordered in a
continuous list (no gaps) from first to last, we can simply list the first and last with “..”
between, since we know how to fill in the intermediate values (see first two examples
in Figure 6.6(b)). This is called a range.

If a range is unbounded at one end, no value appears at that end. For example, if we
measure Age as a whole number of years, the value constraint is {0..}. If the values are
based on real number (e.g., float or decimal), a square bracket signifies inclusion of
the end value and a parenthesis signifies exclusion of the end value. For example,
“(0..100]” denotes a range of positive (above 0) real numbers up to and including 100.
The last three examples in Figure 6.6(b) all use a real number data type. One may also
combine enumerations and/or ranges into a single constraint, as shown in Figure
6.6(c); the first of these examples uses integers while the second uses real numbers.

If the value constraint expression is short, it can be displayed in full on the diagram.
If the value list is long, we can enter all the values in an ORM tool but choose to dis-
play just some leading values. A trailing ellipsis “…” then indicates that the display of
later values is suppressed. For example, for the object type WeekDay we might specify
the value list {‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’,
‘Saturday’} but choose to display only the first two (see Figure 6.7). Although the list
has been compacted on the diagram, it can be displayed in full textually when desired
(e.g., by accessing a properties sheet for the object type)

Figure 6.7 The display of later values is suppressed.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 4 / 36

Role Value Constraints

Person
(.name)

Salary
(EUR:)

... earns ... by managing ...

Company
(VAT)

{[0..)}

{[10K..)}

• The salary is a positive real value.
• Managers earn at least 10.000 EUR per month.
• Value constraints on the role must be consistent with the value
constraints of the attached object type.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 5 / 36

Subset Constraint

A

r2

r1

For each information base state: pop(r1) ⊆ pop(r2).

If some A plays r1 then that A plays r2.

• Each object that populates r1 must also populate r2.
• N.B.: comparison is set-theoretic, therefore duplicates do not matter.
• For the comparison to make sense, both involved roles must be played
by the same object type (or supertype, see subtyping).

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 6 / 36

Subset Constraint: Example
• A Company could be registered to at most one Secure E-Bank
Service.

• A Company could provide E-Commerce Services.
• If some Company provides some Secure E-Commerce Service, that
Company must be registered to a Secure E-Bank Service.

Company
(VAT)

E-Commerce
Service
(.type)

Secure E-Bank
(VAT)

provides

registered

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 7 / 36

Subset Constraint: Example
• A Company could be registered to at most one Secure E-Bank
Service.

• A Company could provide E-Commerce Services.
• If some Company provides some Secure E-Commerce Service, that
Company must be registered to a Secure E-Bank Service.

Company
(VAT)

E-Commerce
Service
(.type)

Secure E-Bank
(VAT)

provides

registered

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 7 / 36

Equality Constraint

A

r2

r1

For each information base state: pop(r1) = pop(r2).

For each A, that A plays r1 if and only if
that A plays r2.

• Each object that populates r1 must also populate r2, and vice-versa.
• N.B.: comparison is set-theoretic, therefore duplicates do not matter.
• For the comparison to make sense, both involved roles must be played
by the same object type (or supertype, see subtyping).

• What about an equality constraint combined with:
I one mandatory and one optional role?
I no mandatory role, but mandatory disjunction?
I two mandatory roles?

(apply set theory/logic)
Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 8 / 36

Equality Constraint: Example
• A Person could use an Username, and be authenticated with a
Password.

• Either a Person does not have a Username nor a Password, or the
Person has both.

Person
(SSN)

Username
(.code)

Password
(.code)

uses

is authenticated with

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 9 / 36

Equality Constraint: Example
• A Person could use an Username, and be authenticated with a
Password.

• Either a Person does not have a Username nor a Password, or the
Person has both.

Person
(SSN)

Username
(.code)

Password
(.code)

uses

is authenticated with

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 9 / 36

Exclusion Constraint

A

r2

r1

For each information base state:
pop(r1) ∩ pop(r2) = ∅.

For each A, at most one of the following
holds: A plays r1 ; A plays r2.

• Each object that populates r1 cannot populate r2, and vice-versa.
• N.B.: comparison is set-theoretic, therefore duplicates do not matter.
• For the comparison to make sense, both involved roles must be played
by the same object type (or supertype, see subtyping), and such roles
must be optional.

I Why?

If r1 were mandatory, then r2 could never be played by A.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 10 / 36

Exclusion Constraint

A

r2

r1

For each information base state:
pop(r1) ∩ pop(r2) = ∅.

For each A, at most one of the following
holds: A plays r1 ; A plays r2.

• Each object that populates r1 cannot populate r2, and vice-versa.
• N.B.: comparison is set-theoretic, therefore duplicates do not matter.
• For the comparison to make sense, both involved roles must be played
by the same object type (or supertype, see subtyping), and such roles
must be optional.

I Why? If r1 were mandatory, then r2 could never be played by A.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 10 / 36

Exclusion Constraint: Example
• A Loan is either pending for a (single) Customer, or open for that
Customer, but not both.

Loan
(.nr)

Customer
(SSN)

pending for

opened for

• Are we fully capturing its semantics? In a stable way?

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 11 / 36

Exclusion Constraint: Example
• A Loan is either pending for a (single) Customer, or open for that
Customer, but not both.

Loan
(.nr)

Customer
(SSN)

pending for

opened for

• Are we fully capturing its semantics? In a stable way?
Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 11 / 36

Exclusive-Or Constraint
• Combination of exclusion constraint and inclusive-or constraint over
the same roles → exclusive-or: each object whose type is connected
to that roles plays exactly one of the constrained roles.

• Consider the Loan example, adding that each Loan is either pending
or open.

Loan
(.nr)

Customer
(SSN)

pending for

open for

• Resulting constraint: For each Loan, exactly one of the
following holds: that Loan is pending for some
Customer; that Loan is open for some Customer.

• Representable by superimposing the constraints (lifebuoy symbol).

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 12 / 36

Exclusive-Or Constraint
• Combination of exclusion constraint and inclusive-or constraint over
the same roles → exclusive-or: each object whose type is connected
to that roles plays exactly one of the constrained roles.

• Consider the Loan example, adding that each Loan is either pending
or open.

Loan
(.nr)

Customer
(SSN)

pending for

open for

• Resulting constraint: For each Loan, exactly one of the
following holds: that Loan is pending for some
Customer; that Loan is open for some Customer.

• Representable by superimposing the constraints (lifebuoy symbol).
Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 12 / 36

Loan Example

• Problem in the Loan example: there is no guarantee that the same
Customer is associated to a given Loan once the Loan is moved from
pending to open.

• Better modeling, considering also a further state:

Loan
(.nr)

Customer
(SSN)issued by

open

closed

pending

• This is the initial model, let’s add the constraints.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 13 / 36

Loan Example
• A Loan in a certain state must always be associated to a customer
→ subset constraints!

Loan
(.nr)

Customer
(SSN)issued by

open

closed

pending

• Remember: the population of a non-isolated object type is
characterized by the population of its roles.

• We can hence simplify: all the roles have a subset constraint pointing
to “issued by”, therefore Loan’s role there is mandatory!

Loan
(.nr)

Customer
(SSN)issued by

open

closed

pending

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 14 / 36

Loan Example
• A Loan in a certain state must always be associated to a customer
→ subset constraints!

Loan
(.nr)

Customer
(SSN)issued by

open

closed

pending

• Remember: the population of a non-isolated object type is
characterized by the population of its roles.

• We can hence simplify: all the roles have a subset constraint pointing
to “issued by”, therefore Loan’s role there is mandatory!

Loan
(.nr)

Customer
(SSN)issued by

open

closed

pending

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 14 / 36

Loan Example
• The “state” roles are exclusive.

Loan
(.nr)

Customer
(SSN)issued by

open

closed

pending

• This notation can be simplified as follows.

Loan
(.nr)

Customer
(SSN)issued by

open

closed

pending

• A Loan is always in one of the states (inclusive-or, to be mixed with
exclusion → ex-or).

Loan
(.nr)

Customer
(SSN)issued by

open

closed

pending

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 15 / 36

Loan Example

• We could decide to make the schema more flexible.
• The notion of “State” could be explicitly modeled for Loans.
• Enumeration constraint to capture the possible states (easily
extensible).

• The “exactly-one state” constraint modeled using the ex-or constraint
now becomes simply a 1-1 participation.

Loan
(.nr)

Customer
(SSN)issued by

State
(.name)

{'pending','open','closed'}

is in

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 16 / 36

Set-Comparison with Role Sequences

Constraints seen in this step can be also applied to role sequences.
• We focus here on set-comparison.

Pair-subset constraint

A

r2r1

r4r3

B

For each information base state:
pop(r1, r2) ⊆ pop(r3, r4).

Each pair in pop(r1, r2) is also in
pop(r3, r4).

• Can be generalized to n-ary sequences.
• The same holds for equality and exclusion constraints.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 17 / 36

Pair-subset: Example

• Consider Persons who work in Companies and Persons who manage
Companies.

• Clearly, Each Person who manages a Company works in that
Company.

Person
(SSN)

Company
(VAT)

manages

works in

Person
(SSN)

Company
(VAT)

manages

earns ... by working in ...

Salary
(EUR)

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 18 / 36

Pair-subset: Example

• Consider Persons who work in Companies and Persons who manage
Companies.

• Clearly, Each Person who manages a Company works in that
Company.

Person
(SSN)

Company
(VAT)

manages

works in

Person
(SSN)

Company
(VAT)

manages

earns ... by working in ...

Salary
(EUR)

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 18 / 36

Redundancies, Implied Constraints, Inconsistencies

• Set constraints can interact with each other and with mandatory
constraints.

• It could be consequently the case that they are implied, or that they
could reveal other constraints.

• To avoid clutter and redundancy, implied constraints are omitted.
• It is also possible to combine constraints that lead to satisfiability
only when certain roles are empty
→ such roles are not strongly satisfiable.

I Consider the interaction between a subset and an exclusion constraint.
• This latter situation must be avoided.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 19 / 36

Typical Cases

A

r2

r1

implied A

r2

r1

implied

A

r2

r1

rewritten as A

r2

r1

implies implies

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 20 / 36

Subtyping
Classification of instances of an object type into a more specific type.

Proper subtype

A

B

A 6= B and for each information base state:
pop(B) ⊆ pop(A).

Why subtyping?
• To declare that one or more specific roles are played only by a given
subtype.

• To encourage reuse of model components (extending what has been
modeled so far).

• To reveal taxonomies (only if they are functional to the strategic
goals, i.e., all entity types play specific roles).

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 21 / 36

Subtyping and Set-Constraints
Terminology:

• A is a supertype, B and C are subtypes.
• Only one supertype → single inheritance.
• Multiple supertypes → multiple inheritance.
• If D subtype C, then D is an indirect subtype of A, because
subtypehood relation is transitive.

Exclusive subtypes

A

B C

A

B C

No A is both B and C

Exhaustive subtypes (covering)

A

B C

A

B

C

Each A is some B or C

Partition

A

B C

A
C

B

Each A is exactly one B or C

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 22 / 36

Subtype Graph and Acyclicity Condition
• Due to many-to-many subtype relationships, many subtype graphs are
constructed.

• Each subtype graph has only one root constituted by a primitive
entity type.

• Remember: primitive entity type are by definition mutually exclusive.
• A graph-construction step arises because of:

I Specialization of an object type into subtypes (to add details).
I Generalization of object types into a common supertype, retaining the

subtypes for details.
• No type can be (proper) subtype of itself, hence the graph must be

acyclic, i.e., a DAG.

6.5 Subtyping 243

Person

Australian Female

Female
Australian

*

(a) (b)

illegal! illegal!

A A

B

C

Figure 6.35 The indirect subtype connection is implied, so should be omitted.

If a subtype has two or more direct supertypes, this is called multiple inheritance.

For example, in Figure 6.35, FemaleAustralian inherits from both Australian and Fe-
male. In general, a common subtype is at most the intersection of its supertypes. If a
subtype has only one direct supertype, this is called single inheritance.

A supertype may have many direct subtypes, and a subtype may have many direct
supertypes: so in general we have a subtype graph rather than a tree. The supertype
and subtypes are referred to as the nodes of the graph. Since the arrowheads provide
direction, we have a directed graph.

Since no type can be a proper subtype of itself, it follows that no cycles or loops are
permitted, no matter what the length of the cycle (Figure 6.36 shows two illegal cy-
cles). Thus any pattern of type–subtype relationships forms a directed acyclic graph.

An entity type that is not a proper subtype of any other entity type in the schema is
said to be a primitive entity type for the schema. In Figure 6.30, for example, Person,
Gender, and Country are primitive entity types. A single conceptual schema may have
many subtype graphs (e.g., one based on Person and one based on Vehicle). Each sub-
type graph must stem from exactly one primitive entity type (which may be an objecti-
fied association) that is the common supertype, or root node (or top) of that graph.

Figure 6.36 No cycles are permitted in a subtype graph. Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 23 / 36

Subtypes and Roles
Differently from primitive object types, no assumption is done for a
subtype about mandatory roles.

Any mandatory (simple/disjunctive) constraints must be explicitly shown
for a subtype.

• Each subtype inherits all roles of its supertypes, and typically extends
them (if not, then it is inactive, just used for taxonomic purposes).

We must be able to determine membership of derived subtypes.

Subtype definition
Each derived subtype must be formally defined in terms of at least one
role played by its supertype(s).

• Typical case: qualify optional role or set-comparison constraint.
I Each MaleEmployee is an Employee who is of Gender ’M’.

• Another typical case is to substitute unqualified, set-comparison
constraints.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 24 / 36

Subtypes and Derivation Rules
Incomplete diagram: some exams can only be associated to female/male
Patients (optional roles are in fact used).

Solution: introduce subtyping, defining each subtype in terms of the
Gender object type.

6.5 Subtyping 245

Gender
(.code)

{‘M’, ‘F’}

Patient
(.nr)

is of

ProstateStatus
(.description)

has

PatientName

has

PhoneNr

has

PregnancyCount
(.nr)

has
{0..}

Male
Patient!

Female
Patient!

!"#$% MalePatient&'(&#&Patient)%* is of Gender ‘M’.
!"#$% FemalePatient&'(&#&Patient)%* is of Gender ‘F’.

Gender
 (.code)

{‘M’, ‘F’}

Patient
(.nr)

is of

ProstateStatus
(.description) has

PatientName
has

PhoneNr
has

PregnancyCount
(.nr)has

{0..}

Figure 6.38 An incomplete conceptual schema for Table 6.4.

Notice the optional roles. Although correct as far as it goes, this schema fails to ex-

press the constraints that prostate status is recorded only for male patients, and the
number of pregnancies is recorded just for the females. The phrase “just for” means
“for and only for” (i.e., “for all and only”). To capture these constraints, we introduce
subtypes, and attach their specific roles, as shown in Figure 6.39.

The subtypes MalePatient and FemalePatient are marked with an asterisk “*” to in-
dicate that they are derived subtypes (i.e., they are derived by applying a derivation
rule to their supertype(s)).

The derivation rules appear as formal subtype definitions beneath the diagram. By
default, subtypes inherit the identification scheme of their supertype, so there is no
need to repeat it here.

Recall that a role is played only by instances of the object type to which the role is
attached. Hence the subtyping reveals that prostate status is known (to the information
system) only if the patient is male, and pregnancy count is known only if the patient is
female. The role attached to MalePatient is optional. Not all men need to have their
prostate status recorded.

However, the role attached to FemalePatient is mandatory. So pregnancy count is
recorded if the patient is female. The combination of the subtype constraint and the
mandatory role on FemalePatient means that a pregnancy count is recorded if and
only if the patient is female.

Figure 6.39 Subtyping completes the conceptual schema for Table 6.4.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 25 / 36

Subtypes and Derivation Rules
Incomplete diagram: some exams can only be associated to female/male
Patients (optional roles are in fact used).

Solution: introduce subtyping, defining each subtype in terms of the
Gender object type.

6.5 Subtyping 245

Gender
(.code)

{‘M’, ‘F’}

Patient
(.nr)

is of

ProstateStatus
(.description)

has

PatientName

has

PhoneNr

has

PregnancyCount
(.nr)

has
{0..}

Male
Patient!

Female
Patient!

!"#$% MalePatient&'(&#&Patient)%* is of Gender ‘M’.
!"#$% FemalePatient&'(&#&Patient)%* is of Gender ‘F’.

Gender
 (.code)

{‘M’, ‘F’}

Patient
(.nr)

is of

ProstateStatus
(.description) has

PatientName
has

PhoneNr
has

PregnancyCount
(.nr)has

{0..}

Figure 6.38 An incomplete conceptual schema for Table 6.4.

Notice the optional roles. Although correct as far as it goes, this schema fails to ex-

press the constraints that prostate status is recorded only for male patients, and the
number of pregnancies is recorded just for the females. The phrase “just for” means
“for and only for” (i.e., “for all and only”). To capture these constraints, we introduce
subtypes, and attach their specific roles, as shown in Figure 6.39.

The subtypes MalePatient and FemalePatient are marked with an asterisk “*” to in-
dicate that they are derived subtypes (i.e., they are derived by applying a derivation
rule to their supertype(s)).

The derivation rules appear as formal subtype definitions beneath the diagram. By
default, subtypes inherit the identification scheme of their supertype, so there is no
need to repeat it here.

Recall that a role is played only by instances of the object type to which the role is
attached. Hence the subtyping reveals that prostate status is known (to the information
system) only if the patient is male, and pregnancy count is known only if the patient is
female. The role attached to MalePatient is optional. Not all men need to have their
prostate status recorded.

However, the role attached to FemalePatient is mandatory. So pregnancy count is
recorded if the patient is female. The combination of the subtype constraint and the
mandatory role on FemalePatient means that a pregnancy count is recorded if and
only if the patient is female.

Figure 6.39 Subtyping completes the conceptual schema for Table 6.4.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 25 / 36

Subtypes Constraints and Redundancy

6.5 Subtyping 245

Gender
(.code)

{‘M’, ‘F’}

Patient
(.nr)

is of

ProstateStatus
(.description)

has

PatientName

has

PhoneNr

has

PregnancyCount
(.nr)

has
{0..}

Male
Patient!

Female
Patient!

!"#$% MalePatient&'(&#&Patient)%* is of Gender ‘M’.
!"#$% FemalePatient&'(&#&Patient)%* is of Gender ‘F’.

Gender
 (.code)

{‘M’, ‘F’}

Patient
(.nr)

is of

ProstateStatus
(.description) has

PatientName
has

PhoneNr
has

PregnancyCount
(.nr)has

{0..}

Figure 6.38 An incomplete conceptual schema for Table 6.4.

Notice the optional roles. Although correct as far as it goes, this schema fails to ex-

press the constraints that prostate status is recorded only for male patients, and the
number of pregnancies is recorded just for the females. The phrase “just for” means
“for and only for” (i.e., “for all and only”). To capture these constraints, we introduce
subtypes, and attach their specific roles, as shown in Figure 6.39.

The subtypes MalePatient and FemalePatient are marked with an asterisk “*” to in-
dicate that they are derived subtypes (i.e., they are derived by applying a derivation
rule to their supertype(s)).

The derivation rules appear as formal subtype definitions beneath the diagram. By
default, subtypes inherit the identification scheme of their supertype, so there is no
need to repeat it here.

Recall that a role is played only by instances of the object type to which the role is
attached. Hence the subtyping reveals that prostate status is known (to the information
system) only if the patient is male, and pregnancy count is known only if the patient is
female. The role attached to MalePatient is optional. Not all men need to have their
prostate status recorded.

However, the role attached to FemalePatient is mandatory. So pregnancy count is
recorded if the patient is female. The combination of the subtype constraint and the
mandatory role on FemalePatient means that a pregnancy count is recorded if and
only if the patient is female.

Figure 6.39 Subtyping completes the conceptual schema for Table 6.4.
• Any exclusion/covering constraint in subtypes is always implied in a
well-designed diagram if a definition for that subtypes is provided.

• In the example, definitions + value constraint on Gender +
mandatory role on Patient for its relationship with Gender
→ exhaustive subtypes.

• The graphical symbol is maintained for clarity.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 26 / 36

Asserted Subtype
• Subtype without an explicit definition.
• Corresponds to a unary predicate on the supertype.
• All exclusion/covering constraints must be obviously explicitly listed.
• Derivations can in this case be found using the taxonomy.

6.5 Subtyping 249

Patient
(.nr)

Male
Patient

Female
Patient

has has
ProstateStatus
(.description)

PregnancyCount
(.nr)

{0..}

Patient
(.nr)

is of!
Gender
(.code)

Male
Patient

Female
Patient

has has
ProstateStatus
(.description)

PregnancyCount
(.nr)

{‘M’, ‘F’}

{0..}

!Patient is of Gender "##
 Patient "$%& MalePatient &'(Gender = ‘M’
)* Patient "$%& FemalePatient &'(Gender = ‘F’.

Figure 6.43 With asserted subtypes, exclusion/exhaustion constraints are not implied.

In conjunction with the constraints on the gender fact type, the subtype definitions
ensure not only that the Patient type is partitioned into the subtypes, but that patient
instances appear in the correct subtype.

Note that subtype exhaustion constraints apply to the populations of the subtypes,
not necessarily to their active populations that play a specific subtype role. Here the
prostate status role is optional for male patients, so some instances of MalePatient (in
this case patient 103) need not play this role.

The problem with the model in Figure 6.41 arose because the patient taxonomy was
expressed in two ways (with a gender fact type and with subtyping) that were not kept
in sync. The solution in Figure 6.42 used subtype definitions to keep these two specifi-
cations of the taxonomy consistent. An alternative solution is to specify the taxonomy
in one way only, removing the gender fact type, and simply asserting the subtyping
scheme with no subtype definitions, as shown in Figure 6.43.

A subtype that is simply asserted (no derivation rule) is called an asserted subtype.
Unlike derived subtypes, asserted subtypes are not marked with an asterisk. Introduc-
ing an asserted subtype is equivalent to attaching a unary predicate (e.g., isMalePa-
tient) to the supertype. With asserted subtypes, any subtype exclusion/exhaustion con-
straints must be explicitly declared, as there are no subtype definitions to imply them.

A third alternative is to derive a taxonomy fact type from the asserted subtypes, as
shown in Figure 6.44. Although this practice is typically closer to the way subtyping is
implemented in object-oriented programming, the first solution using an asserted tax-
onomy fact type for gender and derived subtypes with definitions is closer to the way
subtyping is best implemented in relational database systems.

Figure 6.44 Deriving gender from membership in asserted subtypes, • This is more similar to OO programming. . .

If a taxonomy is captured both via subtyping and classifying fact type, we
need a definition to connect the two (we can chose where to put it).

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 27 / 36

Asserted Subtype
• Subtype without an explicit definition.
• Corresponds to a unary predicate on the supertype.
• All exclusion/covering constraints must be obviously explicitly listed.
• Derivations can in this case be found using the taxonomy.

6.5 Subtyping 249

Patient
(.nr)

Male
Patient

Female
Patient

has has
ProstateStatus
(.description)

PregnancyCount
(.nr)

{0..}

Patient
(.nr)

is of!
Gender
(.code)

Male
Patient

Female
Patient

has has
ProstateStatus
(.description)

PregnancyCount
(.nr)

{‘M’, ‘F’}

{0..}

!Patient is of Gender "##
 Patient "$%& MalePatient &'(Gender = ‘M’
)* Patient "$%& FemalePatient &'(Gender = ‘F’.

Figure 6.43 With asserted subtypes, exclusion/exhaustion constraints are not implied.

In conjunction with the constraints on the gender fact type, the subtype definitions
ensure not only that the Patient type is partitioned into the subtypes, but that patient
instances appear in the correct subtype.

Note that subtype exhaustion constraints apply to the populations of the subtypes,
not necessarily to their active populations that play a specific subtype role. Here the
prostate status role is optional for male patients, so some instances of MalePatient (in
this case patient 103) need not play this role.

The problem with the model in Figure 6.41 arose because the patient taxonomy was
expressed in two ways (with a gender fact type and with subtyping) that were not kept
in sync. The solution in Figure 6.42 used subtype definitions to keep these two specifi-
cations of the taxonomy consistent. An alternative solution is to specify the taxonomy
in one way only, removing the gender fact type, and simply asserting the subtyping
scheme with no subtype definitions, as shown in Figure 6.43.

A subtype that is simply asserted (no derivation rule) is called an asserted subtype.
Unlike derived subtypes, asserted subtypes are not marked with an asterisk. Introduc-
ing an asserted subtype is equivalent to attaching a unary predicate (e.g., isMalePa-
tient) to the supertype. With asserted subtypes, any subtype exclusion/exhaustion con-
straints must be explicitly declared, as there are no subtype definitions to imply them.

A third alternative is to derive a taxonomy fact type from the asserted subtypes, as
shown in Figure 6.44. Although this practice is typically closer to the way subtyping is
implemented in object-oriented programming, the first solution using an asserted tax-
onomy fact type for gender and derived subtypes with definitions is closer to the way
subtyping is best implemented in relational database systems.

Figure 6.44 Deriving gender from membership in asserted subtypes, • This is more similar to OO programming. . .

If a taxonomy is captured both via subtyping and classifying fact type, we
need a definition to connect the two (we can chose where to put it).

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 27 / 36

Semiderived Subtype

• Typically used to denote incomplete knowledge.
• Incomplete knowledge is related to the fact type used in the
derivation rule that characterizes the subtype.

Complete derivation of Manager
from “manages”.

Person
(SSN)

Company
(VAT)

manages

Manager *
* Each Manager is a Person
who manages some Company

A Manager can only be added
through the “manages” fact type,
specifying the managed Company.

Semiderivation due to incomplete
knowledge about “manages”.
Person
(SSN)

Company
(VAT)

manages

Manager + + Each derived Manager is a Person
who manages some Company

A Manager can also be added
directly, without specifying the

managed Company.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 28 / 36

Semiderived Subtype

• Typically used to denote incomplete knowledge.
• Incomplete knowledge is related to the fact type used in the
derivation rule that characterizes the subtype.

Complete derivation of Manager
from “manages”.

Person
(SSN)

Company
(VAT)

manages

Manager *
* Each Manager is a Person
who manages some Company

A Manager can only be added
through the “manages” fact type,
specifying the managed Company.

Semiderivation due to incomplete
knowledge about “manages”.
Person
(SSN)

Company
(VAT)

manages

Manager + + Each derived Manager is a Person
who manages some Company

A Manager can also be added
directly, without specifying the

managed Company.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 28 / 36

Semiderived Subtype

• Typically used to denote incomplete knowledge.
• Incomplete knowledge is related to the fact type used in the
derivation rule that characterizes the subtype.

Complete derivation of Manager
from “manages”.

Person
(SSN)

Company
(VAT)

manages

Manager *
* Each Manager is a Person
who manages some Company

A Manager can only be added
through the “manages” fact type,
specifying the managed Company.

Semiderivation due to incomplete
knowledge about “manages”.
Person
(SSN)

Company
(VAT)

manages

Manager + + Each derived Manager is a Person
who manages some Company

A Manager can also be added
directly, without specifying the

managed Company.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 28 / 36

Subtyping and Identification Schemes
How do we determine the preferred identification scheme of a subtype?

• Inherited from the corresponding supertype: solid arrow.
• Inherited from another supertype or autonomously determined:
dashed arrow.

The second case reflects a context-dependent reference scheme.

Person
(SSN)

WorkingStudent Manager

Student Employee

→

Person
(SSN)

WorkingStudent Manager

Student
(.nr)

Employee
(.id)

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 29 / 36

Subtyping and Identification Schemes
How do we determine the preferred identification scheme of a subtype?

• Inherited from the corresponding supertype: solid arrow.
• Inherited from another supertype or autonomously determined:
dashed arrow.

The second case reflects a context-dependent reference scheme.

Person
(SSN)

WorkingStudent Manager

Student Employee

→

Person
(SSN)

WorkingStudent Manager

Student
(.nr)

Employee
(.id)

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 29 / 36

Subtyping and Identification Schemes
How do we determine the preferred identification scheme of a subtype?

• Inherited from the corresponding supertype: solid arrow.
• Inherited from another supertype or autonomously determined:
dashed arrow.

The second case reflects a context-dependent reference scheme.

Person
(SSN)

WorkingStudent Manager

Student Employee

→

Person
(SSN)

WorkingStudent Manager

Student
(.nr)

Employee
(.id)

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 29 / 36

Specialization Procedure

Given an object type. . .
1. Specify all mandatory role constraints.
2. For each optional role: if

I it is recorded only for a known subtype and
I there is a subtype definition stronger than a set-comparison constraint

or another role is recorded only for that subtype
then
2.1 Introduce the subtype.
2.2 Attach its specific roles.
2.3 Declare the subtype derived (∗), asserted, or semiderived (+).
2.4 If ∗ or +, add a derivation rule.
2.5 Goto step (1) considering the subtype.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 30 / 36

Spotting Subtypes
6.5 Subtyping 255

 FormNr: 5001

 1. Age (years):

 2. Nr hours spent per week watching TV:

If you answered 0 then go to Question 4

3. What is your favorite TV channel?

 4. Nr hours spent per week reading newspapers:

If you answered 0 then Stop (no more answers are required).

 5. What is your favorite newspaper? ..

If you are younger than 18, or answered 0 to question 2 or 4
then Stop (no more answers are required)

 6. Which do you prefer as a news source? Television
 (Check the box of your choice)

Newspaper

Figure 6.52 A sample media survey form.

As a simple example, consider the media survey form shown in Figure 6.52. Each

copy of the form has a unique form number. Each form is filled out by a different per-
son, and each person fills out only one form. The enforcement of this 1:1 correspon-
dence between people and forms is the responsibility of the company conducting the
survey rather than the information system itself. This correspondence is left implicit in
the model, where people are identified directly by the form number.

The conditional instructions on this form are shown in italics. Everybody must an-
swer questions 1, 2, and 4. Anybody who answers 0 to question 2 is told to skip ques-
tion 3. Hence favorite TV channel is recorded just for those who indicate they do
watch some TV; let’s call this subtype Viewer. People who answered 0 for question 4
are told to skip all later questions. Hence favorite newspaper (question 5) is recorded
just for those who read newspapers; let’s call this subtype Reader.

People who are younger than 18 or are not both viewers and readers skip question
6. Hence the preferred news source is recorded just for adult viewers who are also
readers; let’s call this subtype MediaAdult. This analysis leads to the schema of Figure
6.53.

Alternatively, an output report from the domain might help with the modeling (see
Table 6.6). The sample data have been carefully chosen to be significant with respect
to the subtype graph. Given this, and recalling that the “−” sign means “not to be re-
corded”, we may reason as follows. Age, viewing, and reading figures are recorded for
everybody. The set of people for which favorite channel is recorded properly overlaps
with the set of people for which favorite paper is recorded, so these correspond to
overlapping subtypes. The set of people for which preferred news source is recorded is
a proper subset of the previous two sets, so this corresponds to a common subtype.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 31 / 36

Spotting Subtypes

256 Chapter 6: Value, Set-Comparison, and Subtype Constraints

PeriodRate
(h/wk:)

views television for

{0..168}

reads newspapers for

Person
(.formNr) has

Age
(y:) {0..140}

Viewer! Reader!
favors prefers

TVChannel
(.nr)

Newspaper
(.name)

MediaAdult!
… prefers … for news

MediaKind
(.code)

!"#$% Viewer &'(#(Person)%* watches television for Period > 0.
!"#$% Reader &'(#(Person)%* reads newspapers for Period > 0.
!"#$% MediaAdult &'(+*,%(#(Viewer #-.(# Reader)%* has Age >= 18.

{‘TV’, ‘NP’}

Figure 6.53 The conceptual schema for the media survey example.

This analysis yields the “diamond shaped” subtype graph of Figure 6.53, as well as

the information recorded for each node in the graph. However, we can only make edu-
cated guesses as to the actual subtype definitions—these should be checked with a
domain expert if one is available.

In practice, reports often display different kinds of nulls in the same way. For ex-
ample, a blank space might be used for both our simply unknown “?” and inapplicable
“−” marks. So you should clarify the meaning of any nulls with the domain expert
before deciding how to handle them.

Sometimes, subtype specific details appear in separate reports, and the titles of
these reports may then correspond to subtypes or to subtype components (disjuncts or
conjuncts).

Table 6.6 An output report from the media survey

Person Age
(y)

Television
(h/week)

Newspaper
(h/week)

Favorite
channel

Favorite
paper

Preferred
news

5001
5002
5003
5004
5005
5006
5007
5008
5009

41
60
16
18
13
17
50
33
13

 0
 0
20
20
35
14
 8
 0
50

10
25
 2
 5
 0
 4
10
 0
 0

−
−
9
2
7
9
2
−
10

The Times
The Times
The Times
Daily Mail

−
Daily Sun
Daily Sun

−
−

−
−
−
TV
−
−
NP
−
−

• There are different kinds of NULL values
I ? denotes unknown.
I − denotes not applicable.

• Not applicable fields suggest here that we have different subtypes
associated to different information sources.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 32 / 36

Spotting Subtypes

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 33 / 36

Generalization

Introduction of a supertype that factorize common roles and features of
several object types.

• Having common roles to be factorized is not sufficient to motivate the
introduction of a supertype.

• Connection with Step 3: combination of different object types into a
unique object type, but now we can also retain the subtypes.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 34 / 36

Generalization

Introduction of a supertype that factorize common roles and features of
several object types.

• Having common roles to be factorized is not sufficient to motivate the
introduction of a supertype.

• Connection with Step 3: combination of different object types into a
unique object type, but now we can also retain the subtypes.

How to query all the persons we have?

WorkingStudent Manager

Student
(.nr)

Employee
(.id)

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 34 / 36

Generalization
Introduction of a supertype that factorize common roles and features of
several object types.

• Having common roles to be factorized is not sufficient to motivate the
introduction of a supertype.

• Connection with Step 3: combination of different object types into a
unique object type, but now we can also retain the subtypes.

How to query all the persons we have?

WorkingStudent Manager

Student
(.nr)

Employee
(.id)

Person
(SSN)

WorkingStudent Manager

Student
(.nr)

Employee
(.id)

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 34 / 36

Generalization Guidelines
• For exclusive object types, generalization is needed only when
common details for them must be listed in the same query.

• Remember that, by default, top-level (primitive) object types are
mutually exclusive.

• Therefore, if we want primitive object types to overlap, we must
introduce a common supertype for them.

• As usual, the model could differ from reality. This must be motivated
and documented.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 35 / 36

Generalization Procedure

Given two completely separated object types A and B. . .
If

• A and B overlap, or can be compared
and we want to model this

• or A and B are mutually exclusive and common information is listed
for both
and we want to list A and B together for this information

then
1. Introduce their supertype A ∪ B with its own identification scheme.
2. Add classification predicates on the supertype, to identify A and B.
3. Attach common roles to the supertype.
4. If A (or B) plays specific roles

then define A (B) as a subtype and attach such roles.

Marco Montali (unibz) DPM - 3.CDSP-6 A.Y. 2014/2015 36 / 36

