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Relational Transition System Verification Language Restricted µ-calculi First-order LTL Key Properties Decidability

Data-Centric Dynamic Systems (DCDS)

Abstract model underlying variants of artifact-centric systems.

Semantically equivalent to the most expressive models for business process
systems (e.g., GSM).

Data Process Data+Process

Data Layer: Relational databases / ontologies

Data schema, specifying constraints on the allowed states
Data instance: state of the DCDS

Process Layer: key elements are

Atomic actions
Condition-action-rules for application of actions
Service calls: communication with external environment, new data!
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Deterministic vs. non-deterministic services

DCDSs admit two different semantics for service-execution:

Deterministic services semantics

Along a run, when the same service is called again with the same arguments,
it returns the same result as in the previous call.

Are used to model an environment whose behavior is completely determined by
the parameters.
Example: temperature, given the location and the date and time

Non-deterministic services semantics

Along a run, when the same service is called again with the same arguments,
it may return a different result than in the previous call.

Are used to model:

an environment whose behavior is determined by parameters that are
outside the control of the system;

input of external users, whose choices depend on external factors.

Example: current temperature, given the location
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An example: Hotels and price conversion

Data Layer: Info about room prices for hotels and their currency

Cur = 〈UserCurrency〉 CH = 〈Hotel ,Currency〉
PEntry = 〈Hotel ,Price,Date〉

Process Layer/1: User selection of a currency

Process: true 7−→ ChooseCur()

Service call for currency selection: uInputCurr()

Models user input with non-deterministic behavior.

ChooseCur() :

{
Cur(c) del{Cur(c)}
true  add{Cur(uInputCurr())}

}
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An example: Hotels and price conversion

Data Layer: Info about room prices for hotels and their currency

Cur = 〈UserCurrency〉 CH = 〈Hotel ,Currency〉
PEntry = 〈Hotel ,Price,Date〉

Process Layer/2: Price conversion for a hotel

Process: Cur(c) ∧ CH(h, ch) ∧ ch 6= c 7−→ ApplyConv(h, c)

Service call for currency selection: conv(price, from, to, date)

Models historical conversion with deterministic behavior.

ApplyConv(h, c) :
PEntry(h, p, d) del{PEntry(h, p, d)}

PEntry(h, p, d) ∧
CH(h, cold) add{PEntry(h,conv(p, cold , c, d), d)}
CH(h, cold) del{CH(h, cold)}, add{CH(h, c)}
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Run of the system

HC

h1 eur
h2 eur

PEntry

h1 95 apr-25
h1 80 sep-18
h2 80 sep-18

HC

h1 eur
h2 eur

PEntry

h1 95 apr-25
h1 80 sep-18
h2 80 sep-18

Cur

usd

HC

h1 usd
h2 eur

PEntry

h1 115 apr-25
h1 95 sep-18
h2 80 sep-18

Cur

usd

HC

h1 usd
h2 usd

PEntry

h1 115 apr-25
h1 95 sep-18
h2 95 sep-18

Cur

usd

ChooseCur(): uInputCurr() =

?usd

ApplyConv(h1,usd)

:
conv(95,eur,usd,apr-25) =

115

conv(80,eur,usd,sep-18) =

95

ChooseCur()

ApplyConv(h2,usd)

ChooseCur()

ApplyConv(h2,usd)

conv(80,eur,usd,sep-18) = 95
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Execution semantics of dynamic systems

Typically given in the form of a transition system.

(Propositional) transition system

Given a set Σ of state propositions, a (propositional) transition system is a
tuple 〈S, s0, prop,⇒〉, where:

S is a finite set of states;

s0 ∈ S is the initial state;

prop : S → 2Σ is an assignment, mapping each state in S to the set of
propositions from Σ holding in that state;

⇒ ⊆ S × S is the transition relation between states.

Usually, the transitions are labeled with corresponding actions.
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Impact of data on verification

The presence of data complicates verification significantly:

States must be modeled relationally rather than propositionally.

The resulting transition system is typically infinite state.

Query languages for analysis need to combine two dimensions:

a temporal dimension to query the process execution flow, and
a first-order dimension to query the data present in the relational structures.

; We need first-order variants of temporal logics.
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What if the system evolves a database?

We get a transition system in which each state is a relational database.

We can assume to have an infinite domain ∆ of data items (also called values).

Relational transition system (RTS)

Is a tuple 〈∆,R, S, s0, db,⇒〉, where:

R is a database schema;

S is a possibly infinite set of states;

s0 ∈ S is the initial state;

db is a function associating to each state s in S a database instance db(s)
over R and ∆;

⇒ ⊆ S × S is the transition relation between states.
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Execution semantics of a DCDS

Is determined by the relational transition system that accounts for all possible
runs of the DCDS:

States are database instances (i.e., db is the identity function).

Transitions: correspond to legal applications of an action with parameter
instantiation + service call evaluations.

Action with param. instantiation: executable according to the process rules.
Satisfaction of constraints ensured by each DB instance.

We obtain a possibly infinite-state (relational) transition system ΥX ,
intuitively constructed as follows:

start from the initial DB;

apply transitions in all possible ways;

continue (ad infinitum) on the newly obtained states.
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Sources of unboundedness/infinity

In general: service calls cause . . .

......

......

. . .

infinite branching (due to all possible results of
service calls);

infinite runs (usage of values obtained from
unboundedly many service calls);

unbounded DBs
(accumulation of such values).

HC

- h2 eur

PEntry

h1 95 apr-25
h1 80 sep-18
h2 80 sep-18

Cur

usd

. . .

. . .

. . .

.

.

.

ApplyConv(h1,usd): exchange rate = 1.2

ApplyConv(h1,usd): exchange rate = 1.23

ApplyConv(h1,usd): exchange rate = 1.3

ApplyConv(h1,usd): exchange rate = ...
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First-order µ-calculi for DCDSs

We employ variants of first-order µ-calculus (µLFO):

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | 〈−〉Φ | Z | µZ.Φ

Extends the propositional µ-calculus µL with
first-order quantification.

The first-order quantifiers range over all objects in
the transition system (and not only over those in
the current state or in the current run). PDLLTL CTL

µL

µLFO

We also adopt the standard abbreviations, including:

[−]Φ for ¬〈−〉¬Φ

νZ.Φ for ¬µZ.Φ[Z/¬Z]

Example

∀x.Student(x)→ µZ.((∃y.Graduate(x, y)) ∨ 〈−〉Z)

For each student x (in the current state), there exists an evolution that
eventually leads to the graduation of x (with some final mark y).
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Model checking µLFO

Model checking a RTS

Input:

a RTS Υ = 〈∆,R, S, s0, db,⇒〉
a µLFO formula Φ that is closed (i.e., without free variables)

Output: yes, iff Φ holds in the initial state s0 of Υ

In this case, we write Υ |= Φ.

Model checking a DCDS

Input:

a DCDS X (generating a RTS ΥX )

a closed µLFO formula Φ

Output: yes, iff ΥX |= Φ.

In this case, we write X |= Φ.
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History-preserving µ-calculus (µLA)

Active-domain quantification: restricted to those
individuals present in the current database.

∃x.Φ ; ∃x.live(x) ∧ Φ

∀x.Φ ; ∀x.live(x)→ Φ

where live(x) states that x is present in the current active
domain (easily expressible in FO). PDLLTL CTL

µL

µLA

µLFO

Note: µLA is a syntactic restriction of µLFO.

Example

νW.(∀x.live(x) ∧ Student(x)→
µZ.(∃y.live(y) ∧ Graduate(x, y) ∨ 〈−〉Z) ∧ [−]W )

Along every path, it is always true, for each student x, that there exists an
evolution eventually leading to a graduation of the student (with some final
mark y).

Note: No guarantee that all such students graduate within the same run.
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Persistence-preserving µ-calculus (µLP )

In some cases, objects maintain their identity only if they persist in the active
domain (cf. business artifacts and their IDs).

. . .

StudId : 123

. . .

StudId : 123

. . .dismiss(123) newStud()
ID() = 123

µLP restricts µLA to quantification over persisting
objects only, i.e., objects that continue to be live.

∃x.Φ ; ∃x.live(x) ∧ Φ
∀x.Φ ; ∀x.live(x)→ Φ

〈−〉Φ(~x) ;

{
live(~x) ∧ 〈−〉Φ(~x) (strong persistence)

live(~x)→ 〈−〉Φ(~x) (weak persistence)

[−]Φ(~x) ;

{
live(~x) ∧ [−]Φ(~x) (strong persistence)

live(~x)→ [−]Φ(~x) (weak persistence)

PDLLTL CTL

µL

µLP

µLA

µLFO

Note: µLP is a syntactic restriction of µLA.
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In some cases, objects maintain their identity only if they persist in the active
domain (cf. business artifacts and their IDs).

. . .

StudId : 123

. . .

StudId : 123

. . .dismiss(123) newStud()
ID() = 123

µLP restricts µLA to quantification over persisting
objects only, i.e., objects that continue to be live.

∃x.Φ ; ∃x.live(x) ∧ Φ
∀x.Φ ; ∀x.live(x)→ Φ

〈−〉Φ(~x) ;

{
live(~x) ∧ 〈−〉Φ(~x) (strong persistence)

live(~x)→ 〈−〉Φ(~x) (weak persistence)

[−]Φ(~x) ;

{
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PDLLTL CTL
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Strong vs. weak persistence

Strong persistence: property falsified by an object that disappears

νW.(∀x.live(x) ∧ Student(x)→
µZ.(∃y.live(y) ∧ Graduate(x, y) ∨ (live(x) ∧ 〈−〉Z)) ∧ [−]W )

Along every path, it is always true, for each student x, that there exists an
evolution in which x persists in the database until she eventually graduates.

Weak persistence: property verified by an object that disappears

νW.(∀x.live(x) ∧ Student(x)→
µZ.(∃y.live(y) ∧ Graduate(x, y) ∨ (live(x)→ 〈−〉Z)) ∧ [−]W )

Along every path, it is always true, for each student x, that there exists an
evolution in which either x does not persist, or she eventually graduates.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (14/40)



Relational Transition System Verification Language Restricted µ-calculi First-order LTL Key Properties Decidability

Strong vs. weak persistence

Strong persistence: property falsified by an object that disappears

νW.(∀x.live(x) ∧ Student(x)→
µZ.(∃y.live(y) ∧ Graduate(x, y) ∨ (live(x) ∧ 〈−〉Z)) ∧ [−]W )

Along every path, it is always true, for each student x, that there exists an
evolution in which x persists in the database until she eventually graduates.

Weak persistence: property verified by an object that disappears

νW.(∀x.live(x) ∧ Student(x)→
µZ.(∃y.live(y) ∧ Graduate(x, y) ∨ (live(x)→ 〈−〉Z)) ∧ [−]W )

Along every path, it is always true, for each student x, that there exists an
evolution in which either x does not persist, or she eventually graduates.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (14/40)



Relational Transition System Verification Language Restricted µ-calculi First-order LTL Key Properties Decidability

First-order linear temporal logics for DCDSs

LTL-FO extends propositional LTL with the possibility of querying the system
states using first-order formulas with quantification across:

Φ ::= ϕ | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | XΦ | Φ1 UΦ2

We also adopt the standard abbreviations, including:

FΦ for trueUΦ (Φ holds in the future)

GΦ for ¬F¬Φ (Φ holds globally)

Example

∀x.Student(x)→ F ∃y.Graduate(x, y)

For each student x (in the current state), x will graduate sometimes in the
future (with some final mark y).

Note: all encountered students graduate within the same run.
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Model checking LTL-FO

LTL model checking an RTS

Input:

an RTS Υ = 〈∆,R, S, s0, db,⇒〉
a closed LTL-FO formula Φ

Output: yes, iff for every run τ over Υ, Φ holds in the initial state of τ .

In this case, we write Υ |=ltl Φ.

LTL Model checking a DCDS

Input:

a DCDS X (generating a RTS ΥX )

a closed LTL-FO formula Φ

Output: yes, iff ΥX |=ltl Φ.

In this case, we write X |=ltl Φ.
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First-order LTL with restricted quantification

History-preserving quantification: LTL-FOA

FO quantification ranges over current active domain only:
∃x.Φ ; ∃x.live(x) ∧ Φ
∀x.Φ ; ∀x.live(x)→ Φ

Example: ∀x.live(x) ∧ Customer(x)→ FGold(x)

Persistence-preserving quantification: LTL-FOP

FO quantification ranges over persisting individuals only.
∃x.Φ ; ∃x.live(x) ∧ Φ
∀x.Φ ; ∀x.live(x)→ Φ

XΦ(~x) ;

{
live(~x) ∧XΦ(~x) (strong persistence)

live(~x)→ XΦ(~x) (weak persistence)

Φ1 UΦ2(~x) ;

{
(live(~x) ∧ Φ1)UΦ2(~x) (s.p.)

(live(~x) ∧ Φ1)U(live(~x)→ Φ2(~x)) (w.p.)

Example: ∀x.(live(x) ∧ Gold(x))→ ¬(live(x)U¬Gold(x))

LTL

LTL-FO

LTL-FOA

LTL-FOP
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Delineating the boundaries of verifiability

Understand the boundaries of verifiability for DCDSs:

Considering propositional reachability as the bottom line, then moving
towards model checking branching and linear time FO temporal logics.

Striving for robust conditions that lend themselves to be enforced in
practice.

Aiming at reducing the problem to conventional model checking.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (18/40)



Relational Transition System Verification Language Restricted µ-calculi First-order LTL Key Properties Decidability

Our goal

DCDS (Un)desired property

Infinite-state
RTS

First-order
temporal formulaΦ|=

Finite-state
TS

faithful abstraction

Propositional
temporal formulaΨ

propositionalization

|=

IFF
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The good

Study propositional reachability:
◦ Undecidable;
◦ Decidable.

X
outcome?

Tune DCDS Study model checking of logic L:
◦ Undecidable;
◦ Decidable:
• Formula-Independent Abstractions;
• Formula-Dependent Abstractions.

Tune DCDS/logic

outcome?

Write abstraction technique

U D

FIA or FDA

U, or D but only with FDA
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The bad

Data LayerProcess Layer
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The bad

A Turing Machine in GSM

Halt
curState == qf

Transition done

...

status attributes curState cellscurCell

curCell = curCell.next;

Head moved

if curCell.next == null

newCell = createCell();
newCell.value = "_";
curCell.next = newCell;
newCell.prev = curCell;
newCell.next = null;

Tape extended

if curCell.next != null

curCell = createCell();
curCell.value = "_";
curState = q0;Initialized if curCell == null

MovedR

. . .

curCell.value = vR1';
curState = qR1';

if curState = qR1
&& curCell.value = vR1

R1 state updated

. . .

curCell.value = vRk';
curState = qRk';

if curState = qRk
&& curCell.value = vRk

Rk state updated

curCell = curCell.prev;

Head moved

if curCell.prev == null

newCell = createCell();
newCell.value = "_";
curCell.prev = newCell;
newCell.next = curCell;
newCell.prev = null;

Tape extended

if curCell.prev != null

MovedL

. . .

curCell.value = vL1';
curState = qL1';

if curState = qL1
&& curCell.value = vL1

L1 state updated

. . .

curCell.value = vLn';
curState = qLn';

if curState = qLn
&& curCell.value = vLn

Ln state updated

...

value prev next

Transition stage

State update stages

Init stage

Right shift stage

Left shift stage

Question

Do we need all such complications to encode Turing-powerful computations?
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The ugly

To encode Turing-powerful computations, we just need. . .

unary relations and queries with negation;

a single binary relation and no negation.

Negation and binary relations are essential features!

Theorem

Verification of propositional reachability over DCDSs employing only unary
relations, is undecidable.

Theorem

Verification of propositional reachability over DCDSs employing unary
relations, a single binary relation, and only positive queries, is undecidable.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (23/40)



Relational Transition System Verification Language Restricted µ-calculi First-order LTL Key Properties Decidability

The ugly

To encode Turing-powerful computations, we just need. . .

unary relations and queries with negation;

a single binary relation and no negation.

Negation and binary relations are essential features!

Theorem

Verification of propositional reachability over DCDSs employing only unary
relations, is undecidable.

Theorem

Verification of propositional reachability over DCDSs employing unary
relations, a single binary relation, and only positive queries, is undecidable.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (23/40)



Relational Transition System Verification Language Restricted µ-calculi First-order LTL Key Properties Decidability

State boundedness

Main reason for undecidability

The DCDS database may accumulate unbounded information.

Idea: we control the way the process layer can use the data layer.

A DCDS X is state-bounded

if there exists a fixed number b such that the number of values used in each
single state of X , is bounded by b.

If we know b, we say that the DCDS is b-bounded.

Note:

Even a 1-bounded DCDS may still induce
an infinite RTS.

However, the unboundedly many
encountered values cannot be accumulated
in a single DB.

State-boundedness is a semantic condition.

• • •
•
•
•

• • •
•
•
•

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (24/40)



Relational Transition System Verification Language Restricted µ-calculi First-order LTL Key Properties Decidability

State boundedness

Main reason for undecidability

The DCDS database may accumulate unbounded information.

Idea: we control the way the process layer can use the data layer.

A DCDS X is state-bounded

if there exists a fixed number b such that the number of values used in each
single state of X , is bounded by b.

If we know b, we say that the DCDS is b-bounded.

Note:

Even a 1-bounded DCDS may still induce
an infinite RTS.

However, the unboundedly many
encountered values cannot be accumulated
in a single DB.

State-boundedness is a semantic condition.

• • •
•
•
•

• • •
•
•
•

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (24/40)



Relational Transition System Verification Language Restricted µ-calculi First-order LTL Key Properties Decidability

State-boundedness to the rescue

Theorem

Reachability over state-bounded DCDS is decidable.

Proof.

State-boundedness combines well with two key formal properties of DCDSs and
the RTSs they induce.
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Two key properties of DCDSs

DCDS are . . .

Markovian

Next state only depends on the current state and the input.

Based on generic queries

FO/SQL (as virtually all query languages) does not distinguish structures that
are identical modulo uniform renaming of data objects.

Consider two isomorphic databases D1 and D2.

Let h be a bijection between the active domains of D1 and D2, witnessing
their isomorphisms (i.e., preserving relations).

For every query Q, by applying h on the answers obtained by issuing Q
over D1, we exactly get the answers obtained by issuing Q over D2.

These two properties, together, lead to a crucial genericity property of the
dynamics induced by DCDSs.
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Genericity, intuitively

Travel payment

register 
credit card

cc number

... pay

bank status

...

...

...

status = "OK"

status = "ERR"

else

+

For analyzing the system (considering all possible executions):

The actual credit card number does not matter.

What matters is the outcome of the payment.

The process behavior:

Distinguishes the bank status.

Does not really “see” the actual cc number
; only how it relates to the other objects!
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Genericity, graphically

If. . .

Then

s1 = s2 s′1

h1
h2

h3

h4. . .
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Model checking state-bounded DCDSs: negative results

Theorem

There exists a 1-bounded DCDS that does not admit any formula-
independent, finite-state abstraction preserving exactly the same µLA (and,
hence, µLFO) properties.

N.B.: this does not imply undecidability!

Theorem

There exists a 1-bounded DCDS over which verifying LTL-FOA properties is
undecidable.

Reason for this negative results:

Unrestricted interplay between temporal modalities and FO quantification
across states.
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Summary of negative results so far

We have seen the following results:

Without restrictions on the form of the DCDS, even the simplest properties
(reachability) is undecidable.
; Towards decidability, we deal only with state bounded DCDSs and

with logics with active domain quantification (µLA, LTL-FOA).

Even for state bounded DCDS, we have that:

Model checking µLA does not admit formula-independent abstractions.

Model checking LTL-FOA (and hence LTL-FO) is undecidable.

To overcome these problems, we can follow different approaches:

We consider a further restriction on DCDSs: run-boundedness

We consider a further restriction on the logics: µLP and LTL-FOP .

We study formula-dependent abstractions.
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Towards decidability

We need to tame the two sources of infinity in
the RTS ΥX generated by a DCDS X :

infinite branching, due to external input;

infinite runs, i.e., runs visiting infinitely
many DBs.

P(a) P(a)

P(b)

. . .

. . .

. . .

. . .

To prove decidability of model checking for restricted DCDSs and a specific
verification logic L:

We use as a tool bisimulations for the logic L.

We show that we can construct a finite-state RTS ΘX that provides a
faithful abstraction of ΥX for formulas of L.

In other words, ΘX and ΥX are bisimilar, under the bisimulation for L.
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Dealing with infinite branching

Infinite branching is caused by the infinite number
of possible combinations of values returned by the
service calls.

Notice, however, that for each state along a run:

only a finite number of values have been
encountered so far, and
only a finite number of service calls are issued
when an action is executed.

Hence, due to genericity, we need only to take into
account:

whether a new value is equal to or differs from a
value encountered so far;
whether new values obtained from different
service calls are equal to or differ from each other.

• • •
•
•
•

• • •
•
•
•

• • •
•
•
•

• • •
•
•
•

· · ·

A-bisimilar

non A-bisimilar
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Dealing with infinite runs

We still need to address infiniteness of the RTS coming from possibly infinite
runs, which may accumulate infinitely many new values along the run.

Two approaches to deal with this:

1 Restrict the DCDS, by ruling out a priori the accumulation of infinitely
many values along a run.
; run-bounded DCDSs

2 Restrict the logics, making them “insensitive” to the infinitely many values.
; persistence-preserving variants of µLFO and LTL-FO

Recall: the DCDSs we consider are state-bounded!
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Run-boundedness

A DCDS X is run-bounded

if there exists a fixed number b such that the number of values used in each
(infinite) run of X , is bounded by b.

Note:

In general, even when X is run-bounded, ΥX is still infinite-state due to
infinite branching (but we have seen how to cope with this).

Run-boundedness is a semantic condition.

Theorem

Verification of µLA over run-bounded DCDSs is decidable and can be
reduced to model checking of propositional µ-calculus over a finite TS.

Verification of LTL-FOA over run-bounded DCDSs is decidable and can be
reduced to model checking of propositional LTL over a finite TS.
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Avoiding run-boundedness

Run-boundedness is a rather restrictive condition for DCDSs

With non-deterministic services: only a finite number of service calls . . .

With deterministic services: only a finite number of distinct service calls . . .

. . . may be issued along a run.

Instead of requiring run-boundedness, we:

restrict the form of quantification, and

show how to construct a finite faithful abstraction in which we reuse values
along runs.
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Eventually recycling pruning

Intuition:

We consider logics with persistence-preserving quantification, which cannot
quantify over values, once they have left the active domain.

When we need to return new values from service calls, we “recycle” those
values that previously disappeared.

We incorporate the recycling into the construction of the RTS for the
DCDS, effectively pruning the set of generated states.

If the DCDS is b-bounded, the recycling algorithm will introduce at most
2 · b new values overall. Namely, for each state s:

at most b values that constitute adom(db(s));
at most b new values that are introduced by the service calls, and that
possibly replace some of the values in adom(db(s)).
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Decidability for persistence-preserving logics

Prune Recycle

Theorem

Verification of µLP over state-bounded DCDSs is decidable and can be
reduced to model checking of propositional µ-calculus over a finite TS.

Verification of LTL-FOP over state-bounded DCDSs is decidable and can
be reduced to model checking of propositional LTL over a finite TS.
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Decidability for persistence-preserving logics

Given as input a state-bounded DCDS X , algorithm Recycle constructs
a finite RTS ΘX .

Moreover, ΘX and ΥX are persistence-preserving bisimilar.

Note: the algorithm does not require to know the bound b for the state.

From this, and the fact that µLP / LTL-FOA are invariant under
persistence-reserving bisimulations, we obtain decidability of verification.

Theorem

Verification of µLP over state-bounded DCDSs is decidable and can be
reduced to model checking of propositional µ-calculus over a finite TS.

Verification of LTL-FOP over state-bounded DCDSs is decidable and can
be reduced to model checking of propositional LTL over a finite TS.
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µLA and µLFO over state-bounded DCDSs

We have seen that µLA (and hence µLFO) over state-bounded DCDSs does not
admit formula-independent abstractions.

But is verification decidable?

µLFO is not able to single out properties about a run.

Combined with genericity of the RTS generated by a DCDS X , this limits
the ability to express first-order temporal properties over ΥX .

Hence, given a µLFO formula Φ with n variables, we can introduce n data
slots that keep track of their assignments.

Theorem

Given a state-bounded DCDS X and an integer n, we can construct a finite
state abstraction ΘX of ΥX (that depends on n) such that, for every µLFO

formula Φ with n variables,
ΘX |= Φ if and only if ΥX |= Φ.
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Final overall picture

Reachability over unrestricted DCDSs: U

Tune DCDS:
state-bounded

Reachability over state-bounded DCDSs: D

Model checking µLFO/µLA

over state-bounded DCDSs: D (FDA)
Model checking LTL-FO/LTL-FOA

over state-bounded DCDSs: U

Tune DCDS:
run-bounded

Tune logic:
persistence

Tune DCDS:
run-bounded

Tune logic:
persistence

Model checking µLFO/LTL-FO
over run-bounded DCDSs: D (FIA)

Model checking µLP /LTL-FOP

over state-bounded DCDSs: D (FIA)
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