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The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

The story so far, with main references

The need of combining (business) processes and data.
[Calvanese, De Giacomo, and Montali 2013]

A pristine formalism for data-aware business processes: DCDS.
[Bagheri Hariri, Calvanese, De Giacomo, et al. 2013; Montali and Calvanese 2016]

Suitable verification logics for data-aware processes.
[Bagheri Hariri, Calvanese, De Giacomo, et al. 2013; Calvanese, De Giacomo,

Montali, and Patrizi 2017]

Corresponding characterization theorems.
[Calvanese, De Giacomo, Montali, and Patrizi 2017]

A decidability map, with an unexpected dichotomy between
µLA and LTL-FOA.
[Bagheri Hariri, Calvanese, De Giacomo, et al. 2013; Calvanese, De Giacomo,

Montali, and Patrizi 2017]

Note: Incorrect results in [Bagheri Hariri, Calvanese, De Giacomo, et al. 2013;

Okamoto 2010] fixed in [Calvanese, De Giacomo, Montali, and Patrizi 2017].
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How to check/ensure state boundedness?

Theorem

Checking whether a DCDS is state-/run-bounded is:

Decidable for a given bound.

Undecidable for an unknown bound.

Three possible strategies:

Single out classes of DCDSs for which checking state-/run-boundedness
is decidable.

Identify sufficient syntactic conditions that are decidable to check, and
that guarantee state-/run-boundedness

cf. syntactic conditions for chase termination in data exchange.

Devise modeling methodologies that guarantee state boundedness.
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DCDSs with decidable state-boundedness

Fact

DCDSs using only unary relations correspond to variants of Petri nets.

The specific variant depends on the features used in the DCDS.

Note: State-boundedness relate to boundedness in Petri nets.

Petri nets with name management

Decidable boundedness.
[Rosa-Velardo and Frutos-Escrig 2011]
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[Montali and Rivkin 2016]

Translation to DCDSs and µLP verification.

Reset-Transfer Nets

Undecidable boundedness.
[Dufourd, Jancar, and Schnoebelen 1999]
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[Bagheri Hariri, Calvanese, Deutsch, et al. 2014]

“Lossy” correspondence with DCDSs.
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Attacking state-boundedness

The class of DCDSs with decidable state-boundedness very restrictive

These variants of Petri nets corresponds to DCDSs with only unary relations,
limited use of negation, no or limited joins, . . .

How to check/guarantee that a DCDS is state-bounded?

Sufficient, syntactic conditions:

Extract a data flow graph from
the DCDS.

Check sources of unboundedness
through this graph.

See [Bagheri Hariri, Calvanese, De Giacomo,

et al. 2013] and [Bagheri Hariri, Calvanese,

Deutsch, et al. 2014].

State-boundedness by design:

Design methods for state-bounded
DCDSs. In [Solomakhin et al. 2013]:

Processes are bound to evolving
business objects (artifacts).

Each business object manipulate
boundedly many data.

(New) business objects pick their
names from a fixed pool of ids.

More sophisticated techniques in
[Montali and Calvanese 2016; Calvanese,

Montali, et al. 2014].
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State-boundedness in concrete process modeling languages

Classical BPM languages/suites

Central notion of case representing a process instance.

Each case carries its own case data, in isolation to the other cases (e.g.,
order details, customer address, . . . ).

Cases interact by accessing a central, persistent data storage.

Artifact-centric approaches:

Central notion of business object gluing data and behaviour together.

All data relevant to a business object are attached to it.

Processes may query multiple business objects at once, to determine the
possible next steps.

External and internal stakeholders. . .

New cases/business objects are created upon events issued by external
stakeholders (e.g., new order request).

But then they are bound to internal resources, responsible for progressing
the corresponding process instances.
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RIAW-nets [Montali and Rivkin 2016]
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RIAW-nets = ν-PNs + workflow nets

Emitter transition generating a new process id when fired.

Control-flow name matching to selectively spawn/synch tokens using their id.

Resource places to bound the number of simultaneously coexisting active
process instances! (but unboundedly many over time).

Decidability of model checking via translation to state-bounded DCDSs.
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Data isolation and case unboundedness

What if the number of simultaneously active cases cannot be bounded?

In [Montali and Calvanese 2016; Calvanese, Montali, et al. 2014], we show that
decidability of model checking can be retained, if the system obeys to:

relative boundedness (each case manipulates boundedly many data);

data isolation (cases interact very weakly).

State Group MarryM
group state id id combatLevel group
12 out • • 12 76 pro null

4 in • • 4 • • 19 basic 4

431 running • • 431 • • 56 ok 431

. . . • 3 basic 431

• 98 ok 431

Modeling guidelines to guarantee data isolation and relative boundedness:

1 Queries must be navigational (no arbitrary access to relations).

2 1-to-many relations require a number restriction on the “many” side.

3 Each case cannot create a chain of tuples of unbounded lenght.

4 Cases can share tuples only in a controlled way (no construction of chains).
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Beyond State-Boundedness

Question

Are there classes of DCDSs that are unbounded, but still amenable to
verification?

Key result in [Abdulla et al. 2016].

Recency-bounded data-aware processes

Unbounded DB, but only the latest inserted/accessed values can bound to
parameters.

Verification via under-approximation

Decidability by focusing only on runs that are k-recency-bounded for an
explicitly given key.

Open problem

Investigate the relationships between all such results and those where the initial
DB is not fixed, and verification is studied for every possible initial DB.
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Incorporation of datatypes

Databases have datatypes

Numeric domains, domain-specific predicates, arithmetic.

Many coordination algorithms and auctions require dense orders.

Processes with costs and payment policies require integers and arithmetic.

Dense orders combine well with state-boundedness

Data-aware, state-bounded distributed systems with reals [Calvanese, Delzanno,

and Montali 2015]:

OK to include dense linear orders: minor extension to the standard
DCDS abstraction technique. Intuition. . .

Rigid > relation Non-rigid GreaterThan relation
over the entire domain −→ over active domain elements.

No hope to include the successor relation (or integers):
2 data slots are sufficient to encode two counters.

Discrete orders and arithmetic combine well with run-boundedness

Ongoing work. . .
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Relational multiagent systems and commitments

Relational MAS [Montali, Calvanese, and De Giacomo 2014]

Agents have names and hold/manipulate local, state-bounded DBs.

Agents exchange data using their names for addressing.

An institutional agent manages agent creation and deletion.

Due to state-boundedness: unboundedly many agents can dynamically enter
into the system, but at each moment only boundedly many are active.

Seller John

Customer Alice

Name
MyCust

Alice
Bob

ID
Item

i1
i2

Item
Paid

Cust

Institutional agent D.
DeliveryCC

C.

DeliveryC
Item

ACCEPT-REG

JohnAlice

Item
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PAY-CC(i1)

Item
Paid

Cust
i1 Alice

D. C. State

D.
DeliveryCC

C.

DeliveryC
Item

JohnAlice

D. C. State
i1JohnAlice active

PAY-BT(Alice, i2)

Item
Paid

Cust
i1 Alice

D.
DeliveryCC

C.

DeliveryC
Item

JohnAlice

D. C. State
i1JohnAlice active

Alice's Bank

i2JohnAlice active

i2 Alice

deliver(i1,...)

Item
Paid

Cust
i1 Alice

D.
DeliveryCC

C.

DeliveryC
Item

JohnAlice

D. C. State
i1JohnAlice sat

Carrier

i2JohnAlice active

i2 Alice

Item
Owns

i1
Item

Owns
Item

Owns

Relational commitments

In the same work: first
proposal for modeling and
verifying interaction
protocols based on
relational commitments,
i.e., commitments with
data payload and multiple
instances.
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daphne: implementing DCDSs with relational technology

DB
Engine

Flow
Engine

Service ManagerPersistent Storage

daphne

DCDS
state

DCDS Spec.

RDBMS

Native modeling and execution of DCDSs using relational DBMSs:

SQL-like syntax for DCDSs with datatypes.

Automated translation into relational DBMSs, as (temporal) tables,
constraints, and stored procedures.

Java APIs to support enactment and integration with concrete services.

Native explicit model checking of DCDSs using relational DBMSs:

Same model for execution and verification!

Special tables for storing the RTS induced by a DCDSs.

Factoring of tables into temporal and atemporal parts.

Computation of isomorphic type and value recycling in services.

Java APIs for RTS construction and search.
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Can we cook with all ingredients?
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BAUML: artifact-centric processes with UML
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. YYY, [MONTH-YEAR] 4
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 date : Date
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 submissionDate : Date
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Fig. 1. Class diagram showing the artifacts and objects involved in the submission of articles to conferences.
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Fig. 2. State machine diagram showing the evolution of artifact Submis-
sion.

have its own. Figure 2 shows the lifecycle for Submission.
When a paper is submitted to a conference, the correspond-
ing Submission is created in state PendingReviewSubmission.
When it is reviewed, it changes to state AcceptedSubmission,
if the reviewers consider it is appropriate to be presented
at the conference (event-dependent condition success), or
RejectedSubmission, if they decide it is not (event-dependent
condition failure). Before the submission is accepted or re-
jected, one of its authors may decide to withdraw it: then it
changes its state to WithdrawnSubmission. Notice that all of
the transitions in the state machine diagram correspond to
external events.

Similarly, as shown in Figure 3, authors can be created as
a User or a NonUser. A NonUser will become a User when the
system receives additional information by means of external
event Promote to User.

Each external event in the state machine diagram(s) will
be refined by means of an activity diagram. In particular, we
will show the details of Submit Paper and Review Submission
in the state machine diagram of Submission.

Figure 4 shows the activity diagram of event Submit
Paper. The first task registers a new submission in the
system (Register New Submission), and afterwards an author

NonUser

User

Promote to User

Create New Author as NonUser

Create New Author as User

 

  

  

 

          

Fig. 3. State machine diagram showing the evolution of artifact Author.

Fig. 4. Activity diagram of Submit Paper.
Submit Paper

 

 

    

    

  

Register New
Submission

Add Author to
Submission

  
   

  

  

 

 

   

[no more authors to add}

[add more authors]

          

is added to it. If more authors need to be added (see decision
node at the end), this process is repeated. Otherwise, the
activity diagram ends.

Figure 5 shows the activity diagram for event Review
Submission. To begin with, the reviewers evaluate the sub-
mission and decide whether it is good enough to be pre-
sented at the conference. If it is not, the reviewers add a
comment and the activity diagram finishes in failure. This
corresponds to the transition that leads to state RejectedSub-
mission in the state machine diagram. On the other hand, if
the paper is accepted, it is assigned to a certain session and
the activity diagram finishes in success. It corresponds to the
transition that leads to state AcceptedSubmission in the state
machine diagram.

Notice that all the activities in the activity diagram
correspond to tasks: atomic units of work within the process.
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Each external event in the state machine diagram(s) will
be refined by means of an activity diagram. In particular, we
will show the details of Submit Paper and Review Submission
in the state machine diagram of Submission.

Figure 4 shows the activity diagram of event Submit
Paper. The first task registers a new submission in the
system (Register New Submission), and afterwards an author

NonUser

User

Promote to User

Create New Author as NonUser

Create New Author as User

 

  

  

 

          

Fig. 3. State machine diagram showing the evolution of artifact Author.

Fig. 4. Activity diagram of Submit Paper.
Submit Paper

 

 

    

    

  

Register New
Submission

Add Author to
Submission

  
   

  

  

 

 

   

[no more authors to add}

[add more authors]

          

is added to it. If more authors need to be added (see decision
node at the end), this process is repeated. Otherwise, the
activity diagram ends.

Figure 5 shows the activity diagram for event Review
Submission. To begin with, the reviewers evaluate the sub-
mission and decide whether it is good enough to be pre-
sented at the conference. If it is not, the reviewers add a
comment and the activity diagram finishes in failure. This
corresponds to the transition that leads to state RejectedSub-
mission in the state machine diagram. On the other hand, if
the paper is accepted, it is assigned to a certain session and
the activity diagram finishes in success. It corresponds to the
transition that leads to state AcceptedSubmission in the state
machine diagram.

Notice that all the activities in the activity diagram
correspond to tasks: atomic units of work within the process.
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Fig. 5. Activity diagram of Review Submission.

Each of them, therefore, will have an operation contract with
pre and a postcondition. The contracts corresponding to the
tasks in activity diagram SubmitPaper are shown below, in
Listings 1 and 2.

Listing 1. Code for service RegisterNewSubmission
operation RegisterNewSubmission(subId: Natural, title:

String, conf: String)
pre: Conference.allInstances()->exists(c | c.name=conf)

and not Submission.allInstances()->exists(s |
s.id=subId and s.conference.name=conf)

post: PendingReviewSubmission.allInstances()->exists(s |
s.oclIsNew() and s.id=subId and s.title=title and
s.submissionDate=today() and s.conference.name=conf
and result=s)

Listing 2. Code for service AddAuthorToSubmission
operation AddAuthorToSubmission(id: String, sub:Submission)
pre: not sub.author->exists(a | a.id=id)
post: sub.author->exists(a | a.id=id)

The first operation contract registers a new submission
to a conference. The precondition ensures that there is not
a submission to the same conference with the same ID.
The last contract adds the given author to the submission,
but makes sure that he has not already been added to the
submission.

3 EXECUTION SEMANTICS OF BAUML MODELS

The execution semantics is given in terms of a transition
system. Each state of the transition system refers to an UML
object model that conforms to the UML class diagram of
the BAUML model of interest, and describes the current
configuration of objects and links. Each transition represents
an evolution of the current state triggered by an atomic state
transition, or by the execution of an atomic task within the
processing of a complex external event.

3.1 Object Models

3.2 Object Transition Systems

3.3 Execution Semantics

1) While true
a) Nondeterministically decide whether to create a new

artifact instance, or to progress some active instances.
i) New artifact instance: update the object model

accordingly.
ii) Progression: only possible if there are executable

transitions. They are determined by considering:
• The states of active instances.
• The enabled transitions from such states.
• The executable enabled transitions. Au-

tonomous transitions are always executable.
The other transitions are executable only for

those combinations of artifact instances where
all the picked instances are in a proper state
(i.e., a state where the same type of transition
is enabled).

iii) If there is at least one executable transition, non-
deterministically pick one.

iv) Fire the transition, depending on the correspond-
ing label.
A)

4 REASONING ON BAUML MODELS THROUGH
DCDSS

5 RELATED WORK

6 CONCLUSIONS
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BAUML approach

Business objects, states, associations and attributes: UML class diagrams.

Business object lifecycle: UML statechart diagram.

Complex event triggering a lifecycle transition: UML activity diagram.

Tasks modeled as OCL operation contracts.

In [Calvanese, Montali, et al. 2014]: methodology to guarantee decidability of
model checking (see before). Estanol PhD thesis: BAUML to DCDS!
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raw-sys: marrying workflow nets and databases

Task
i

o
local

Case
Task

i
o

local

Case

globalread
write

Task
i

o
local

Case

raw-sys model [De Masellis et al. 2017]:

Data-aware processes using well-known formalisms:

Data: global and local relational databases.

Process control-flow: workflow nets, enriched with:

Guards (queries over the DBs).
STRIPS-like actions with external inputs from an infinite domain, invoked
upon firing net transitions.

raw-sys verification [De Masellis et al. 2017]:

Map of (un)decidability, exploiting translation to DCDSs.

Encoding into planning systems to handle reachability problems.
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db-nets: marrying colored Petri nets and databases

...
Proceed

To Booking

Reserve
(tid, pn)

Create
Booking

FreeDrivers

Reserved
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Leave
Pickup Data

Leave
Phone Number

Pickup
Data

Pnone
Number

AddBooking
(sid, tid, νpdid, n, a, t)

Finalize
Booking

...
〈sid〉 〈sid〉

〈sid
, tid

〉

〈sid〉

〈sid〉

〈sid〉

〈sid〉
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a,
t〉

〈sid, tid〉

〈sid, n〉

〈tid, pn〉
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TID: int PlateNum : string IsFree : bool

BOOKING

BID : int TaxiID : int PickupID : int PhoneID : int

PHONE

PID : int Phone : string

PICKUP DATA

PDID : int Address : string Time : date

db-net model [Montali and Rivkin 2017], three layers:

1 Persistence: relational database with constraints.

2 Data logic: queries and actions over the persistence layer.

3 Control: colored Petri net with ν-variables, enriched with view places and
transition-action bindings to inspect/update the persistence layer.

Note: Natural formalization of contemporary process modeling suites!
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db-nets: marrying colored Petri nets and databases
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db-nets execution, simulation, verification [Montali and Rivkin 2017]:

Foundational results thanks to translation to DCDSs.

Ongoing implementation effort inside www.cpntools.org.
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OCBC: declarative data+process integrated model

Create
Order

Pick
Item

Wrap
Item

Deliver
Items

Order
Order
Line

Delivery

Product

Customer

contains1 * results in1..* 0..1

is for
*

1

belongs to

*

1

receives

1

*

creates

1

1

fills

1

1

prepares

1

0..1

refers to

1

1

OCBC model [Artale et al. 2017], three components:

1 Data model: UML class diagram.

2 Tasks: units of work, referencing classes in the data model. Each task
instance comes with objects belonging to such classes.

3 Behavioral constraints: declarative patterns equipped with coreference
relations pointing to the data model. They constrain when tasks can be
executed, and which data objects they should carry.

Naturally captures many-to-many processes with no single notion of case!
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Thank you for your attention!
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