
Integrated Modeling and Verification of
Processes and Data

Exploiting DCDSs: models, methods, concrete systems

Diego Calvanese, Marco Montali

Research Centre for Knowledge and Data (KRDB)
Free University of Bozen-Bolzano, Italy

KRDB
1

15th International Conference on Business Process Management
Barcelona, Spain – 12 September 2017

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

The story so far, with main references

The need of combining (business) processes and data.
[Calvanese, De Giacomo, and Montali 2013]

A pristine formalism for data-aware business processes: DCDS.
[Bagheri Hariri, Calvanese, De Giacomo, et al. 2013; Montali and Calvanese 2016]

Suitable verification logics for data-aware processes.
[Bagheri Hariri, Calvanese, De Giacomo, et al. 2013; Calvanese, De Giacomo,

Montali, and Patrizi 2017]

Corresponding characterization theorems.
[Calvanese, De Giacomo, Montali, and Patrizi 2017]

A decidability map, with an unexpected dichotomy between
µLA and LTL-FOA.
[Bagheri Hariri, Calvanese, De Giacomo, et al. 2013; Calvanese, De Giacomo,

Montali, and Patrizi 2017]

Note: Incorrect results in [Bagheri Hariri, Calvanese, De Giacomo, et al. 2013;

Okamoto 2010] fixed in [Calvanese, De Giacomo, Montali, and Patrizi 2017].
Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (1/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

How to check/ensure state boundedness?

Theorem

Checking whether a DCDS is state-/run-bounded is:

Decidable for a given bound.

Undecidable for an unknown bound.

Three possible strategies:

Single out classes of DCDSs for which checking state-/run-boundedness
is decidable.

Identify sufficient syntactic conditions that are decidable to check, and
that guarantee state-/run-boundedness

cf. syntactic conditions for chase termination in data exchange.

Devise modeling methodologies that guarantee state boundedness.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (2/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

How to check/ensure state boundedness?

Theorem

Checking whether a DCDS is state-/run-bounded is:

Decidable for a given bound.

Undecidable for an unknown bound.

Three possible strategies:

Single out classes of DCDSs for which checking state-/run-boundedness
is decidable.

Identify sufficient syntactic conditions that are decidable to check, and
that guarantee state-/run-boundedness

cf. syntactic conditions for chase termination in data exchange.

Devise modeling methodologies that guarantee state boundedness.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (2/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

DCDSs with decidable state-boundedness

Fact

DCDSs using only unary relations correspond to variants of Petri nets.

The specific variant depends on the features used in the DCDS.

Note: State-boundedness relate to boundedness in Petri nets.

Petri nets with name management

Decidable boundedness.
[Rosa-Velardo and Frutos-Escrig 2011]

t
p2 c e

p1 a
a c

p4

p3

p5
y

xxy xxν1

ν1ν2

[Montali and Rivkin 2016]

Translation to DCDSs and µLP verification.

Reset-Transfer Nets

Undecidable boundedness.
[Dufourd, Jancar, and Schnoebelen 1999]

p0

t1

p1

p2

t2

p3

t3

p4

p2

p2

p2

[Bagheri Hariri, Calvanese, Deutsch, et al. 2014]

“Lossy” correspondence with DCDSs.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (3/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

DCDSs with decidable state-boundedness

Fact

DCDSs using only unary relations correspond to variants of Petri nets.

The specific variant depends on the features used in the DCDS.

Note: State-boundedness relate to boundedness in Petri nets.

Petri nets with name management

Decidable boundedness.
[Rosa-Velardo and Frutos-Escrig 2011]

t
p2 c e

p1 a
a c

p4

p3

p5
y

xxy xxν1

ν1ν2

[Montali and Rivkin 2016]

Translation to DCDSs and µLP verification.

Reset-Transfer Nets

Undecidable boundedness.
[Dufourd, Jancar, and Schnoebelen 1999]

p0

t1

p1

p2

t2

p3

t3

p4

p2

p2

p2

[Bagheri Hariri, Calvanese, Deutsch, et al. 2014]

“Lossy” correspondence with DCDSs.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (3/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

DCDSs with decidable state-boundedness

Fact

DCDSs using only unary relations correspond to variants of Petri nets.

The specific variant depends on the features used in the DCDS.

Note: State-boundedness relate to boundedness in Petri nets.

Petri nets with name management

Decidable boundedness.
[Rosa-Velardo and Frutos-Escrig 2011]

t
p2 c e

p1 a
a c

p4

p3

p5
y

xxy xxν1

ν1ν2

[Montali and Rivkin 2016]

Translation to DCDSs and µLP verification.

Reset-Transfer Nets

Undecidable boundedness.
[Dufourd, Jancar, and Schnoebelen 1999]

p0

t1

p1

p2

t2

p3

t3

p4

p2

p2

p2

[Bagheri Hariri, Calvanese, Deutsch, et al. 2014]

“Lossy” correspondence with DCDSs.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (3/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

Attacking state-boundedness

The class of DCDSs with decidable state-boundedness very restrictive

These variants of Petri nets corresponds to DCDSs with only unary relations,
limited use of negation, no or limited joins, . . .

How to check/guarantee that a DCDS is state-bounded?

Sufficient, syntactic conditions:

Extract a data flow graph from
the DCDS.

Check sources of unboundedness
through this graph.

See [Bagheri Hariri, Calvanese, De Giacomo,

et al. 2013] and [Bagheri Hariri, Calvanese,

Deutsch, et al. 2014].

State-boundedness by design:

Design methods for state-bounded
DCDSs. In [Solomakhin et al. 2013]:

Processes are bound to evolving
business objects (artifacts).

Each business object manipulate
boundedly many data.

(New) business objects pick their
names from a fixed pool of ids.

More sophisticated techniques in
[Montali and Calvanese 2016; Calvanese,

Montali, et al. 2014].

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (4/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

Attacking state-boundedness

The class of DCDSs with decidable state-boundedness very restrictive

These variants of Petri nets corresponds to DCDSs with only unary relations,
limited use of negation, no or limited joins, . . .

How to check/guarantee that a DCDS is state-bounded?

Sufficient, syntactic conditions:

Extract a data flow graph from
the DCDS.

Check sources of unboundedness
through this graph.

See [Bagheri Hariri, Calvanese, De Giacomo,

et al. 2013] and [Bagheri Hariri, Calvanese,

Deutsch, et al. 2014].

State-boundedness by design:

Design methods for state-bounded
DCDSs. In [Solomakhin et al. 2013]:

Processes are bound to evolving
business objects (artifacts).

Each business object manipulate
boundedly many data.

(New) business objects pick their
names from a fixed pool of ids.

More sophisticated techniques in
[Montali and Calvanese 2016; Calvanese,

Montali, et al. 2014].

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (4/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

Attacking state-boundedness

The class of DCDSs with decidable state-boundedness very restrictive

These variants of Petri nets corresponds to DCDSs with only unary relations,
limited use of negation, no or limited joins, . . .

How to check/guarantee that a DCDS is state-bounded?

Sufficient, syntactic conditions:

Extract a data flow graph from
the DCDS.

Check sources of unboundedness
through this graph.

See [Bagheri Hariri, Calvanese, De Giacomo,

et al. 2013] and [Bagheri Hariri, Calvanese,

Deutsch, et al. 2014].

State-boundedness by design:

Design methods for state-bounded
DCDSs. In [Solomakhin et al. 2013]:

Processes are bound to evolving
business objects (artifacts).

Each business object manipulate
boundedly many data.

(New) business objects pick their
names from a fixed pool of ids.

More sophisticated techniques in
[Montali and Calvanese 2016; Calvanese,

Montali, et al. 2014].

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (4/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

State-boundedness in concrete process modeling languages

Classical BPM languages/suites

Central notion of case representing a process instance.

Each case carries its own case data, in isolation to the other cases (e.g.,
order details, customer address, . . .).

Cases interact by accessing a central, persistent data storage.

Artifact-centric approaches:

Central notion of business object gluing data and behaviour together.

All data relevant to a business object are attached to it.

Processes may query multiple business objects at once, to determine the
possible next steps.

External and internal stakeholders. . .

New cases/business objects are created upon events issued by external
stakeholders (e.g., new order request).

But then they are bound to internal resources, responsible for progressing
the corresponding process instances.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (5/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

State-boundedness in concrete process modeling languages

Classical BPM languages/suites

Central notion of case representing a process instance.

Each case carries its own case data, in isolation to the other cases (e.g.,
order details, customer address, . . .).

Cases interact by accessing a central, persistent data storage.

Artifact-centric approaches:

Central notion of business object gluing data and behaviour together.

All data relevant to a business object are attached to it.

Processes may query multiple business objects at once, to determine the
possible next steps.

External and internal stakeholders. . .

New cases/business objects are created upon events issued by external
stakeholders (e.g., new order request).

But then they are bound to internal resources, responsible for progressing
the corresponding process instances.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (5/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

RIAW-nets [Montali and Rivkin 2016]

tg i
check

in-house repair

do repair

write summary

external repair
start
shipping

write report

prepare package

assemble

print receipt

o tr
ν x x

x

x

x x x x

x

x x

x

x

x

x

x

x

x

x

x

x x

x x x

HW expert

shipping clerk secretary

ε ε

εε

ε ε

ε ε

RIAW-nets = ν-PNs + workflow nets

Emitter transition generating a new process id when fired.

Control-flow name matching to selectively spawn/synch tokens using their id.

Resource places to bound the number of simultaneously coexisting active
process instances! (but unboundedly many over time).

Decidability of model checking via translation to state-bounded DCDSs.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (6/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

Data isolation and case unboundedness

What if the number of simultaneously active cases cannot be bounded?

In [Montali and Calvanese 2016; Calvanese, Montali, et al. 2014], we show that
decidability of model checking can be retained, if the system obeys to:

relative boundedness (each case manipulates boundedly many data);

data isolation (cases interact very weakly).

State Group MarryM
group state id id combatLevel group
12 out • • 12 76 pro null

4 in • • 4 • • 19 basic 4

431 running • • 431 • • 56 ok 431

. . . • 3 basic 431

• 98 ok 431

Modeling guidelines to guarantee data isolation and relative boundedness:

1 Queries must be navigational (no arbitrary access to relations).

2 1-to-many relations require a number restriction on the “many” side.

3 Each case cannot create a chain of tuples of unbounded lenght.

4 Cases can share tuples only in a controlled way (no construction of chains).

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (7/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

Data isolation and case unboundedness

What if the number of simultaneously active cases cannot be bounded?

In [Montali and Calvanese 2016; Calvanese, Montali, et al. 2014], we show that
decidability of model checking can be retained, if the system obeys to:

relative boundedness (each case manipulates boundedly many data);

data isolation (cases interact very weakly).

State Group MarryM
group state id id combatLevel group
12 out • • 12 76 pro null

4 in • • 4 • • 19 basic 4

431 running • • 431 • • 56 ok 431

. . . • 3 basic 431

• 98 ok 431

Modeling guidelines to guarantee data isolation and relative boundedness:

1 Queries must be navigational (no arbitrary access to relations).

2 1-to-many relations require a number restriction on the “many” side.

3 Each case cannot create a chain of tuples of unbounded lenght.

4 Cases can share tuples only in a controlled way (no construction of chains).

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (7/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

Data isolation and case unboundedness

What if the number of simultaneously active cases cannot be bounded?

In [Montali and Calvanese 2016; Calvanese, Montali, et al. 2014], we show that
decidability of model checking can be retained, if the system obeys to:

relative boundedness (each case manipulates boundedly many data);

data isolation (cases interact very weakly).

State Group MarryM
group state id id combatLevel group
12 out • • 12 76 pro null

4 in • • 4 • • 19 basic 4

431 running • • 431 • • 56 ok 431

. . . • 3 basic 431

• 98 ok 431

Modeling guidelines to guarantee data isolation and relative boundedness:

1 Queries must be navigational (no arbitrary access to relations).

2 1-to-many relations require a number restriction on the “many” side.

3 Each case cannot create a chain of tuples of unbounded lenght.

4 Cases can share tuples only in a controlled way (no construction of chains).

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (7/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

Data isolation and case unboundedness

What if the number of simultaneously active cases cannot be bounded?

In [Montali and Calvanese 2016; Calvanese, Montali, et al. 2014], we show that
decidability of model checking can be retained, if the system obeys to:

relative boundedness (each case manipulates boundedly many data);

data isolation (cases interact very weakly).

State Group MarryM
group state id id combatLevel group
12 out • • 12 76 pro null

4 in • • 4 • • 19 basic 4

431 running • • 431 • • 56 ok 431

. . . • 3 basic 431

• 98 ok 431

Modeling guidelines to guarantee data isolation and relative boundedness:

1 Queries must be navigational (no arbitrary access to relations).

2 1-to-many relations require a number restriction on the “many” side.

3 Each case cannot create a chain of tuples of unbounded lenght.

4 Cases can share tuples only in a controlled way (no construction of chains).

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (7/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

Beyond State-Boundedness

Question

Are there classes of DCDSs that are unbounded, but still amenable to
verification?

Key result in [Abdulla et al. 2016].

Recency-bounded data-aware processes

Unbounded DB, but only the latest inserted/accessed values can bound to
parameters.

Verification via under-approximation

Decidability by focusing only on runs that are k-recency-bounded for an
explicitly given key.

Open problem

Investigate the relationships between all such results and those where the initial
DB is not fixed, and verification is studied for every possible initial DB.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (8/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

Beyond State-Boundedness

Question

Are there classes of DCDSs that are unbounded, but still amenable to
verification?

Key result in [Abdulla et al. 2016].

Recency-bounded data-aware processes

Unbounded DB, but only the latest inserted/accessed values can bound to
parameters.

Verification via under-approximation

Decidability by focusing only on runs that are k-recency-bounded for an
explicitly given key.

Open problem

Investigate the relationships between all such results and those where the initial
DB is not fixed, and verification is studied for every possible initial DB.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (8/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

Beyond State-Boundedness

Question

Are there classes of DCDSs that are unbounded, but still amenable to
verification?

Key result in [Abdulla et al. 2016].

Recency-bounded data-aware processes

Unbounded DB, but only the latest inserted/accessed values can bound to
parameters.

Verification via under-approximation

Decidability by focusing only on runs that are k-recency-bounded for an
explicitly given key.

Open problem

Investigate the relationships between all such results and those where the initial
DB is not fixed, and verification is studied for every possible initial DB.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (8/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

Incorporation of datatypes

Databases have datatypes

Numeric domains, domain-specific predicates, arithmetic.

Many coordination algorithms and auctions require dense orders.

Processes with costs and payment policies require integers and arithmetic.

Dense orders combine well with state-boundedness

Data-aware, state-bounded distributed systems with reals [Calvanese, Delzanno,

and Montali 2015]:

OK to include dense linear orders: minor extension to the standard
DCDS abstraction technique. Intuition. . .

Rigid > relation Non-rigid GreaterThan relation
over the entire domain −→ over active domain elements.

No hope to include the successor relation (or integers):
2 data slots are sufficient to encode two counters.

Discrete orders and arithmetic combine well with run-boundedness

Ongoing work. . .

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (9/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

Relational multiagent systems and commitments

Relational MAS [Montali, Calvanese, and De Giacomo 2014]

Agents have names and hold/manipulate local, state-bounded DBs.

Agents exchange data using their names for addressing.

An institutional agent manages agent creation and deletion.

Due to state-boundedness: unboundedly many agents can dynamically enter
into the system, but at each moment only boundedly many are active.

Seller John

Customer Alice

Name
MyCust

Alice
Bob

ID
Item

i1
i2

Item
Paid

Cust

Institutional agent D.
DeliveryCC

C.

DeliveryC
Item

ACCEPT-REG

JohnAlice

Item
Owns

PAY-CC(i1)

Item
Paid

Cust
i1 Alice

D. C. State

D.
DeliveryCC

C.

DeliveryC
Item

JohnAlice

D. C. State
i1JohnAlice active

PAY-BT(Alice, i2)

Item
Paid

Cust
i1 Alice

D.
DeliveryCC

C.

DeliveryC
Item

JohnAlice

D. C. State
i1JohnAlice active

Alice's Bank

i2JohnAlice active

i2 Alice

deliver(i1,...)

Item
Paid

Cust
i1 Alice

D.
DeliveryCC

C.

DeliveryC
Item

JohnAlice

D. C. State
i1JohnAlice sat

Carrier

i2JohnAlice active

i2 Alice

Item
Owns

i1
Item

Owns
Item

Owns

Relational commitments

In the same work: first
proposal for modeling and
verifying interaction
protocols based on
relational commitments,
i.e., commitments with
data payload and multiple
instances.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (10/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

daphne: implementing DCDSs with relational technology

DB
Engine

Flow
Engine

Service ManagerPersistent Storage

daphne

DCDS
state

DCDS Spec.

RDBMS

Native modeling and execution of DCDSs using relational DBMSs:

SQL-like syntax for DCDSs with datatypes.

Automated translation into relational DBMSs, as (temporal) tables,
constraints, and stored procedures.

Java APIs to support enactment and integration with concrete services.

Native explicit model checking of DCDSs using relational DBMSs:

Same model for execution and verification!

Special tables for storing the RTS induced by a DCDSs.

Factoring of tables into temporal and atemporal parts.

Computation of isomorphic type and value recycling in services.

Java APIs for RTS construction and search.
Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (11/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

Can we cook with all ingredients?

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (12/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

BAUML: artifact-centric processes with UML
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. YYY, [MONTH-YEAR] 4

 id : Natural
 title : String

Submission

 id : String
 name : String
 affiliation : String

Author name : String
 beginning : Date
 end : Date
 country : String

Conference

 id : String
 date : Date
 time : Time
 room : String

Session

 submissionDate : Date
PendingReviewSub

 reviewDate : Date
 comments : String
 evaluation : Integer

ReviewedSub
 withdrawalDate : Date

WithdrawnSub

AcceptedSubmission
 reason : String
RejectedSubmission

 email : String
UserNonUser

status

result

1..

writes

1

0..*

1*

*

1

*

1

1*

registered by

sends

{disjoint, complete}registered

is presented in

is divided into

{disjoint,complete}

{disjoint, complete}

is sent to

Fig. 1. Class diagram showing the artifacts and objects involved in the submission of articles to conferences.

NonUser

User

WithdrawnSubmission

RejectedSubmission

AcceptedSubmission

PendingReviewSubmission

Promote to User

Create New Author as NonUser

Create New Author as User

Withdraw Submission

Review Submission [failure]

Review Submission [success]

Submit Paper

Visual Paradigm for UML Community Edition [not for commercial use]

Fig. 2. State machine diagram showing the evolution of artifact Submis-
sion.

have its own. Figure 2 shows the lifecycle for Submission.
When a paper is submitted to a conference, the correspond-
ing Submission is created in state PendingReviewSubmission.
When it is reviewed, it changes to state AcceptedSubmission,
if the reviewers consider it is appropriate to be presented
at the conference (event-dependent condition success), or
RejectedSubmission, if they decide it is not (event-dependent
condition failure). Before the submission is accepted or re-
jected, one of its authors may decide to withdraw it: then it
changes its state to WithdrawnSubmission. Notice that all of
the transitions in the state machine diagram correspond to
external events.

Similarly, as shown in Figure 3, authors can be created as
a User or a NonUser. A NonUser will become a User when the
system receives additional information by means of external
event Promote to User.

Each external event in the state machine diagram(s) will
be refined by means of an activity diagram. In particular, we
will show the details of Submit Paper and Review Submission
in the state machine diagram of Submission.

Figure 4 shows the activity diagram of event Submit
Paper. The first task registers a new submission in the
system (Register New Submission), and afterwards an author

NonUser

User

Promote to User

Create New Author as NonUser

Create New Author as User

Fig. 3. State machine diagram showing the evolution of artifact Author.

Fig. 4. Activity diagram of Submit Paper.
Submit Paper

Register New
Submission

Add Author to
Submission

[no more authors to add}

[add more authors]

is added to it. If more authors need to be added (see decision
node at the end), this process is repeated. Otherwise, the
activity diagram ends.

Figure 5 shows the activity diagram for event Review
Submission. To begin with, the reviewers evaluate the sub-
mission and decide whether it is good enough to be pre-
sented at the conference. If it is not, the reviewers add a
comment and the activity diagram finishes in failure. This
corresponds to the transition that leads to state RejectedSub-
mission in the state machine diagram. On the other hand, if
the paper is accepted, it is assigned to a certain session and
the activity diagram finishes in success. It corresponds to the
transition that leads to state AcceptedSubmission in the state
machine diagram.

Notice that all the activities in the activity diagram
correspond to tasks: atomic units of work within the process.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. YYY, [MONTH-YEAR] 4

 id : Natural
 title : String

Submission

 id : String
 name : String
 affiliation : String

Author name : String
 beginning : Date
 end : Date
 country : String

Conference

 id : String
 date : Date
 time : Time
 room : String

Session

 submissionDate : Date
PendingReviewSub

 reviewDate : Date
 comments : String
 evaluation : Integer

ReviewedSub
 withdrawalDate : Date

WithdrawnSub

AcceptedSubmission
 reason : String
RejectedSubmission

 email : String
UserNonUser

status

result

1..

writes

1

0..*

1*

*

1

*

1

1*

registered by

sends

{disjoint, complete}registered

is presented in

is divided into

{disjoint,complete}

{disjoint, complete}

is sent to

Fig. 1. Class diagram showing the artifacts and objects involved in the submission of articles to conferences.

NonUser

User

WithdrawnSubmission

RejectedSubmission

AcceptedSubmission

PendingReviewSubmission

Promote to User

Create New Author as NonUser

Create New Author as User

Withdraw Submission

Review Submission [failure]

Review Submission [success]

Submit Paper

Visual Paradigm for UML Community Edition [not for commercial use]

Fig. 2. State machine diagram showing the evolution of artifact Submis-
sion.

have its own. Figure 2 shows the lifecycle for Submission.
When a paper is submitted to a conference, the correspond-
ing Submission is created in state PendingReviewSubmission.
When it is reviewed, it changes to state AcceptedSubmission,
if the reviewers consider it is appropriate to be presented
at the conference (event-dependent condition success), or
RejectedSubmission, if they decide it is not (event-dependent
condition failure). Before the submission is accepted or re-
jected, one of its authors may decide to withdraw it: then it
changes its state to WithdrawnSubmission. Notice that all of
the transitions in the state machine diagram correspond to
external events.

Similarly, as shown in Figure 3, authors can be created as
a User or a NonUser. A NonUser will become a User when the
system receives additional information by means of external
event Promote to User.

Each external event in the state machine diagram(s) will
be refined by means of an activity diagram. In particular, we
will show the details of Submit Paper and Review Submission
in the state machine diagram of Submission.

Figure 4 shows the activity diagram of event Submit
Paper. The first task registers a new submission in the
system (Register New Submission), and afterwards an author

NonUser

User

Promote to User

Create New Author as NonUser

Create New Author as User

Fig. 3. State machine diagram showing the evolution of artifact Author.

Fig. 4. Activity diagram of Submit Paper.
Submit Paper

Register New
Submission

Add Author to
Submission

[no more authors to add}

[add more authors]

is added to it. If more authors need to be added (see decision
node at the end), this process is repeated. Otherwise, the
activity diagram ends.

Figure 5 shows the activity diagram for event Review
Submission. To begin with, the reviewers evaluate the sub-
mission and decide whether it is good enough to be pre-
sented at the conference. If it is not, the reviewers add a
comment and the activity diagram finishes in failure. This
corresponds to the transition that leads to state RejectedSub-
mission in the state machine diagram. On the other hand, if
the paper is accepted, it is assigned to a certain session and
the activity diagram finishes in success. It corresponds to the
transition that leads to state AcceptedSubmission in the state
machine diagram.

Notice that all the activities in the activity diagram
correspond to tasks: atomic units of work within the process.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. YYY, [MONTH-YEAR] 5

Fig. 5. Activity diagram of Review Submission.

Each of them, therefore, will have an operation contract with
pre and a postcondition. The contracts corresponding to the
tasks in activity diagram SubmitPaper are shown below, in
Listings 1 and 2.

Listing 1. Code for service RegisterNewSubmission
operation RegisterNewSubmission(subId: Natural, title:

String, conf: String)
pre: Conference.allInstances()->exists(c | c.name=conf)

and not Submission.allInstances()->exists(s |
s.id=subId and s.conference.name=conf)

post: PendingReviewSubmission.allInstances()->exists(s |
s.oclIsNew() and s.id=subId and s.title=title and
s.submissionDate=today() and s.conference.name=conf
and result=s)

Listing 2. Code for service AddAuthorToSubmission
operation AddAuthorToSubmission(id: String, sub:Submission)
pre: not sub.author->exists(a | a.id=id)
post: sub.author->exists(a | a.id=id)

The first operation contract registers a new submission
to a conference. The precondition ensures that there is not
a submission to the same conference with the same ID.
The last contract adds the given author to the submission,
but makes sure that he has not already been added to the
submission.

3 EXECUTION SEMANTICS OF BAUML MODELS

The execution semantics is given in terms of a transition
system. Each state of the transition system refers to an UML
object model that conforms to the UML class diagram of
the BAUML model of interest, and describes the current
configuration of objects and links. Each transition represents
an evolution of the current state triggered by an atomic state
transition, or by the execution of an atomic task within the
processing of a complex external event.

3.1 Object Models

3.2 Object Transition Systems

3.3 Execution Semantics

1) While true
a) Nondeterministically decide whether to create a new

artifact instance, or to progress some active instances.
i) New artifact instance: update the object model

accordingly.
ii) Progression: only possible if there are executable

transitions. They are determined by considering:
• The states of active instances.
• The enabled transitions from such states.
• The executable enabled transitions. Au-

tonomous transitions are always executable.
The other transitions are executable only for

those combinations of artifact instances where
all the picked instances are in a proper state
(i.e., a state where the same type of transition
is enabled).

iii) If there is at least one executable transition, non-
deterministically pick one.

iv) Fire the transition, depending on the correspond-
ing label.
A)

4 REASONING ON BAUML MODELS THROUGH
DCDSS

5 RELATED WORK

6 CONCLUSIONS

ACKNOWLEDGMENTS

This work has been partially supported by the Ministerio
de Ciencia e Innovación under project TIN2011-24747 and
by UPC

REFERENCES

[1] R. Hull, “Artifact-centric business process models: Brief survey of
research results and challenges,” in OTM 2008, ser. LNCS, R. Meers-
man and Z. Tari, Eds., vol. 5332. Springer, 2008, pp. 1152–1163.

[2] ISO, “ISO/IEC 19505-2:2012 - OMG UML superstructure
2.4.1,” 2012, available at: http://www.iso.org/iso/iso catalogue/
catalogue tc/catalogue detail.htm?csnumber=52854.

[3] OMG. (2014) Object Constraint Language - version 2.4. Available
at: http://www.omg.org/spec/OCL/2.4/PDF.

[4] A. Olivé, Conceptual Modeling of Information Systems. Berlin:
Springer, 2007.

[5] A. Queralt and E. Teniente, “Specifying the semantics of operation
contracts in conceptual modeling,” in Journal on Data Semantics VII,
ser. LNCS. Springer, 2006, vol. 4244, pp. 33–56.

PLACE
PHOTO
HERE

Diego Calvanese Biography text here.

Montserrat Estañol Montserrat Estañol is currently a PhD candidate
at the Department of Service and Information Systems Engineering at
Universitat Politcnica de Catalunya - BarcelonaTech. She obtained her
master’s degree from the same university in 2009. Her current research
interests include conceptual modeling, data-centric business process
modeling and automated reasoning on both conceptual schemas and
data-centric business process models.

Marco Montali Biography text here.

BAUML approach

Business objects, states, associations and attributes: UML class diagrams.

Business object lifecycle: UML statechart diagram.

Complex event triggering a lifecycle transition: UML activity diagram.

Tasks modeled as OCL operation contracts.

In [Calvanese, Montali, et al. 2014]: methodology to guarantee decidability of
model checking (see before). Estanol PhD thesis: BAUML to DCDS!

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (13/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

raw-sys: marrying workflow nets and databases

Task
i

o
local

Case
Task

i
o

local

Case

globalread
write

Task
i

o
local

Case

raw-sys model [De Masellis et al. 2017]:

Data-aware processes using well-known formalisms:

Data: global and local relational databases.

Process control-flow: workflow nets, enriched with:

Guards (queries over the DBs).
STRIPS-like actions with external inputs from an infinite domain, invoked
upon firing net transitions.

raw-sys verification [De Masellis et al. 2017]:

Map of (un)decidability, exploiting translation to DCDSs.

Encoding into planning systems to handle reachability problems.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (14/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

db-nets: marrying colored Petri nets and databases

...
Proceed

To Booking

Reserve
(tid, pn)

Create
Booking

FreeDrivers

Reserved
Taxi

Leave
Pickup Data

Leave
Phone Number

Pickup
Data

Pnone
Number

AddBooking
(sid, tid, νpdid, n, a, t)

Finalize
Booking

...
〈sid〉 〈sid〉

〈sid
, tid

〉

〈sid〉

〈sid〉

〈sid〉

〈sid〉

〈sid, νa, νt〉

〈sid, νn〉

〈si
d,
a,
t〉

〈sid, tid〉

〈sid, n〉

〈tid, pn〉

TAXI

TID: int PlateNum : string IsFree : bool

BOOKING

BID : int TaxiID : int PickupID : int PhoneID : int

PHONE

PID : int Phone : string

PICKUP DATA

PDID : int Address : string Time : date

db-net model [Montali and Rivkin 2017], three layers:

1 Persistence: relational database with constraints.

2 Data logic: queries and actions over the persistence layer.

3 Control: colored Petri net with ν-variables, enriched with view places and
transition-action bindings to inspect/update the persistence layer.

Note: Natural formalization of contemporary process modeling suites!
Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (15/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

db-nets: marrying colored Petri nets and databases

...
Proceed

To Booking

Reserve
(tid, pn)

Create
Booking

FreeDrivers

Reserved
Taxi

Leave
Pickup Data

Leave
Phone Number

Pickup
Data

Pnone
Number

AddBooking
(sid, tid, νpdid, n, a, t)

Finalize
Booking

...
〈sid〉 〈sid〉

〈sid
, tid

〉

〈sid〉

〈sid〉

〈sid〉

〈sid〉

〈sid, νa, νt〉

〈sid, νn〉

〈si
d,
a,
t〉

〈sid, tid〉

〈sid, n〉

〈tid, pn〉

TAXI

TID: int PlateNum : string IsFree : bool

BOOKING

BID : int TaxiID : int PickupID : int PhoneID : int

PHONE

PID : int Phone : string

PICKUP DATA

PDID : int Address : string Time : date

db-nets execution, simulation, verification [Montali and Rivkin 2017]:

Foundational results thanks to translation to DCDSs.

Ongoing implementation effort inside www.cpntools.org.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (15/16)

www.cpntools.org

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

OCBC: declarative data+process integrated model

Create
Order

Pick
Item

Wrap
Item

Deliver
Items

Order
Order
Line

Delivery

Product

Customer

contains1 * results in1..* 0..1

is for
*

1

belongs to

*

1

receives

1

*

creates

1

1

fills

1

1

prepares

1

0..1

refers to

1

1

OCBC model [Artale et al. 2017], three components:

1 Data model: UML class diagram.

2 Tasks: units of work, referencing classes in the data model. Each task
instance comes with objects belonging to such classes.

3 Behavioral constraints: declarative patterns equipped with coreference
relations pointing to the data model. They constrain when tasks can be
executed, and which data objects they should carry.

Naturally captures many-to-many processes with no single notion of case!

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (16/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

Acknowledgements

Thanks to the many people who contributed interesting ideas, suggestions,
discussions, and collaborated to the presented results.

Giuseppe De Giacomo
Fabio Patrizi

Babak Bagheri Hariri
Riccardo De Masellis

Alin Deutsch
Marlon Dumas

Paolo Felli
Rick Hull

Maurizio Lenzerini
Alessio Lomuscio

Andy Rivkin
Ario Santoso

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (17/16)

The story so far State-boundedness Boundedness and resources Unbounded systems Concrete systems

Thank you for your attention!

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (18/16)

References

References I

[1] Diego Calvanese, Giuseppe De Giacomo, and Marco Montali.
“Foundations of Data-Aware Process Analysis: A Database Theory
Perspective”. In: Proc. of the 32nd ACM SIGACT SIGMOD SIGAI Symp.
on Principles of Database Systems (PODS). ACM Press, 2013, pp. 1–12.

[2] Babak Bagheri Hariri, Diego Calvanese, Giuseppe De Giacomo, et al.
“Verification of Relational Data-Centric Dynamic Systems with External
Services”. In: Proc. of the 32nd ACM SIGACT SIGMOD SIGAI Symp. on
Principles of Database Systems (PODS). Extended version available at
http://arxiv.org/abs/1203.0024. 2013, pp. 163–174.

[3] Marco Montali and Diego Calvanese. “Soundness of Data-Aware,
Case-Centric Processes”. In: Int. J. on Software Tools for Technology
Transfer (2016). doi: 10.1007/s10009-016-0417-2.

[4] Diego Calvanese, Giuseppe De Giacomo, Marco Montali, and
Fabio Patrizi. “First-Order mu-Calculus over Generic Transition Systems
and Applications to the Situation Calculus”. In: Information and
Computation (2017). To appear.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (19/16)

http://arxiv.org/abs/1203.0024
http://dx.doi.org/10.1007/s10009-016-0417-2

References

References II

[5] Keishi Okamoto. “Comparing Expressiveness of First-Order Modal
µ-calculus and First-Order CTL*”. In: RIMS Kokyuroku 1708 (2010),
pp. 1–14.

[6] Fernando Rosa-Velardo and David de Frutos-Escrig. “Decidability and
Complexity of Petri Nets with Unordered Data”. In: Theoretical
Computer Science 412.34 (2011), pp. 4439–4451.

[7] Marco Montali and Andrey Rivkin. “Model Checking Petri Nets with
Names Using Data-Centric Dynamic Systems”. In: Formal Aspects of
Computing (2016), pp. 1–27.

[8] Catherine Dufourd, Petr Jancar, and Ph. Schnoebelen. “Boundedness of
Reset P/T Nets”. In: Proc. of the 26th Int. Coll. on Automata,
Languages and Programming (ICALP). Vol. 1644. Lecture Notes in
Computer Science. Springer, 1999, pp. 301–310.

[9] Babak Bagheri Hariri, Diego Calvanese, Alin Deutsch, et al.
“State-Boundedness in Data-Aware Dynamic Systems”. In: Proc. of the
14th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR). AAAI Press, 2014.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (20/16)

References

References III

[10] Dmitry Solomakhin et al. “Verification of Artifact-Centric Systems:
Decidability and Modeling Issues”. In: vol. 8274. Lecture Notes in
Computer Science. Springer, 2013, pp. 252–266.

[11] Diego Calvanese, Marco Montali, et al. “Verifiable UML Artifact-Centric
Business Process Models”. In: Proc. of the 23rd Int. Conf. on
Information and Knowledge Management (CIKM). 2014, pp. 1289–1298.
doi: 10.1145/2661829.2662050.

[12] Parosh Aziz Abdulla et al. “Recency-Bounded Verification of Dynamic
Database-Driven Systems”. In: Proc. of the 35th ACM SIGACT
SIGMOD SIGAI Symp. on Principles of Database Systems (PODS). ACM
Press, 2016.

[13] Diego Calvanese, Giorgio Delzanno, and Marco Montali. “Verification of
Relational Multiagent Systems with Data Types”. In: Proc. of the 29th
AAAI Conf. on Artificial Intelligence (AAAI). AAAI Press, 2015,
pp. 2031–2037.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (21/16)

http://dx.doi.org/10.1145/2661829.2662050

References

References IV

[14] Marco Montali, Diego Calvanese, and Giuseppe De Giacomo.
“Verification of Data-Aware Commitment-Based Multiagent System”. In:
Proc. of the 13th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS). IFAAMAS, 2014, pp. 157–164.

[15] Riccardo De Masellis et al. “Add Data into Business Process Verification:
Bridging the Gap between Theory and Practice”. In: Proc. of the 31st
AAAI Conf. on Artificial Intelligence (AAAI). AAAI Press, 2017,
pp. 1091–1099. url:
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14627.

[16] Marco Montali and Andrey Rivkin. “DB-Nets: on The Marriage of
Colored Petri Nets and Relational Databases”. In: LNCS Transactions on
Petri Nets and Other Models of Concurrency (2017). To appear.

[17] Alessandro Artale et al. “Object-Centric Behavioral Constraints:
Integrating Data and Declarative Process Modelling”. In: Proc. of the
30th Int. Workshop on Description Logics (DL). Ed. by
Alessandro Artale, Birte Glimm, and Roman Kontchakov. CEUR
Workshop Proceedings, http://ceur-ws.org/, 2017.

Calvanese, Montali (FUB) Processes and Data BPM 2017 – 12/9/2017 (22/16)

http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14627
http://ceur-ws.org/

	The story so far
	Checking/ensuring state boundedness
	Boundedness and resources
	Unbounded systems
	Towards concrete systems
	Appendix

