
Implementing and Running
Data-Centric Dynamic Systems

Alessandro Russo, Massimo Mecella, Fabio Patrizi
DIAG, SAPIENZA Università di Roma, Italy

Email: {arusso|mecella|patrizi}@diag.uniroma1.it

Marco Montali
KRDB Centre, Free University of Bozen-Bolzano, Italy

Email: montali@inf.unibz.it

Abstract—Data- and artifact-centric business processes are
gaining momentum due to their ability of explicitly capturing the
interplay between the process control-flow and the manipulated
data. In this paper, we rely on the framework of Data-Centric
Dynamic Systems (DCDSs), which has been recently introduced
for the formal specification and verification of data-centric
processes, and we discuss how it can be realized into a prototype
system which is able to enact processes comprising human actors,
services and data. This reference implementation exploits the
natural correspondence between DCDSs and state-of-the-art rule
engines, e.g., JBoss Drools, and present the interesting feature
that the model used for analysis and verification is fully aligned
with the one adopted for the execution.

I. INTRODUCTION

Most of the current approaches to Business Process Man-
agement (BPM), and strictly related to composition and or-
chestration of (Web) services (either SOAP-based or RESTful),
adopt a procedural and imperative point-of-view, based on an
explicit specification of the tasks to be performed and the
execution relationships between them that define the overall
flow of control. The modeling perspective is activity-centric
and the main driver for run-time process1 progression is given
by activity completions that enable subsequent tasks according
to the control-flow. Languages such as BPMN, YAWL and
WS-BPEL (for what strictly concerns services), follow this
imperative activity-centric paradigm and mainly focus on the
control-flow perspective. Approaches aiming at producing
executable process specifications should not only be limited
to the control-flow perspective, but should also consider the
data perspective, describing data elements consumed, produced
and exchanged during process executions, and the resource
perspective, describing the operational and organizational
context for process execution in terms of resources (i.e., people,
systems and services able to execute tasks) and their capabilities
(i.e., any qualification, skill, equipment, property, etc. relevant
for task assignment and execution), along with the policies
and rules used to assign tasks to resources for execution.
Declarative constraint-based approaches, such as Declare [11]2,
for modeling, enacting and monitoring processes are an initial
attempt to increase flexible modeling capabilities, through the
specification of a (minimal) set of control-flow constraints to
be satisfied (or not violated), defined as relationships among
tasks that implicitly define possible execution alternatives by
prohibiting undesired execution behaviors. Resulting models
have no rigid control-flow structure, but they still focus on

1Due to the strict relationship between processes and composi-
tions/orchestrations of services [6], in the following we will use interchangeably
the two concepts, and preferably the one of process.

2In the service arena, WS-CDL can be somehow defined as constraint-based,
as a choreography expresses in a declarative way the constraints over possible
message exchanges among services.

tasks/activities and provide limited support for data-oriented
modeling and execution.

The root cause of many of the limitations of activity-centric
approaches (based either on imperative procedural models or on
declarative constraint-based specifications) is often identified
in the lack of integration of processes and data [8]. In such
models, the information perspective includes a set of data
objects and the data flow between activities, along with the
definition of which activities may read/write data elements as
I/O parameters, but the information and data flows are hidden
in the model [9]. To support the enactment of these models,
activity-centric process-aware information systems basically
distinguish between (i) application data, managed out of the
scope of the process by application services invoked during
activity executions; (ii) process-relevant data, represented as
process variables that are read and updated by the activities and
are used by the system to evaluate transitions and path choices
(as routing conditions) within process instances; (iii) process
control data, that define the current state of a process and its
execution history. According to [5], this separation between
process data/variables and external data sources leads to an
“impedance mismatch” problem between the process layer and
the data layer in a typical process-oriented information system.
In addition, a recent work [10] has considered the role of data
in twelve process modeling languages. The evaluation shows
that the general level of data support is low: while in most
of the cases the representation of data objects is supported,
complex data relationships and their role in process modeling
and execution are not considered.

To overcome the limitation of activity-centric approaches,
data-centric, object-aware and case management approaches
have recently emerged. The PHILharmonicFlows framework
and prototype enables object-aware process management on
the basis of a tight integration of processes, functions, data and
users [8]. Process modeling and execution relies on two levels
of granularity that cover object behavior (or life-cycle) and
object interactions. The framework enables the definition of
object types and object relations in a data model, while object
behavior is expressed in terms of a process whose execution is
driven by object attribute changes.

In data-centric methodologies, as the business artifacts
framework [7], the data perspective is predominant and captures
domain-relevant object types, their attributes, their possible
states and life-cycles, and their interrelations, which together
form a complex data structure or information model. This
data model enables the identification and definition of the
activities that rely on the object-related information and act on
it, producing changes on attribute values, relations and object
states. The general artifact-centric model does not restrict the
way to specify artifact life-cycles, and constraints can be defined

2013 IEEE 6th International Conference on Service-Oriented Computing and Applications

978-1-4799-2701-2/13 $31.00 © 2013 IEEE

DOI 10.1109/SOCA.2013.37

225

2013 IEEE 6th International Conference on Service-Oriented Computing and Applications

978-1-4799-2701-2/13 $31.00 © 2013 IEEE

DOI 10.1109/SOCA.2013.37

225

in terms of: (i) abstract procedural process specifications,
e.g., expressed as state machines or transition systems, as in
SIENA [4]; (ii) logical/declarative formalisms (e.g., temporal
or dynamic logics) or as a set of rules defined over the states of
the artifacts, as in the Guard-Stage-Milestone (GSM) model [7]
supported by the Barcelona GSM environment [15] 3.

Such recent research efforts that focus on data-centric
process management are often framed within the wider dis-
cussion that opposes BPM with adaptive case management
(ACM), a paradigm for supporting unstructured, unpredictable
and unrepeatable business cases. In this direction, recently
the Object Management Group (OMG) has released a first
standard version of the Case Management Modeling Notation
(CMMN) 4; rather than an extension of BPMN, indeed CMMN
relies on GSM constructs (guards, stages, milestones and
sentries), with the additional possibility to unlink milestones
from specific stages, define repetition strategies for stages
and tasks, and enable late modeling/planning by introducing
discretionary elements to be selected at run-time.

Several works have provided a theoretical foundation to the
artifact-centric paradigm, with specific focus on the possibilities
to perform verification tasks on the models. We refer the reader
to [3] for a comprehensive discussion of the relevant literature.
Among such frameworks, here we focus on the one recently
presented in [1], referred to as Relational Data-Centric Dynamic
Systems (DCDSs), that considers both the case in which actions
behave deterministically and the case in which they behave
nondeterministically, so being still more realistic in modeling
external inputs (either from human actors or services). Syntactic
restrictions guaranteeing decidability of verification are shown
for both cases. In [14] it is shown how to reduce a GSM schema
to a DCDS schema. Thus DCDSs are capable of capturing
concrete artifact-centric models (being GSM at the core of
the CMMN standard) and it gives a procedure to analyze
GSM schemas: verification of GSM schemas is, in general,
undecidable, but once traduced in a DCDS it is possible to
exploit the results in [1] for decidability of verification. A
syntactic condition that is checkable directly on a GSM schema
is presented and that, being subsumed by the conditions for
DCDSs, guarantee decidability of verification.

From a practitioners’ point of view, an important missing
piece is the availability of process management systems
enacting artifact-centric process models. In particular, a kind
of reference/core implementation would be beneficial for rapid
prototyping purposes, as well as for further research aiming
at assessing their practical use, with the need of evaluating
the related paradigms and methods in concrete settings. In
particular our long-term vision is the definition, design and
realization of such a reference implementation for DCDSs. Such
an ambitious aim poses several challenges, some of them being
preliminarily discussed in [13], and has interesting outcomes,
i.e., the seamless use of the specification model also as effective
run-time of the process instances themselves. It is particularly
interesting that the same model used for analysis and for
verification is then used for the enactment, and this property is
not guaranteed by other formalisms/approaches. Notably, the
reduction from GSM to DCDSs [14] produces a DCDS model
that resembles an execution engine based on forward rules, and
requires to realize some “tricks” and supportive relationships

3Both the models and tools are integrated in a recently launched open-source
project, leaded by IBM, named BizArtifact - cf. http://sourceforge.net/projects/
bizartifact/.

4http://www.omg.org/spec/CMMN/1.0/Beta1/

that are very similar to those ones that would serve precisely
to manage the execution.

The contribution of this paper is to present an initial proof-
of-concept (PoC) of our reference implementation, which is
based on the challenges and implementation patterns presented
in [13]. In particular, besides considering more challenges and
presenting possible solutions, we will discuss how to base the
implementation on state-of-the-art rule engines, e.g., JBoss
Drools, how to incorporate the user interactions on the basis of
the specification model (possibly semi-automatically generating
such interactions from the model) on the one side, and the
interaction with external services on the other side. The paper
is organized as it follows: after briefly summarizing DCDSs for
making the paper self-contained (cf. Section II), we will present
the overall approach, the architecture and relevant features
of our tool in Section III. It is accompanied by an online
appendix (cf. https://dl.dropboxusercontent.com/u/14551169/
DCDS Example.jar) showing some code extracts for a very
simple running example, and an effective Java application,
built on top of JBoss Drools, realizing the running example, to
be considered as the proof-of-concept of the whole approach.
Finally in Section IV we will briefly discuss some other points
to be addressed towards the final implementation of a DCDS-
based process management system, thus laying down our next
future work.

II. BACKGROUND AND BASIC CONCEPTS

A. Data Centric Dynamic Systems

Data Centric Dynamic Systems (DCDSs) [1] are systems
that fully capture the interplay between the data and the process
component, providing an explicit account on how the actions
belonging to the process manipulate the data. More specifically,
a DCDS S is a pair 〈D,P〉 formed by two interacting layers:
a data layer D and a process layer P over D. Intuitively, the
data layer keeps all the data of interest, while the process layer
reads and evolves such data.

The data layer is constituted by a relational schema R
equipped with (denial) constraints, and by an initial database
instance I0 that conforms to the schema and satisfies the
constraints. Constraints must be satisfied at each time point,
and consequently it is forbidden to apply an action that would
lead the data layer to a state that violates the constraints.

The process layer defines the progression mechanism for
the DCDS. The main idea is that the current instance of the
data layer can be arbitrarily queried, and consequently updated
through action executions, possibly involving external service
calls to get new values from the environment. More specifically,
P is a triple 〈F ,A, �〉, where: A is a set of actions, which
are the atomic update steps on the data layer; F are external
services that can be called during the execution of actions; and
� is a set of condition-action rules that provide a declarative
modeling of the process, and that are in particular used to
determine which actions are executable at a given time.

Actions. Actions are used to evolve the current state of the
data layer into a new state. To do so, they query the current
state of the data layer, and use the answer, possibly together
with further data obtained by invoking external service calls, to
instantiate the data layer in the new state. Formally, an action
α ∈ A is an expression α(p1, . . . , pn) : {e1, . . . , em}, where:
(i) α(p1, . . . , pn) is its signature, constituted by a name α and
a sequence p1, . . . , pn of parameters, to be substituted with

226226

actual values when the action is invoked, and (ii) {e1, . . . , em},
denoted by EFFECT(α), is a set of specifications of effects,
which are assumed to take place simultaneously. Each ei has
the form q+i ∧Q−i � Ei, where:

• q+i ∧ Q−i is a query over R whose terms are variables,
action parameters, and constants from ADOM(I0)5, where
q+i is a union of conjunctive queries, and Q−i is an arbitrary
first-order formula whose free variables are among those
of q+i . Intuitively, q+i is applied to extract the tuples used
to instantiate the effect, and Q−i filters away some of such
tuples.

• Ei is the effect, i.e., a set of facts over R, which includes
as terms: terms in ADOM(I0), free variables of q+i and
Q−i (including action parameters), and in addition Skolem
terms formed by applying a function f ∈ F to one of
the previous kinds of terms. Each such Skolem term f
represent a call to an external service identified by f , and
are typically meant to model the incorporation of values
provided by an external user/environment when executing
the action.

Process. The process is used to determine which actions can be
executed at a given time, and with which parameters. To do so,
it relies on condition-action rules, which constitute a flexible,
declarative way of specifying the process, and can be used to
accommodate more “concrete” process specification languages.
Technically, the process � is a finite set of condition-action
rules of the form Q �→ α, where α is an action in A and Q is
a first-order query over R whose free variables are exactly the
parameters of α, and whose other terms can be either quantified
variables or constants in ADOM(I0).
Example 1: In this work, we rely on the example presented
in [1], where an audit system that manages the process of
reimbursing travel expenses in a university is modeled as a
DCDS. In particular, we report selected parts of the request
subsystem that manages the submission of reimbursement
requests by an employee. A reimbursement request is asso-
ciated with the name of the employee (represented in the
data layer as a relation Travel = 〈eName〉) and comprises
information related to the corresponding flight and hotel
costs (Hotel = 〈hName, date, price, currency, priceInUSD〉 and
Flight = 〈date, fNum, price, currency, priceInUSD〉 relations).
In addition, the data layer keeps the state of the request
subsystem (Status = 〈status〉 relation, holding the fact
Status(‘readyForRequest’) in the initial state), which take
three different values: ‘readyForRequest’, ‘readyToVerify’, and

‘readyToUpdate’, and a list of approved hotels (ApprHotel =
〈hName〉 relation).

The process layer includes a set of service calls, each
modeling an input of an external value by the employee (e.g.,
INENAME() for the name of the employee, INHNAME() for
the hotel name, INHDATE() for the hotel arrival date, etc.). In
particular, the DECIDE() service call models the decision of the
human monitor, returning ‘accepted’ if the request is accepted,
and ‘readyToUpdate’ if the request needs to be updated by
the employee. The set of actions includes InitiateRequest,
VerifyRequest, UpdateRequest, and AcceptRequest. When a
request is initiated (action InitiateRequest), the system status is
set to ‘readyToVerify’and the employee provides travel details

5ADOM(I0) is the set of constants/values mentioned in the initial database
instance I0

(her name and hotel and flight details), as modeled by the
subset of action effects

true � Travel(INENAME())
true � Hotel(INHNAME(), INHDATE(), INHPRICE(),

INHCURRENCY(), INHPINUSD())

Action VerifyRequest models the preliminary check by the
monitor. Travel event, hotel, and flight information are copied
unchanged to the next state. If the hotel is on the approved
list, then the request is automatically accepted and the system
status is set accordingly. Otherwise, the request is handled by a
human monitor (cf. DECIDE()). Action VerifyRequest includes
as effects

Hotel(x1, . . . , x5) ∧ ApprHotel(x1) � Status(‘accepted’)
Hotel(x1, . . . , x5) ∧ ¬ApprHotel(x1) � Status(DECIDE())

Travel(n) � Travel(n)
Hotel(x1, . . . , x5) � Hotel(x1, . . . , x5)
Flight(x1, . . . , x5) � Flight(x1, . . . , x5)

ApprHotel(x) � ApprHotel(x)

In case of rejection,the action UpdateRequest is triggered
and the employee needs to modify the information regard-
ing hotel and flight, moving the status to ‘readyToVerify’.
Finally, action AcceptRequest returns the system in the state

‘readyForRequest’. The overall process is defined by condition-
action rules that guard the actions by the current system’s state
and include (among the others): Status(‘readyToVerify’) �→
VerifyRequest, Status(‘accepted’) �→ AcceptRequest.

B. Process and Action Execution

To understand the potential of DCDS models as key enablers
towards a model-driven process execution and management
approach, we define an abstract execution semantics for
condition-action rules and actions that determines the actual
behavior of an abstract execution engine for DCDSs. Basically,
given an instance I of the data layer and a process specification
�, the engine undertakes a set of steps that lead to instantiate
the data layer in a new state. The approach is in accordance
with the formal execution semantics defined in [1].

Rules evaluation and executable actions. For each CA rule
Q �→ α the corresponding query Q is executed over the data

layer. Whenever a tuple �d of values is returned by issuing Q
over the current database instance, then the condition-action rule
states that α is executable by fixing its parameters according

to �d. Basically, the eligibility of a rule corresponds to the
executability of the corresponding action, under one or more
bindings for its parameters. In general, at a given time multiple
actions are executable, and the same action can be parametrized
in several ways. Notice that this approach provides a notion
of concurrency tailored to the one of interleaving, as typically
done in formal verification.

Action execution. Among the executable actions, a strategy has
to be implemented to select which action to pick. As pointed
out in [12], many possible strategies can be implemented on
top of a process-aware information system to allocate actions
to resources. These strategies are orthogonal to the execution
semantics, and can be therefore seamlessly realized on top of
the abstract execution engine described here.

When an action α with parameters σ is chosen, the engine
is responsible for the application of the action. In particular, the
execution of α instantiated with σ corresponds to evaluating and
applying the corresponding effects, according to the following
steps:

227227

1) The effects of α are partially instantiated using the
parameter assignment σ.

2) The left-hand side of each effect is evaluated by posing the
corresponding query over the current relational instance,
obtaining back a result set that consists of all possible
assignments θ1, . . . , θn that satisfy the query.

3) The right-hand side Ei is considered, so as to obtain, for
each θi, the set of facts instantiated with σ and θi, denoted
as Eiσθi.

4) Eiσθi may contain service calls. In this case, the engine
handles the interaction with such services, so as to obtain
the result values for each call6. Notice that how these
values are obtained is orthogonal to the abstract execution
semantics, and could be managed by the execution engine
in several different ways, such as interaction with external
(Web) services, or with human actors via forms/user
interfaces.

5) The new instance of the data layer is obtained by putting
together the results obtained from the application of effects
and the incorporation of service call results.

Basic Effect Patterns. Starting from the observation that a
direct, naı̈ve implementation of the action execution semantics
described above yields, in general, a waste of computational
resources (as the the data layer is basically re-instantiated from
scratch when executing an action), in [13] we introduced a set
of patterns that allow for an incremental management of the
data layer. These patterns reflect classical Create-Read-Update-
Delete (CRUD) operations and are summarized in Table I.

III. DESIGNING AND IMPLEMENTING DCDSS

Data-centric approaches naturally induce a “bottom-up”
design methodology, where the definition of the data layer
enables the specification of the process layer that operates on
it, according to the data first principle and the data centered
principle mentioned in [2]. The main methodological steps for
the design of a DCDS can be thus resumed as (i) identification
and modeling of the business entities and their relationships, that
characterize the domain of interest and represent the data layer;
(ii) identification of the business activities and specification of
the corresponding actions that operate on the data layer; and
(iii) identification and specification of the overall process that
drives and constraints action executions.

The executable nature of DCDS models, coupled with the
efficient implementation induced by the operators summarized
in Table I, makes them well suited for the realization of a
support system for rapid prototyping of data-centric processes,
and represents the key enabler towards the implementation of a
full-fledged model-driven and data-centric process management
system. In particular, state-of-the-art rule engines, such as the
open-source Java-based Drools Expert rule engine7 at the heart
of the following discussion, represent a viable technological
solution for supporting the declarative specification of a DCDS
and for providing the run-time environment that supports the
DCDS operational semantics of CA rules and actions.

Figure 1 depicts the overall approach underlying a DCDS
reference implementation. At design-time, the process analyst
specifies the DCDS (model) by using an appropriate specifica-
tion language, and possibly a (set of) specification (graphical)
editor(s). This model, which as previously said, is the same

6We assume here two-way blocking service calls.
7http://www.jboss.org/drools/

Process analyst
Data-Centric Dynamic
System (DCDC) model

specifies

Process designer

annotates with
implementation detailstaiils

DCDS
executable

model

refined into

Process auditor

verifies (properties of)

DCDS
enactment

engine
enacted by

DCDS actors Services

Fig. 1. The approach.

Relational DBMS

Data
Definition

Tool

Actions
Definition

Tool

Process
Definition

Tool

Service
Management

Tool

Data Model
Actions
Model

Process
Model

Design Tools

DCDS Model

Rules
Processor

Actions
Executor

Forms Generator

Service Invoker

Working Memory

Persistency Manager

Services

...

Execution Engine

Persistent Storage

Model
Verification

Tool

Support Tools

Rule Base

Action Base

Service Base

UI Forms

Designer

Domain/Fact Model

Users

Fig. 2. The architecture.

used for subsequent enactment, is further refined through the
specification of some technical aspects crucial for its effective
enacting. In particular, as described in the following sections,
some annotations should be provided in order to define how
a template user interface for the DCDS should be generated,
how external (Web) services should be retrieved and invoked,
etc. This annotated and executable model is used for enactment
of the DCDS during run-time, through the enactment engine.

As of the current status of our implementation, we have
developed a proof-of-concept of the engine, as described in the
following. The specification language, as well as the annotation
one, are currently under development, on the basis of Java-like
annotations and the Drools specification language for rules.
The DCDS model can be verified for specific properties during
the design time, but this aspect is currently out of the scope
of this paper and our current implementation effort. In the
following, we describe our reference implementation, depicted
in Figure 2.

A. Data Modeling

As a first step in the concrete realization methodology, an
explicit representation of the data model defining the domain
of interest has to be provided. On the one side, a relational
schema that constitutes a DCDS data layer finds its natural
implementation in a relational DBMS; on the other side,
rule engines typically rely on an in-memory object-oriented
representation of the fact/data model. In order to bridge this gap,
we rely on Object-Relational Mapping (ORM) techniques, so as

228228

TABLE I. BASIC EFFECT PATTERNS FOR DCDS ACTION SPECIFICATIONS (SEE [13] FOR THE DETAILS).

Effect Pattern DCDS Effect Representation Description

set �t for R where q+ ∧Q− q+ ∧Q− � R(�t)
Generic DCDS effect that generates tuples �t to
be set in the relation R in the new state.

insert �t into R where q+ ∧Q−
{

q+ ∧Q− � R(�t)
R(�x) � R(�x)

Generates tuples �t to be added to the relation
R.

delete from R where Q− R(�x) ∧ ¬Q− � R(�x)
Deletes from the relation R the tuples that match
the condition Q−.

update R set �t where Q−
{

R(�x) ∧Q− � R(�t)

R(�x) ∧ ¬(Q−) � R(�x)

Updates with tuples �t the tuples in the relation
R that match the condition Q−.

update+ R set �t where q+(�x, �y) ∧Q−(�x, �y)

{
q+ ∧Q− � R(�t)

R(�x) ∧ Q̃− � R(�x)

where

[
q+(�x, �y) = R(�x) ∧ q(�z, �y), with �z ⊆ �x

Q̃− = ¬∃�y (q(�z, �y) ∨Q−(�x, �y))

] Updates with tuples �t (whose values can be
obtained also by querying the data layer) specific
tuples in the relation R.

to enable an object-oriented representation of the domain/fact
model and manage its persistency in a RDBMS. In particular,
the designer is provided with a graphical Data Definition Tool
for easy authoring of data models. The tool supports and drives
the declarative definition of the set of named entities/relations,
along with the corresponding typed attributes, that constitute a
DCDS data layer. The basic definition of entities/relations and
their attributes is further extended with annotations or metadata
that can be classified as:

• Persistency-related: annotations that enable object-
relational mapping techniques in order to manage the
persistence of the domain model’s objects; they basically
reflect Java Persistence API (JPA) annotations and can be
defined at the entity/relation level (e.g., @Entity) and at
the attribute level (e.g., @Id).

• Validation-related: annotations that allow specifying or
constraining the characteristics of object attributes’ values.
Specifically, it is possible to constrain attributes to a
given finite number of values (@Values), define min/max
values or ranges for numeric attributes (@Min-value
and @Max-value), define min/max length for string-
based attributes (@Min-length and @Max-length), and
explicitly mark specific attributes as mandatory/required
(@Required). Validation-related annotations defined at
design-time will be used at run-time to validate data values
produced by human performers during action executions.

• UI-related: annotations that allow configuring, constrain-
ing or customizing how data attributes are shown and
visualized in graphical interfaces that enable a form-based
interaction with users. Basic annotations allow specifying
hidden attributes (@UiHidden), the label to be used for
an attribute in the UI (@UiLabel), attributes with masked
values (@UiMasked, e.g., for passwords) and read-only
(i.e., not-editable) attributes (@UiReadOnly). UI-related
annotations, along with the attributes’ data types, are
used at run-time for automatically generating graphical
widgets for data attributes to support form-based user
interaction, according to Object-User Interface Mapping
(OIM) approach.

As a result of design-time data definition activities per-
formed through the Data Definition Tool, an intermediate
declarative data representation is produced, inspired by the
Drools type declaration language that allows defining fact
types and their attributes. The general structure of a data type
definition is of the form:

declare relation/fact_name
attribute_name : data_type [metadata_annotations]

end

Example 2: In the travel reimbursement example, the Hotel re-
lation can be represented by the following fact type declaration:

declare Hotel
hName : String @Required @UILabel("Hotel Name")
date : Date @Required @UILabel("Check-In Date")
price : double @Required @Min-value(0)
currency : String @Required
priceInUSD : double @Required @Min-value(0)

@UILabel("Price in USD")
end

The declarative data specifications are then compiled into
annotated Plain Old Java Objects (POJOs) that collectively
represent the domain and fact model. Basically, each declared
relation/fact is mapped to a persistent POJO class or entity,
whose persistence is transparently managed so that JPA entities
can be directly manipulated as facts in the Drools engine
working memory. Under this approach, a run-time object
representing an instance of a POJO class is considered as
a fact (from the perspective of the rule engine) and corresponds
to a tuple of a relation (from a the perspective of the DCDS
relational model).

B. Actions Modeling

In a DCDS, actions correspond to business activities that
incapsulate an atomic unit of work from a process perspective8.
Action specifications are supported through a graphical Actions
Definition Tool, that drives the designer in the creation of a
DCDS action base. As actions are defined in terms of input
parameters and effects, from a methodological perspective the
specification of an action is strongly data-aware and requires to
identify and define (the formal action specification introduce in
Section II): (i) an action signature, given by an action name
and a (optional) typed sequence of input parameters required
for executing the action; (ii) possible external data sources
(in the form of users and/or software services able to provide
input values) involved in the execution of an action, although
modeled as function/service calls; (iii) the set of effects that the
execution of the action will have on the data layer, in the form
of facts being set, added, updated or deleted, according to the
basic effect patterns we introduced in [13] and summarized in

8cf. the usual definition of task/activity, as a piece of work that forms one
logical step within a process.

229229

Table I. The general structure of an action definition resulting
from the design steps is of the form:

action action_name([typed_parameters])
effect_specification_1
· · ·
effect_specification_m

end

Recalling that each effect specification includes a query over
the relational schema (cf. Table I), and exploiting the ability
of the Drools framework to support the definition of named
queries over the data/fact model, the query part of each effect
specification is directly represented by a corresponding Drools
query. Queries are used to retrieve fact sets based on patterns9,
and a query has an optional set of parameters that we exploit
for binding query parameters that refer to action parameters.

Example 3: In the action VerifyRequest defined in the example,
the effect

Hotel(x1, . . . , x5) ∧ ApprHotel(x1)� Status(‘accepted’)

corresponds to a set operation of the form

set ‘accepted’ for Status(status)

where Hotel(x1, . . . , x5) ∧ ApprHotel(x1)

whose query Hotel(x1, . . . , x5) ∧ ApprHotel(x1) is mapped to the
Drools named query

query "Hotel Approved"
Hotel($x1:hName, $x2:date, $x3:price, $x4:currency,

$x5:priceInUSD)
ApprHotel(hName == $x1)

end

The overall declarative action specification is thus of the form

action VerifyRequest()
set "accepted" for Status(status)

where "Hotel Approved"
· · ·

end

In the general case, DCDS actions (and processes that use
them) are supposed to be executed in an environment that
includes users and services that may provide data elements to
be used when instantiating the data layer in the new state. The
interaction with the environment and the input of data from
the environment is explicitly modeled as service calls in the
specification of the effects. In particular, effect specifications
that follow the set, insert and update/update+ patterns
allow the inclusion of functional terms that represent service
calls, as the instantiation/update of new/existing facts may
require to obtain new data from the external environment. The
modeling of service calls abstracts from the actual service
implementation, so as to represent both user-provided data and
data values produced by software services (e.g., Web services).
The specification of action effects thus assumes the availability
of external services (cf. the set F defined in a DCDS process
layer). In order to build and maintain a service base that collects
the set of services to be used in action specifications, the
designer is provided with a Service Management Tool. The
tool includes a Service Explorer application (Figure 3) that
allows the designer to browse external Web services starting
from the URL of their WSDL interface and select service
operations to be added to the service base.

In the formal DCDS framework, no explicit distinction
is made in function calls between user-provided data and

9Conditions defined in a query or in CA rules are referred to as patterns, and
the process of matching patterns against the data is called pattern matching.

Fig. 3. Service Explorer Tool (a specific widget for exploring available Web
services).

service-provided data, as the specific data production/gathering
logic is implemented by the services mapped by and hidden
behind function calls. From a modeling perspective, the need
to include software service calls in action effects is directly
supported by allowing the designer to select services/operations
from the service base and specify input mappings for services’
parameters10 (if any).

Example 4: Assume a domain model that includes infor-
mation about hotels and their price, with relations Cur =
〈Currency〉, CurHotel = 〈Hotel, Currency〉, PriceEntry =
〈Hotel, Price,Date〉. The process layer provides the possibil-
ity of converting the price list of a hotel from USD to another
currency, by exploiting a Web service that offers an operation
CONVUSD(price, currency, date) for price conversion. A
DCDS action that performs the price conversion and updates
the price entries and currencies can be specified as follows

action Convert(String hotel, String curr)
update PriceEntry(x1, x2, x3)

set (hotel, ConvUSD(x2, curr, x3), x3)
where x1 = hotel && Cur(curr)

update CurHotel(x1, x2)
set (hotel, curr)
where x1 = hotel && Cur(curr)

end

According to the update pattern, the tuples/facts modified by
the first update effect (similar considerations also hold for the
second update) are those that satisfy the query

PriceEntry(x1, x2, x3) && x1 = hotel && Cur(curr)

that is mapped to the parametrized named Drools query

query "Price Entries" (String hot, String cur)
PriceEntry($x1: hotel == hot , $x2:price , $x3:date)
Cur(currency == cur)

end

Similarly, the activation of a function representing user-
provided data could be seen as corresponding to a service
invocation that results in the generation of some sort of input
field allowing the user to provide data values. In the case of the
involvement of a human performer, the actual way that allows
presenting work items to the user and the input data gathering
logic may be far more complex, typically based on the concept
of work-lists and the generation of graphical forms. To support
form-based users involvement in action executions, we allow
the annotation of effects so as to specify that input values
needed for instantiating or updating a relation/fact have to be
gathered from the user through a graphical form, that will be
automatically built at run-time from the class definition of the
relation/fact. Relation/fact attributes whose values are expected
to be provided by users are marked with symbolic function
symbols (as in the formal DCDS framework) annotated with the
@UIForm annotation. At this stage, additional validation-related

10Recall from Section II-A that functions/services can be applied to constants,
free variables of the query part of the effect, and action parameters.

230230

and UI-related annotations (cf. Section III-A) can be added, to
overwrite or integrate the annotations defined during the data
modeling stage.

Example 5: The effect specification of the form

set (InHName() @UIForm, InHDate() @UIForm,
InHPrice() @UIForm, InHCurrency() @UIForm,
InHPInUSD() @UIForm)

for Hotel where true

corresponds to the DCDS effect specification

true � Hotel(INHNAME(), INHDATE(), INHPRICE(),

INHCURRENCY(), INHPINUSD())

for the action InitiateRequest, and the attributes of the Hotel
relation/fact are annotated to specify that their values have to
be gathered at run-time by interacting with a user through a
graphical form.

Declarative action specifications serve as a basis for driving
their implementation and, according to a truly model-driven
approach, they enable the automatic generation of executable
modules that implement the intended action execution se-
mantics, as defined by the corresponding effects. Executable
modules representing concrete procedural implementations of
actions rely on the Command behavioral design pattern and im-
plement the general execution strategy sketched in Section II-B,
although specialized to reflect the intended semantics of the
operator (set, insert, delete, update/update+) defined in
each effect. While providing the details of how each effect
pattern is compiled into executable code is out of the scope of
this work, basically executing an effect requires to execute the
corresponding query and then use the query result set according
to the specific operation associated with the effect. For insert,
delete and update/update+ operations, objects representing
tuples/facts are respectively added, deleted and updated through
the persistency manager, and the engine’s working memory
is kept synchronized by exploiting the insert(), retract()
and update() methods provided by the engine. For a set
operation, existing tuples/facts are first retracted, and generated
facts are then inserted in the working memory and persistent
storage. Relevant details about service invocations and user
forms generation are provided in Section III-D.

C. Process Modeling

Actions represent the atomic building blocks that enable
the specification of processes that operate on the data layer and
constitute the progression mechanism for a DCDS. In a DCDS,
a process specification is given by a (finite) set of condition-
action rules (CA rules). Under this approach, the constraints that
determine actions executability are completely data-dependent,
so that a complete integration of processes and data can be
achieved. The Process Definition tool supports a declarative
rule-based process specification approach, and the modeling of
a DCDS process as a set of CA rules is directly represented
as a set of rules defined in the Drools Rule Language (DRL).
Each condition-action rule of the form Q �→ α finds its natural
representation as a named Drools rule of the form

rule "ruleName" when Q then execute(α) end

In particular, the right-hand side (RHS) of a rule always defines
the instantiation (with possible parameters given by constants
and free variables of the query Q defined in the left-hand side
of the rule) and execution of an action from the action base
built in the actions modeling stage.

Example 6: The condition-action rule

rule "Verify Request"
when Status(status == StatusEnum.READY_TO_VERIFY)
then Executor.perform(new VerifyRequest());

end

directly corresponds to the condition-action rule represented as
Status(‘readyToVerify’) �→ VerifyRequest in the travel reimbursement
example.

D. Process and Actions Execution

The design steps produce a domain/fact model, and a
specification of actions, their effects and the overall process. The
set up of the DCDS run-time infrastructure, which relies on the
Drools engine, requires to instantiate the Drools environment,
by providing the initial instance of the data/fact model and
build the so-called knowledge base, by loading into the engine
the knowledge definitions represented by the queries used in
actions effects and by the overall process specification as a set
of CA rules.

The initial instance of the data layer can be created
by instantiating a set of persistent objects representing the
tuples/facts that constitute the initial relational instance. The
initial set of facts are then inserted in the engine’s working
memory, so that they can be processed against the rules. The
insertion of new data (as well as the update or deletion of
existing data), either when the data layer is first instantiated
or as a result of action executions, acts as a trigger for the
rules evaluation process. Drools inference engine is based on
the well-known Rete algorithm and adopts a forward chaining
data-driven approach in the process of matching new or existing
facts in working memory against the rules, to infer conclusions
which result in actions. The overall rules evaluation and firing
process implemented in Drools, based on match-resolve-act
cycles, directly reflects the intended behavior of the abstract
execution semantics we defined for DCDSs in Section II-B.
Rules whose condition part is fully matched become eligible
for execution, and the evaluation process can result in multiple
eligible rules, i.e executable actions. The agenda manages
current rule activations, called conflict set, and according to a
conflict resolution strategy determines a single rule activation
to be executed. In our proof-of-concept implementation we
adopt the default conflict resolution strategies available in
Drools, based on rule priority or on a last-in-first-out (LIFO)
policy. The possibility of defining custom conflict resolution
strategies will allow us to implement and support different
selection strategies, also involving users in the selection of
executable actions, also considering the workflow resource
patterns. According to our rule definitions, the firing of a rule
activation results in the creation and execution of an action
instance with a binding for its parameters. The execution of an
action results in the insertion, deletion and update of facts in
working memory, and the engine starts a new match-resolve-act
cycle, where previously activated rules may be de-activated (as
their condition is no longer matched by the actual facts) and
removed from the agenda, and new instances may be activated,
resulting in a new set of executable actions.

As already discussed, the execution of an action corresponds
to evaluating and applying the corresponding effects. In the
most general and complex case (cf. the effect definition in
Section II-A), the attributes of tuples/facts to be set, added or
updated are defined in terms of constants, variables, service
calls and user-provided inputs (cf. the @UIForm annotation).
While variables are instantiated according to the binding for

231231

Hotel (
inHName(),
inHDate(),
inHPrice(),
inHCurrency(),
inHPInUSD()

)

Fig. 4. Automatic generation of UI forms for user-based action executions.

action’s parameters and variables of the query part of the effect,
service calls and user-provided values require to interact with
the environment.

Service calls, as defined and selected during the action
modeling phase, result in the concrete invocation of the service
operation, so as to obtain a return value for the tuple/fact
attribute. Run-time service invocations are issued and managed
by exploiting the Apache CXF framework11 and its ability
to support dynamic Web service clients. In the presence of
relation/fact definitions with @UIForm annotations, form-based
user interaction is provided. User forms and their automatic
generation are often considered as a key enabler for data
and object aware processes [8]. To support the dynamic and
automatic run-time generation of user forms, we rely on the
Metawidget UI framework12. The framework is an Object/User
Interface Mapping tool (OIM) and it is able to generate UI
widgets by inspecting annotated domain objects. Starting from
an object representing a tuple/fact to be instantiated or updated,
we are able to generate a user form where each attribute
annotated as @UIForm is rendered as an input widget, on the
basis of the corresponding data type and the validation- and UI-
related annotations defined during the data and action modeling
stages. In the presence of attributes whose values are given by
constants, variables or service calls, the generated form can
be configured so that they are hidden to the user or shown as
not-editable fields. In addition, validation-related annotations
are used to automatically validate user-provided input. As an
example, Figure 4 shows the automatically generated form for
the action effect defined in Example 5 on the basis of the
definition for the Hotel relation/fact defined in Example 2.
Although currently not supported, data visibility in UI forms
can be further refined by considering fine-grained access-control
policies that define read/write permissions for data attributes.

IV. CONCLUDING REMARKS

The DCDS framework induces a data-centric process
management approach, where models (i) rely on a complete
integration between processes and data, and (ii) are both
verifiable and executable. In this paper we have presented
our reference implementation for DCDSs, on the basis of
specific constructs for specifying actions’ effects, which enables
an efficient implementation of action executions, through
incremental changes over the current instance of the data model.
In such a way, we can base our implementation on rule engines,
thus obtaining rapid prototyping of DCDSs.

Our reference implementation still needs to be refined
in several aspects, and validated. In particular, the resource
perspective must be incorporated into the picture. Data-centric

11http://cxf.apache.org/
12http://metawidget.sourceforge.net/

models are able to support an integrated modeling of human
resources and data, by combining classical role-based organiza-
tional meta-models with a fine-grained modeling of users and
their domain-specific roles in relation to data elements. At a
process specification level, in line with the well-known resource
patterns, this allows declaratively defining possible bindings
between actions and human performers on the basis of both user-
and data-aware conditions that guard the executability of actions,
going beyond simple role-based assignment policies. Similarly,
run-time user involvement in the selection of executable actions
has to be considered, investigating both the link with classical
worklist-based approaches and the possibility of supporting
knowledge workers with decision-support features.

As far as validation of our implementation, besides classical
evaluation of performances, we are particularly interested
in evaluating analysts and designers inclination and plain-
ness/simplicity in modeling wrt. more traditional activity-centric
models. In particular, a user study comparing our reference im-
plementation with well-known tools, e.g., YAWL, is envisioned
as soon as our implementation effort is concluded. Indeed, the
opportunity of such a user study has driven our effort, in order
to assess with scientific rigor whether data-centric approaches
are indeed better/equivalent/worse than traditional ones from
the point of view of the analysts/designers.

ACKNOWLEDGMENT

This work has been partially supported by the SAPIENZA

grants TESTMED, SUPER and “Premio Ricercatori Under-40”.

REFERENCES

[1] B. Bagheri Hariri, D. Calvanese et al. “Verification of relational data-
centric dynamic systems with external services,” in Proc. PODS 2013.

[2] K. Bhattacharya, R. Hull, and J. Su, “A data-centric design methodology
for business processes,” in Handbook of Research on Business Process
Modeling, chapter 23, 2009, pp. 503–531.

[3] D. Calvanese, G. De Giacomo et al. “Foundations of data aware process
analysis: A database theory perspective,” in Proc. PODS 2013.

[4] D. Cohn, P. Dhoolia, F. Heath, F. Pinel, and J. Vergo, “Siena: From
PowerPoint to Web App in 5 Minutes,” in Proc. ICSOC 2008.

[5] M. Dumas, “On the Convergence of Data and Process Engineering,” in
Proc. ADBIS’11.

[6] T. Erl, Service-Oriented Architecture: Concepts, Technology and Design.
Prentice Hall.

[7] R. Hull, E. Damaggio, R. De Masellis et al. “Business Artifacts with
Guard-Stage-Milestone Lifecycles: Managing Artifact Interactions with
Conditions and Events,” in Proc. DEBS ’11.

[8] V. Künzle and M. Reichert, “PHILharmonicFlows: towards a framework
for object-aware process management,” Journal of Software Maintenance
and Evolution: Research and Practice, vol. 23, no. 4, pp. 205–244, 2011.

[9] V. Künzle, B. Weber, and M. Reichert, “Object-aware Business Processes:
Fundamental Requirements and their Support in Existing Approaches,”
International Journal of Information System Modeling and Design
(IJISMD), vol. 2, no. 2, pp. 19–46, 2011.

[10] A. Meyer, S. Smirnov, and M. Weske, “Data in business processes,”
EMISA Forum, vol. 31, no. 3, pp. 5–31, 2011.

[11] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst, “DECLARE:
Full Support for Loosely-Structured Processes,” in Proc. EDOC 2007.

[12] N. Russell, A. H. M. ter Hofstede et al. “Workflow data patterns:
identification, representation and tool support,” in Proc. ER’05.

[13] A. Russo, M. Mecella, M. Montali, and F. Patrizi, “Towards a reference
implementation for data centric dynamic systems,” in 2nd International
Workshop on Data and Artifact-Centric BPM (DAB’2013), to appear.

[14] D. Solomakhin, M. Montali et al. “Verification of Artifact-Centric
Systems: Decidability and Modeling Issues,” in Proc. ICSOC 2013.

[15] R. Vaculin, R. Hull, T. Heath, C. Cochran, A. Nigam, and P. Sukaviriya,
“Declarative business artifact centric modeling of decision and knowledge
intensive business processes,” in Proc. EDOC 2011.

232232

