
3

Declarative Specification and Verification of
Service Choreographies

MARCO MONTALI

University of Bologna

MAJA PESIC and WIL M. P. VAN DER AALST

Eindhoven University

FEDERICO CHESANI and PAOLA MELLO

University of Bologna

and

SERGIO STORARI

University of Ferrara

Service-oriented computing, an emerging paradigm for architecting and implementing business col-
laborations within and across organizational boundaries, is currently of interest to both software
vendors and scientists. While the technologies for implementing and interconnecting basic services
are reaching a good level of maturity, modeling service interaction from a global viewpoint, that is,
representing service choreographies, is still an open challenge. The main problem is that, although
declarativeness has been identified as a key feature, several proposed approaches specify chore-
ographies by focusing on procedural aspects, leading to over-constrained and over-specified models.

To overcome these limits, we propose to adopt DecSerFlow, a truly declarative language, to
model choreographies. Thanks to its declarative nature, DecSerFlow semantics can be given in
terms of logic-based languages. In particular, we present how DecSerFlow can be mapped onto
Linear Temporal Logic and onto Abductive Logic Programming. We show how the mappings onto
both formalisms can be concretely exploited to address the enactment of DecSerFlow models, to
enrich its expressiveness and to perform a variety of different verification tasks. We illustrate the
advantages of using a declarative language in conjunction with logic-based semantics by applying
our approach to a running example.

This work has been partially supported by the PRIN 2005 Project Specification and Verification of
Agent Interaction Protocols and by the FIRB project TOCALIT.
Authors’ addresses: W. M. P. van der Aalst, Department of Mathematics and Computer
Science, Eindhoven University, P.O. Box 513, NL-5600MB Eindhoven, Netherlands; email:
w.m.p.v.d.aalst@tue.nl; M. Montali, F. Chesani, P. Mello, DEIS, University of Bologna, V.le Risorg-
imento 2, 40136, Bologna, Italy; email: {marco.montali,federico.chesani,paola.mello}@unibo.it; M.
Pesic, Department of Technology Management, Eindhoven University, P. O. Box 513, NL-5600MB
Eindhoven, Netherlands; email: mpesic@tm.tue.nl; S. Storari, Department of Engineering, Univer-
sity of Ferrara, Via Saragat 1, 44100 Ferrara, Italy; email: strsrg@unife.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1559-1131/2010/01-ART3 $10.00
DOI 10.1145/1658373.1658376 http://doi.acm.org/10.1145/1658373.1658376

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:2 • M. Montali et al.

Categories and Subject Descriptors: H.3.5 [Information Storage and Retrieval]: Online Infor-
mation Services—Web-based services; D.3.2 [Programming Languages]: Language Classifica-
tions—Constraint and logic languages, Specialized application languages; D.2.4 [Software En-
gineering]: Software/Program Verification—Formal methods, Model checking; I.2.3 [Artificial
Intelligence]: Deduction and Theorem Proving—Logic programming; I.2.4 [Artificial Intelli-
gence]: Knowledge Representation Formalisms and Methods—Temporal Logic

General Terms: Languages, Management, Verification

Additional Key Words and Phrases: Service choreographies, declarative modeling, linear temporal
logic, abductive logic programming, conformance checking, compliance verification, monitoring, in-
teroperability, reasoning

ACM Reference Format:
Montali, M., Pesic, M., van der Aalst, W. M. P., Chesani, F., Mello, P., and Storari, S. 2010. Declar-
ative specification and verification of service choreographies. ACM Trans. Web, 4, 1, Article 3
(January 2010), 62 pages.
DOI = 10.1145/1658373.1658376 http://doi.acm.org/10.1145/1658373.1658376

1. INTRODUCTION

Service oriented computing, an emerging paradigm for architecting and imple-
menting business collaborations within and across organizational boundaries,
is currently of interest to both software vendors and scientists [van der Aalst
et al. 2003]. In its Web implementation, the functionality provided by busi-
ness applications is encapsulated within Web services: software components
described at a semantic level, which can be invoked by application programs
or by other services through a stack of Internet standards including HTTP,
XML, SOAP [Box et al. 2000], WSDL [Christensen et al. 2001] and UDDI [Bel-
wood et al. 2000]. Once deployed, Web services provided by various organi-
zations can be interconnected in order to implement business collaborations,
leading to composite Web services where participating services interact in a
choreography.

Let us for example consider a B2B setting, in which different organizations
share their own services to mutually benefit from each other, trying to reach
complex strategic goals, impossible to be pursued autonomously. In this context,
it is often impossible to make the assumption that one of the involved organi-
zations will take the lead during the interaction, acting as an orchestrator. As
clearly pointed out in the WS-CDL 1.0 specification [Kavantzas et al. 2004], “in
real-world scenarios, corporate entities are often unwilling to delegate control
of their business processes to their integration partners. Choreography offers a
means by which the rules of participation within a collaboration can be clearly
defined and agreed to, jointly. Each entity may then implement its portion of
the Choreography as determined by the common or global view.”

In a B2B setting, the birth of a service choreography is often determined
by putting together external norms/regulations and internal policies, require-
ments, best practises, business goals of each participating organization. All
these different contributions have the effect of constraining the possible allowed
interactions, and they will therefore be referred to as constraints throughout the
article. The obtained global model should suitably mediate between compliance
and flexibility: on the one hand, all interacting services must respect the agreed

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:3

constraints; on the other hand, each party should be able to execute the business
processes that cover its part of the choreography as freely as possible, preserv-
ing interoperability and replaceability of services. In other words, we claim that
a service choreography should play the role of a public global contract which
focuses on the rules of engagement required to make all the interacting par-
ties collaborate correctly, without stating how such a collaboration is concretely
carried out. This kind of knowledge is inherently declarative.

As pointed out in Barros et al. [2005] and van der Aalst et al. [2005], while
the technologies for implementing and interconnecting basic services are reach-
ing a good level of maturity, modeling service interaction from a global view-
point, that is, representing service choreographies, is still an open challenge: the
leading current proposals for modeling service interaction, such as WS-BPEL
[Andrews et al. 2003] and WS-CDL [Kavantzas et al. 2004], fail to tackle a
suitable balance between compliance and flexibility. The main problem is that,
although declarativeness has been identified as a key feature, current main-
stream approaches propose languages and methodologies which model chore-
ographies by focusing on procedural aspects, for example, by specifying control
and message flow of the interacting services. This leads to loose the declarative
nature of the knowledge involved in the choreography definition, forcing the
modeler to capture it at a procedural level.

To overcome these limits, we propose a framework for dealing with ser-
vice choreographies at the declarative level. In particular, we adopt DecSer-
Flow [van der Aalst and Pesic 2006] as a truly declarative language for the
graphical specification of service flows, and present a mapping from the Dec-
SerFlow graphical constructs to two underlying logic-based languages, enabling
the possibility of reasoning upon the developed models. DecSerFlow adopts a
more general and high-level view of services specification, by directly defin-
ing them through a set of policies or business rules referred to as constraints.
Hence, it does not give a complete and procedural specification of what is al-
lowed in services, but concentrates on what is the (minimal) set of constraints
to be fulfilled in order to successfully accomplish the interaction (i.e., what is
forbidden and mandatory in services).

It is the declarative nature of DecSerFlow which opens the possibility of
providing suitable underlying semantics in terms of logic-based languages. In
particular, we present how DecSerFlow can be mapped onto Linear Tempo-
ral Logic (LTL) [Clarke et al. 1999] and onto the SCIFF framework [Alberti
et al. 2008]. The LTL mapping of DecSerFlow currently focuses only on the
process perspective of services (i.e., on activities executed in services), while
SCIFF is able to consider activities, data elements, and time. We discuss how
the mappings onto both formalisms can be concretely exploited to address the
enactment of DecSerFlow models, to enrich its expressiveness and to perform
a variety of different verification tasks, as shown in Table I.

LTL is a special type of logic that, in addition to classical logical operators,
uses several temporal operators. Mapping to LTL enables DecSerFlow to exploit
automata generated form LTL expressions [Gerth et al. 1996; Giannakopoulou
and Havelund 2001] for execution of individual services and verification of
participating services and whole compositions. The LTL representation of

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:4 • M. Montali et al.

Table I. DecSerFlow Verifications and Extensions-Support through LTL and
SCIFF

LTL SCIFF
enactment X

conformance checking X X
interoperability X X

conflicts and dead activities detection X X
mining X

support of activities-data and quantitative time constraints X

DecSerFlow models also enables a posteriori verification of properties and
checking of service interaction (i.e., conformance checking) in the LTL
Checker [van der Aalst et al. 2005] plug-in of the process mining ProM frame-
work [van der Aalst et al. 2007].

SCIFF is a framework based on Abductive Logic Programming (ALP) [Kakas
et al. 1993], originally developed within the SOCS EU Project 1 for the spec-
ification and verification of global interaction protocols in open Multi-Agent
Systems (MAS), which share many aspects with the Service-oriented Comput-
ing setting [Baldoni et al. 2005a]. Similarly to the case of service choreographies
and DecSerFlow, the need for modeling global interaction protocols by respect-
ing the autonomy and heterogeneity of interacting agents has motivated the
shift from mentalistic approaches to declarative and social-based ones [Singh
2000]. The SCIFF framework belongs to the latter family: it envisages a power-
ful logic-based language for specifying social interaction, and is equipped with
a proof procedure capable to check at runtime or a posteriori whether a set of
interacting entities is behaving in a conformant manner with respect to a given
specification. Thanks to the mapping from DecSerFlow to SCIFF proposed in
this work, we achieve two complementary advantages. On the one hand, the
mapping extends the applicability of SCIFF outside of the MAS setting, open-
ing the possibility of exploiting its verification capabilities in the SOC context
and by nonexpert users: they do not have to deal directly with the complexity
of the SCIFF syntax, but can instead work at the intuitive graphical level of
DecSerFlow, automatically obtaining the corresponding SCIFF specification.
On the other hand, DecSerFlow can benefit of the expressiveness and verifica-
tion capabilities of SCIFF, addressing conformance checking and static verifi-
cation of DecSerFlow choreographies, enabling mining of DecSerFlow models
from service execution traces, and enriching the language with data-related
aspects and quantitative time constraints. Even if the main focus of a choreog-
raphy is on the involved activities and their flow dependencies, adding data and
quantitative time-related aspects enables to model a wider range of situations,
such as desired deadlines, constraints that span over multiple choreography
instances, content-based decisions points, interactions in which multiple con-
crete services play the same role (e.g., bidders in an auction). The possibility of
addressing such kind of specifications does not depend on DecSerFlow (which

1Societies Of ComputeeS (SOCS): a computational logic model for the description, analysis and
verification of global and open societies of heterogeneous computees. IST-2001-32530. http://lia.
deis.unibo.it/research/socs/.

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:5

can be extended for the purpose), but is instead affected by the underlying
chosen formalization.

We illustrate the advantages of using a declarative language in conjunction
with logic-based semantics by applying our approach to a motivating choreog-
raphy example.

The remainder of this article is organized as follows. Section 2 motivates
why the challenging issue of modeling service choreographies should be faced
by adopting a declarative approach. Section 3 describes the DecSerFlow lan-
guage together with its mapping onto LTL. The SCIFF language is presented in
Section 4, and in section 5 the mapping of DecSerFlow concepts onto SCIFF is
shown. Section 6 describes then how LTL and SCIFF can be used for enactment
and various verification tasks of DecSerFlow models. A discussion, focused on
the usability of the whole framework for what concerns features of the lan-
guage as well as performances and scalability of the verification techniques
and current available tools, follows in Section 7. Related work is presented in
Section 8, while Section 9 concludes the article sketching ongoing and future
works. To make this article as concise as possible, the complete description of all
the core DecSerFlow constraints and of the corresponding mapping onto LTL
and SCIFF is described in online Appendix A, available in the ACM Digital
Library.

2. MOTIVATION

To illustrate the difficulty of handling even simple choreography constraints
with classical procedural approaches, let us consider a fragment of a purchase
choreography, regulating the seller’s decision about the confirmation or rejec-
tion of an order. The seller could freely decide whether to confirm or refuse
customer’s order, but must obey to the following constraints:

—if the warehouse cannot ship the order, then the seller must refuse it;
—the seller can accept the order only if the warehouse has previously accepted

its shipment;
—both the seller and the warehouse cannot accept and reject the same order,

that is, answers are mutually exclusive.

By considering these global rules, many different compliant interactions can be
established by a concrete seller and a concrete warehouse. For example, when
and how the warehouse is contacted is not specified, and there could be different
choreography executions in which the warehouse is not contacted at all: an
execution in which the seller autonomously decides to reject the order, without
asking warehouse’s opinion, is foreseen by the choreography. This execution
trace clearly attests that many different compliant ways to interact are not
explicitly mentioned in the choreography, but are instead implicitly supported.
We argue that this is due to the fact that choreography rules constitute a form
of declarative knowledge, which states what is forbidden and mandatory in
services without giving details about how to carry out the interaction.

When the user tries to model this kind of knowledge using a classical pro-
cedural specification language such as WS-BPEL or WSCDL, she is forced to

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:6 • M. Montali et al.

Fig. 1. Declarative vs. procedural style of modeling a simple choreography.

explicitly enumerate all the implicitly supported executions, and to introduce
further unnecessary details. Consider for example the BPMN [White 2006] col-
laborative diagrams as a modeling language to capture the above described
choreography fragment.

Figure 1 compares the adoption of BPMN collaborative diagrams ver-
sus the use of a declarative constraint-based language such as DecSer-
Flow when modeling the choreography fragment described above. While
DecSerFlow (Figure 1(a)) is able to capture the choreography in a compact
and easily understandable way, BPMN (Figures 1(b) and 1(c)) experiences dif-
ficulties when trying to suitably mediate between compliance and flexibility:
unnecessary activities are introduced (such as the “contact warehouse” activ-
ity) and some acceptable execution traces are not supported. For example, both
the BPMN diagrams shown in Figures 1(b) and 1(c) do not support the possi-
bility that the warehouse refuses the shipment after the refusal of the seller;
even if the refusal of the warehouse seems to be, in this case, insignificant, it
could be involved in other constraints of the choreography, and should there-
fore be supported. Adding this behavior would require complicating the model,

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:7

replicating execution paths and activities, and introducing ambiguous decision
points. And obviously, this issue would be even more hard to handle when the
modeled fragment has to be composed with other constraints to capture the
whole choreography.

These difficulties arise when the modeler tries to interconnect the choreog-
raphy activities by means of control and message flows. In particular, a nonex-
haustive list of issues for which procedural languages do not provide a suitable
support are: How to deal with negative information such as “the seller cannot
accept and reject the same order”? How to deal with non-ordered constraints,
such as the one stating that “if the warehouse refuses the order, then the seller
must also refuse (or have refused) it”? Who is in charge to contact the ware-
house? And when?

The difficuly of providing an answer to these question by adopting a proce-
dural style of modeling is threefold.

—Lack of Proper Abstractions. Activities can be interconnected only by means
of positive temporally-ordered relationships (sequence patterns, mixed with
constructs aimed at splitting/merging the control or the message flow). Mod-
eling other kind of constraints forces the user to complicate the model. For
example, capturing temporally unordered relationships leads either to choos-
ing one ordering and impose it in the model, compromising flexibility, or to
explicitly capturing all the possible orderings, introducing ambiguous deci-
sion points to combine them.

—Closed Nature. Procedural models makes the implicit assumption that “all
that is not explicitly modeled is forbidden,” and must therefore enumerate
all the allowed executions. Therefore, when a negative requirement (such
as forbidding a certain activity or stating that two activities must never
coexist in the same execution) must be considered, it is not possible to
make it explicit in the model; instead, it is the responsibility of the user
to check whether the produced model implicitly entails the negative require-
ment. This is a difficult task, especially when the complexity of the model
increases.

—Premature Commitment. Since procedural approaches have a close nature
and do not provide proper abstractions, they force the modeler to prematurely
take decisions and make assumptions about the interaction. For example,
even if the considered choreography fragment does not specify how and when
the warehouse must be contacted, this choice must indeed be taken during
the modeling phase.

The combination of these drawbacks has the effect that choreographies become
overspecified and overconstrained: unnecessary activities and constraints are
introduced, and acceptable interactions are dropped out. As a consequence,
while compliance is respected, flexibility becomes sacrificed: potential partners
are discarded, fruiful interactions are rejected and, at last, the choreography
becomes unusable. When the modeler tries to get back flexibility by relax-
ing the imposed constraints and reducing premature commitments, the lack
of proper abstraction and the closed nature of procedural approaches lead to

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:8 • M. Montali et al.

Fig. 2. DecSerFlow as a declarative language.

further stress overspecification: the resulting choreography tends to become a
tangled, unintellegible spaghetti-like model, and, at the same time, the risk of
supporting undesirable behaviors increases.

3. DECSERFLOW: A TRULY DECLARATIVE SERVICE FLOW LANGUAGE

Web service composition implies collaboration of independent interacting par-
ties, that is, services. On the one hand, composition choreography reflects a com-
mon agreement of various parties and must be applicable to various demands
of interacting parties. On the other hand, interacting parties are required to
follow core rules that maintain the integrity of the choreography. Figure 2(a)
shows that a choreography prevents some unwanted (i.e., forbidden) scenarios,
and parties can collaborate only in scenarios allowed in the choreography. Tra-
ditional modeling languages (e.g., Petri nets [Reisig and Rozenberg 1998] and
WS-BPEL [Andrews et al. 2003]) are of imperative nature because they specify
a scheduling procedure of activities in the flow. All possible interactions are
specified in detail in such a model (as shown in Figure 2(b)) and unpredicted or
exceptional interactions are not possible between the parties. Therefore, spec-
ifying service flows with an imperative language limits the number of parties
that are able to fulfill the model requirements. Instead of specifying a detailed
flow procedure, DecSerFlow specifies a minimal set of rules that should be
followed by the interacting parties. Figure 2(c) shows that, by explicitly speci-
fying the rules, a declarative DecSerFlow model implicitly defines the flow as
all scenarios that do not violate the rules. Clearly, the more rules a DecSerFlow
model has, the less possibilities there are in the flow. Because rules constrain
the model, we refer to rules as to constraints.

DecSerFlow process models can play two roles in the context of web services.

—DecSerFlow can be used as a global choreography model [Zaha et al. 2006],
that is, interactions are described from the viewpoint of an external observer
who oversees all interactions between all services. It is not necessary that
a global model is executable, but it can be used for describing the rules of
engagement for making all the interacting parties collaborate correctly, and
for verification purposes (such as conformance checking and interoperabil-
ity). Here DecSerFlow is competing with languages such as the Web Services
Choreography Description Language (WS-CDL) [Kavantzas et al. 2004].

—DecSerFlow can be used as a local model [Zaha et al. 2006], to specify, imple-
ment, or configure a particular service. Here DecSerFlow is competing with
languages such as WS-BPEL [Andrews et al. 2003].

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:9

Table II. Photo Shop Example

Both the customer and the shop are responsible for executing an order and they have the
following options:
Customer The customer can enter order data, such as name, address, credit card number and
preferred way of delivery, via activity “register.” Activities “photo” and “poster” can be used to
order photographs and posters (respectively) by uploading files and selecting wanted formats.
Customer can also order photo albums by executing activity “album”. Activities “receive” and
“pay” are used when receiving and paying ordered products, respectively.
Photo Shop The shop records order data via activity “open order”. Activity “print” is used to
print ordered photos and posters. The shop delivers products and charges the customer for
the service via activities “deliver” and “charge.”

Table III. Global Choreography Constraints

G1. The shop will not “open order” before the customer executes activity “register.” When the
customer executes activity “register,” the shop will update its data via activity “open order.”
This rule ensures that the shop has the right order data.
G2. After the customer orders photos and posters (via activities “photo” and “poster”), the shop
prints ordered products via activity “print.”
G3. Each ordered product (“photo,” “poster,” or “album”) has to be delivered via activity “de-
liver.” The shop will not “deliver” before at least one product is ordered.
G4. Customer can receive products only after the shop executes “deliver.”
G5. Customer can “pay” before (e.g., credit card) or after (e.g., when picking up) the shop
executes its activity “charge.”

The remainder of this section is organized as follows. In Section 3.1 we
present a running example of a Photo Service. Section 3.2 describes the build-
ing blocks of the DecSerFlow language. Section 3.3 describes the global chore-
ography (Section 3.3.1) and a local service model (Section 3.3.2) in terms of
DecSerFlow.

3.1 Running Example: Photo Shop

In this paper we use an illustrative example to describe how DecSerFlow and
its underlying mappings can be suitably used for specifying and verifying chore-
ographies. The example is concerned with a Photo Shop. Due to the high compe-
tition and booming of Internet technologies, it is common that shops for devel-
opment and printing of photographs (and accompanying services) employ web
services for remote placing orders. Customers (individual or other shops) can
use a simple service to place orders without having to personally come to the
shop. Table II shows the description of the interaction between two services: (1)
Customer and (2) Photo Shop. The Customer service employs an on-line photo
ordering service, while the Photo Shop service prints and delivers ordered prod-
ucts.

Instead of following an explicitly specified order of service activities (from
Table II), the two parties obey to several constraints that define the global level
of service interaction (choreography), as presented in Table III:

Each of the parties can employ a local service model by their own pref-
erence, as long as these models comply with the agreed choreography, that
is, with the agreed global constraints G1, G2, G3, G4, and G5 presented in
Table III. For example, the Photo Shop can implement its local process by the

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:10 • M. Montali et al.

Table IV. Local Photo Shop Constraints

L1. Shop local service will start with activity “open order.”
L2. Each printed (activity “print”) item will be delivered (activity “deliver”).
L3. The shop will “charge” administrative fixed costs even for empty orders.

constraints presented in Table IV or it can even employ a procedural process
model.

3.2 DecSerFlow Constraint Templates

A DecSerFlow model consists of activities and constraints that represent rules
to be followed while activities are executed. A constraint represents a relation
between activities. For example, constraint G3 represents a relation between
activities “photo”, “poster,” and “album” on one side and activity “deliver” on
the other side. This type of rule is called “succession,” and it specifies that some
activity “A” has to be followed by some activity “B,” and activity “B” cannot be ex-
ecuted before activity “A”. Constraint G2 between activities “photo” and “poster”
on one side and activity “print” on the other side is also a “succession.” One can
imagine that one type of constraint can occur in various models between various
activities. To support reusability of types of constraints, DecSerFlow language
consists of a set of constraint templates. A constraint template represents a type
of relation between activities that can be reused in various models to create con-
straints between activities. Each template has a unique name and consists of:
(1) a Linear Temporal Logic (LTL) formula that specifies the semantics and (2) a
graphical representation. LTL is a special type of logic that, in addition to clas-
sical logical operators, uses several temporal operators: always (�), eventually
(�), until (�) and next time (©) [Clarke et al. 1999]. When adding a constraint
to a model, one works with graphical representation of the template and the
underlying LTL formula remains hidden. Because of this, LTL expertise is not
required for the development of DecSerFlow models. Currently, there are more
than twenty DecSerFlow templates [van der Aalst and Pesic 2006], and tem-
plates can easily be added, removed or changed in DecSerFlow. Some of these
templates are shown in Table V.

Table V shows some of the DecSerFlow templates involving one or two ac-
tivities. Note that it is also possible to make DecSerFlow templates for three
or more activities. Some templates specify the minimal number of execution of
an activity. For example, templates “existence” and “existence 3” specify that
activity “A” has to be executed at least once and three times, and are graphically
represented with “1..*” and “3..*” above the activity, respectively. There are also
templates that specify the maximal number of executions of an activity. Tem-
plates “absence 2” and “absence 3” specify that activity “A” can be executed at
most once or two times and are graphically represented with “0..1” and “0..2”
above the activity, respectively. It is also possible to specify the exact number
of executions of an activity, e.g., exactly once or two times with templates “ex-
actly 1” or “exactly 2.” The “response” template specifies that if “A” is executed
then “B” has to be executed after “A,” and is denoted with a special line between
“A” and “B”. According to the “precedence” template, “B” can be executed only

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:11

Table V. Some DecSerFlow Templates

Name LTL Expression Graphical

existence(A) �(A)

existence 2(A) �(A ∧ ©(existence(A)))

existence 3(A) �(A ∧ ©(existence2(A)))

absence 2(A) ¬existence2(A)

absence 3(A) ¬existence3(A)

exactly 1(A) existence(A) ∧ absence2(A)

exactly 2(A) existence2(A) ∧ absence3(A)

response(A, B) �(A ⇒ �(B))

precedence(A, B) �(B) ⇒ ((¬B)�A)

succession(A, B) response(A, B) ∧ precedence(A, B)

neg response(A, B) �(A ⇒ ¬(�(B)))

responded existence(A, B) (�A) ⇒ (�B)

alternate response(A, B)
response(A, B)

∧�(A ⇒ ©(precedence(B, A))

chain response(A, B) �(A ⇒ ©(B))

after “A”. The “succession” template is a conjunction of templates “response”
and “precedence”. It is also possible to specify that “B” cannot be executed after
“A” with template “neg response.” The template “responded existence” speci-
fies that if “A” is executed then also “B” has to be executed before or after “A”,
thus without specifying in which order. The “alternate response” formula takes
the order of activities into account: in addition to the semantics of the “re-
sponse” template, it imposes interposition, that is, at least one target activity
has to be executed between each two executions of the source activity. Finally,
“chain response” specifies the most strict ordering relations by requiring that

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:12 • M. Montali et al.

the target activity must be executed immediately next to the source one. For
a complete description of all DecSerFlow constraints, see Appendix A, in the
online appendix, available in the ACM Digital Library.

It is worth noting that constraints are interpreted within a given case (or
choreography instance). As a consequence, negative relationships, such as the
absence or the negation response constraints, forbid the presence of a certain
activity within the same case in which the constraint has been triggered: other
cases are not affected.

Finally, note that LTL is not the only language that can be used for the spec-
ification the semantics of DecSerFlow templates. Other declarative languages
can be also used. Indeed, in this paper we show that declarative SCIFF is also
suitable for specifying the semantics of DecSerFlow templates. Moreover, other
types of logic can also be used. For example, Computation Tree Logic (CTL) is
another logic that can be used in DecSerFlow. Although LTL and CTL are sim-
ilar languages, each of them has some advantages over the other. For example,
there are some relationships that can be specified only in LTL or in CTL, but not
in both languages [Holzmann 2003]. However, so far, the debate about which
of these two languages is more expressive remains unsolved [Holzmann 2003].
Finally, we chose LTL for the specification of DecSerFlow models because we
were inspired by the so called LTL Checker plug-in in the process mining tool
ProM, which can be used for verification of past executions against properties
specified in LTL (the LTL Checker is described in more detail in Section 6.1.3
of this article).

3.3 DecSerFlow Models

DecSerFlow models consists of activities and constraints. Constraints represent
relationships between activities and are created from DecSerFlow templates.
DecSerFlow models can be used both for global models of choreographies and
local models of services. In this section we present two DecSerFlow models: one
for the global choreography model and one for the local model of the Photo Shop
service.

3.3.1 Global Choreography Model. Figure 3 shows a global DecSerFlow
model with agreed-upon choreography constraints G1, G2, G3, G4, and G5 (cf.
Table III) between a customer and the shop.2 Each constraint in this model
originates from a template: the constraint inherits its name, semantics and
graphical representation from its template. However, a constraint assigns “real”
activities from a model to template’s parameters. For example, the “precedence”
constraint replaces parameter “A” from the “precedence” template with activity
“deliver” and parameter “B” with activity “receive.”

Constraint “succession” between activities “register” and “open order” (G1)
specifies that each alternation of customer data will be registered in the shop
and the shop cannot open orders before the customer executes activity “regis-
ter.” When this constraint is created, the activities “register” and “open order”

2Note that, for the purpose of the example, orders of different items (photos, albums, and posters)
have been represented as different activities.

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:13

Fig. 3. Global choreography DecSerFlow model.

replace parameters “A” and “B” in the template formula presented in Table V:

succession(register, open order)
= response(register, open order) ∧ precedence(register,open order)
= (�(register ⇒ �(open order))) ∧ (�(open order) ⇒ ((¬open order)�register)).

Note that this constraint (and its template) allows multiple executions of activi-
ties “register” and “open order” and also (multiple) executions of other activities
between them. For example, this model allows a scenario where the user first
“registers” data and then soon executes this activity again to alter data, while
the shop executes activity “open order” only once after the second execution of
the activity “register.”

Template “succession” is also used for the to constraints representing rules
G2 and G3. Unlike the previous constraint (G1) that utilizes only one activity
(i.e., “register”) as the first parameter (i.e, “A”) in the template, G2 and G3 use
two and three activities, respectively. This means that G2 and G3 branch param-
eter “A” of the succession on more activities. When a parameter is branched
on several activities, then it is replaced by disjunction of these activities in
the constraint formula. Therefore, the formula for the “succession” constraint
between activities “photo”, “poster” and “print” (G2) is:

succession(photo ∨ poster, print)
= response(photo ∨ poster, print) ∧ precedence(photo ∨ poster, print)
= ((�print) ⇒ ((¬print)�(photo ∨ poster))) ∧ �((photo ∨ poster) ⇒ (�print)).

This constraint specifies that the shop cannot execute activity “print” before the
customer executes activity “photo” or activity “poster” and that after every time
activities “photo” or “poster” are executed, shop eventually executes activity
“print”. This constraint allows, for example, situations where photos are ordered
and printed and then posters are ordered and printed. It also allows situations
where both photos and posters are first ordered and then they are printed at
the same time.

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:14 • M. Montali et al.

Similarly, the “succession” constraint between activities “photo,” “poster,”
“album,” and “deliver” (G3) specifies that each execution of activities “photo,”
“poster” or “album” is eventually followed by at least one execution of activity
“deliver.” Also, activity “deliver” can be executed only after at least one of the
activities “photo,” “poster,” or “album” was executed. With this constraint, the
shop can first collect orders for photos, posters and albums and then deliver
them at once. However, it is also possible to immediately deliver each of the
orders as soon as it is placed.

The “precedence” constraint between activities “receive” and “deliver” (G4)
prevents the execution of activity “receive” before the execution of activity “de-
liver.” In other words, customer can execute activity “receive” only after the
first execution of activity “deliver.” An example of a scenario allowed by this
constraint is when two packages were sent in one delivery and the customer
receives them separately (e.g., one get lost in the postal system and arrives
three days later).

The last constraint is the “responded existence” constraint between activities
“charge” and “pay.” It makes sure that customer executes activity “pay” when
the shop executes activity “charge” (G5). It is possible that the payment is done
before activity “charge” takes place, for example, if the customer payed with a
credit card immediately after ordering, and the shop executed activity “charge”
only after all products were delivered.

Note that, although this is not the case with the model in Figure 3, Dec-
SerFlow constraints can be conditional. Conditions on constraints are logical
expressions involving instance data elements. For example, a constrain can be
valid (interacting parties should fulfill the constraint) only if “price > 1000”.
Because data are not directly involved in constraints (as, e.g., activities are) but
only in conditions, LTL representation of DecSerFlow covers only partially the
perspective of instance data.

The DecSerFlow model in Figure 3 shows global constraints as rules that all
parties have to follow in the choreography regardless their local service models.
Because of the declarative nature of DecSerFlow constraints, it is possible to
employ various local models for both parties as long as they comply to such a
global choreography model.

3.3.2 Local Shop Model. Besides for specification of global choreography
models, DecSerFlow can be used to specify local models of services. Because
of the declarative nature of DecSerFlow, service models become flexible and
able to engage in a variety of choreographies. Figure 4 depicts two examples of
possible local models for the Photo Shop service.

Figure 4(a) shows a DecSerFlow model for the Photo Shop service based on
the local constraints as presented in Table IV. Constraint “init” implements rule
L1 and specifies that each service execution has to start with activity “register,”
but this activity can be executed multiple times at later stages of the execution.
Rule L2 is represented using a “response” constraint that makes sure that all
printed products are eventually delivered. It might be that all products are
printed first in several stages (several executions of activity “print”) and then
delivered at once. It is also possible that products are delivered immediately

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:15

Fig. 4. Two examples of local shop models.

after they are printed, without waiting for other products to be printed (e.g.,
some products are delivered to home address via mail and a large poster has to
be picked up personally in the shop). Finally, constraint “1..*” makes sure that
the shop will execute activity “charge” at least once, even if no delivery has been
made and only fixed administrative costs are charged (L3). Activity “charge” can
be executed multiple times in the shop process if necessary to charge part by
part of the order (e.g., one part from the credit cart for photos and other in the
shop when the large poster is picked up).

The local shop model presented in Figure 4(a) is compliant with the global
choreography model in Figure 3. Moreover, because of the declarative nature
of the global model, this model is flexible enough to allow for many other local
models of involved parties. For example, Figure 4(b) shows a DecSerFlow model
of another shop which does not charge fixed costs for empty services (but only
deliveries). This local model can also join the choreography in Figure 3.

4. THE SCIFF FRAMEWORK

SCIFF [Alberti et al. 2008] is a logic-based framework aimed at specify-
ing global interaction protocols (e.g. a service choreography) in a declara-
tive fashion as well as providing support for performing different verification
tasks.

SCIFF tackles interaction by adopting a social approach, as it is called in the
MAS community [Singh 2000]. Interaction is specified in a declarative manner
by only constraining the external observable behaviour of interacting entities,
without stating any assumption on their internal architecture and, thus,
supporting heterogeneity. Moreover, as in DecSerFlow the adopted perspective
is open, that is, interacting entities can freely behave where not explicitly
constrained.

The fundamental concepts used by SCIFF to specify such interaction are
(i) observable and relevant events which occur at execution time, (ii) expecta-
tions about further events and courses of interaction and (iii) (Social) Integrity
Constraints which allow the user to constrain the global interaction.

4.1 Events, Happened Events, and Expected Events

Deciding what has to be considered an event strictly depends on the application
domain. Furthermore, even if the application domain is fixed, there could be

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:16 • M. Montali et al.

several different notions of events, because of the assumed perspective, the
granularity, and so on.

The SCIFF language completely abstracts from the problem of deciding
“what is an event,” and rather lets the developers decide which are the im-
portant events for modeling the domain, at the desired level. For example, in a
business context, an event could be the fact that some atomic activity has been
performed

performed(Activity, Originator, InputData, OutputData).

Happened events are represented as an atom

H(Event, Time),

where Event is a Term and Time is an integer, representing the discrete time
point at which the event happened. HAP is the set of all the events that hap-
pened during the execution. Together, these events form a log (or execution
trace).

Beside the explicit representation of “what” happened and “when,” it is pos-
sible to explicitly represent also “what” is expected, and “when” it is expected
to happen. The notion of expectation is used to represent the (un)desired course
of interaction, and plays a key role when defining interaction protocols, chore-
ographies, and more in general any dynamically evolving process: it is quite
natural, in fact, to think of such processes in terms of rules of the form “if A
happened, then B is expected (not) to happen.”

In agreement with DecSerFlow, SCIFF pays particular attention to the open-
ness of interaction; this means that the prohibition of a certain event should be
explicitly expressed in the model and this is the reason why SCIFF supports
also the concept of negative expectation (i.e., of what is expected not to happen).

Positive expectations about events come with form

E(Event, Time),

where Event and Time can be variables, or they could be grounded to a partic-
ular term/value. Constraints can be specified over each variable; for example
Time > 10 states that the expectation is about an event to happen at a time
greater than 10 (hence the event is expected to happen after the time instant
10).

Conversely, negative expectations about events come with form

EN(Event, Time).

Generally speaking, quantification of the variables inside happened events
and positive/negative expectations follows their intuitive meaning: an hap-
pened event represents a “class” of possible occurring events, and therefore
variables used in a happened event are universally quantified. For example,

H(performed(deliver, Originator), Td)∧Td > 10

matches with any execution of the activity “deliver” at a time greater than 10
time units, performed by a whatsoever Originator. Positive expectations are

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:17

Table VI. Syntax of Integrity Constraints (ICS) and the
Knowledge Base (KB)

ExtLiteral ::= Literal | Exp | Constraint
Exp ::= E(Event, Time) | EN(Event, Time)

HEvent ::= H(Event, Time)
Event ::= Term
ICS ::= [IC]�

IC ::= Body→Head
Bod y ::= (HEvent | Exp | true) [∧ BodyLiteral]�

BodyLiteral ::= HEvent | ExtLiteral
Head ::= HeadDisjunct [∨HeadDisjunct]� | false

HeadDisjunct ::= ExtLiteral [∧ExtLiteral]�

KB ::= [Clause]�

Clause ::= CHead←CBody
CHead ::= Atom
CBody ::= ExtLiteral [∧ ExtLiteral]� | true

existentially quantified: an expectation is fufilled when one single matching
event indeed happens; hence, specifying

E(performed(deliver, Originator), Td)∧Td > 10

means that there should exists an Originator which performs activity “de-
liver” at a time greater than 10. Finally, negative expectations are universally
quantified, since they specify what is forbidden and when;

EN(performed(deliver, Originator), Td)∧Td > 10

means that nobody can perform the activity “deliver” at any time greater than
10.

For a complete description of variables quantification, the interested reader
may refer to Alberti et al. [2008].

4.2 Social Integrity Constraints

Social Integrity Constraints (ICS) are rules used to relate happened events and
expectations. They allow the user to constrain global interaction, given some
previous situation that can be represented in terms of happened events.

They are represented as forward rules of the form Body →Head, where Body
can contain literals and (conjunctions of happened and expected) events, and
Head can contain (disjunctions of) conjunctions of expectations.

In Table VI we show the definition of a subset of the grammar (for a complete
description, see Alberti et al. [2008]), where Atom and Term have the usual
meaning in Logic Programming [Lloyd 1987] and Constraint is interpreted as
in Constraint Logic Programming (CLP) [Jaffar and Maher 1994].

CLP constraints and Prolog predicates can be used to impose conditions or
restrictions on each variable that occurs in happened events and expectations.
For example, time conditions might define orderings between messages, or en-
force deadlines.

Definition of such predicates and of all “static” background knowledge
about interaction (i.e., information independent from specific executions) is

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:18 • M. Montali et al.

formalized inside a knowledge base KB, which completes the definition of In-
tegrity Constraints. Here we could specify roles descriptions, list of participants,
conditions on data, etc. KB is expressed in the form of clauses (a logic program);
clauses may contain in their body expectations about the behaviour of partici-
pants, defined literals, and constraints (see Table VI).

Example 4.1. A rule like

“If a premium customer pays for an item by credit card, then the
seller should answer within 10 minutes by delivering a corresponding
receipt, or by communicating a payment failure.”

can be translated in a straightforward manner, for example in the corresponding
rule (supposing that times are expressed in minutes):

H(pay(Customer, Seller, Item, credit card), Tp)

∧premium customer(Customer, Seller)

→E(deliver(Seller, Customer, receipt(Item, Info)), Td)∧Td > Tp∧Td < Tp + 10

∨E(tell(Seller, Customer, failure, Reason), Tf)∧Tf > Tp∧Tf < Tp + 10.

(1)

where premium customer(Customer, Seller) is used to represent whether
Customer is actually a premium one.

To express mutual exclusion between delivery and failure communication,
we could also add a rule like

H(deliver(Seller,Customer,receipt(Item,Info)), Td)

→EN(tell(Seller,Customer,failure,Reason), Tf).
(2)

and vice versa.3

In the following, we show that DecSerFlow can be suitably mapped onto a
SCIFF specification (see Section 5), and we exploit its operational counterpart
(in terms of the SCIFF proof procedure) to perform different verification tasks
(see Section 6.2).

5. MAPPING DECSERFLOW ONTO THE SCIFF FRAMEWORK

All the different DecSerFlow formulas can be intuitively mapped onto SCIFF
Integrity Constraints. More specifically, we now introduce the mapping of ba-
sic DecSerFlow formulas, and then discuss how the expressive power of the
SCIFF language could be used to extend DecSerFlow with explicit temporal
constraints, such as delays and deadlines, by maintaining a complete valid un-
derlying semantics in SCIFF. Finally, we summarize how a specific DecSerFlow
diagram could be mapped onto SCIFF, by directly combining the formalization
of template formulas with a specific knowledge representing the diagram.

5.1 Formalization of Activities

As pointed out in Section 4.1, SCIFF completely abstracts from what has to be
considered as an observable and relevant event inside the application domain.

3Note that such rules model the “not coexistence” formula in DecSerFlow.

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:19

To formalize DecSerFlow, we adopt an atomic model for activities, mapping
a whatsoever activity execution to an Event of the form performed(Activity).
Thus, notation H(performed(buy item), 18) means that the buy item activity
has been executed at time 18. If also the originator and input/output data have
to be considered, we could simply extend the representation as follows:

performed(Activity, Originator, InputData, OutputData).

It is worth noting that, in principle, a nonatomic model of activities could be
seamlessly supported, by mapping the start and completion of each activity to
events.

5.2 Mapping of DecSerFlow Constraints

Table VII introduces the mapping of some DecSerFlow formulas onto SCIFF
Let us consider first unary formulas. The “absence N” formula leads to the

generation of a negative expectation about the execution of the involved ac-
tivity, after N different executions of the same activity have already occurred.
Instead, the “existence N” one states that N different execution of the activity
are expected to happen. Since SCIFF adopts an explicit notion of time, the dif-
ference between expectations about the same activity is modeled as a difference
between the corresponding execution times.

The SCIFF representations of the “absence” and the “existence N” formulas
do not have any triggering condition (i.e., their body do not contain happened
events): the involved expectations are always hypothesized and should always
be fulfilled, independently from the course of interaction.

The same holds for the DecSerFlow “substitution” formula, which specifies
that at least one of the involved activities should be executed. The substitution
between “A” and “B” is mapped onto SCIFF as follows:

true→E(performed(A), TA)∨E(performed(B), TB).

To express that “A” is expected to be executed exactly N times, it is possi-
ble to combine together the “absence N” and the “existence N” formulas about
“A.” The former is indeed satisfied when N executions of “A” happened; but
these N happened events trigger the latter, which forbids further executions
of “A.”

The mapping of relation formulas has a more fixed structure. The body of
each Integrity Constraint is constituted in this case by the happened event
that corresponds to the formula’s source; in fact, each DecSerFlow relation is
triggered when its source activity is performed.

While the LTL formalization implicitly models concepts like before and af-
ter by exploiting temporal modalities, SCIFF specifies them by explicitly con-
straining time variables, i.e. by adopting a point algebra [Vilain et al. 1990]
and exploiting the underlying CLP solver; hence, to formalize the “response”
formula SCIFF states that if the source activity “A” happens at time “TA,” then
the target activity B is expected to happen at a time “TB > TA.” The “prece-
dence” version of each DecSerFlow relation is therefore formalized in the same
way as the “response” one, except from the fact that temporal constraints are
inverted.

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:20 • M. Montali et al.

Table VII. Mapping of Some DecSerFlow Formulas onto SCIFF

Name Integrity Constraint Graphical

existence(A) true→E(performed(A), T)

existence N (A)

true

→
N∧

i=1

(
E(performed(A), Ti) ∧ Ti > Ti−1

)

absence(A) true→EN(performed(A), T)

absence N + 1(A)

N∧
i=1

(
H(performed(A), Ti) ∧ Ti > Ti−1

)

→EN(performed(A), T)∧T > TN

exactly N (A) existenceN (A) ∧ absenceN + 1(A)

response(A, B)
H(performed(A), TA)

→E(performed(B), TB)∧TB > TA.

precedence(A, B)
H(performed(B), TB)

→E(performed(A), TA)∧TA < TB.

succession(A, B) response(A, B) ∧ precedence(A, B)

neg response(A, B)
H(performed(A), TA)

→EN(performed(B), TB)∧TB > TA.

responded existence(A, B)
H(performed(A), TA)

→E(performed(B), TB).

alternate response(A, B)

response(A, B)∧
H(performed(A), TA)

∧H(performed(A), TA2)∧TA2 > TA

→E(performed(B), TB)

∧TB > TA∧TB < TA2.

chain response(A, B)

H(performed(A), TA)

→E(performed(B), TB)∧TB > TA

∧EN(performed(X), TX)

∧TX > TA∧TX < TB.

Formalization of “alternate” formulas imposes, in addition to normal “re-
sponse”/ “precedence” behaviour, the interposition between activities; closely
following the natural language description, interposition is expressed by stat-
ing that between two executions of the source activity the target activity must
be performed at least once.

The “chain response” formula is instead formalized by applying the “re-
sponse” rule and by forbidding all events between the execution of source and
target activities. In this way, we map the concept of next state in LTL with
the one of first next time at which some new activity is performed (and, in
the “chain response” case, such a new activity must be the target one). This
is a proper formalization when execution times may be explicitly constrained,

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:21

and this is one of the added feature that SCIFF provides to DecSerFlow (see
Section 5.4).

Finally, it is worth noting that mapping of negation formulas resembles very
closely the one of relation formulas. The main obvious difference is that while
relation formulas specifies what should be done, negation formulas specifies
what is forbidden, hence their formalization substitutes the concept of positive
expectation with the the one of negative expectation.

5.3 Branching Formulas

For the sake of simplicity, in the previous section we have limited our mapping
to binary relation and negation formulas. However, SCIFF is able to capture
also branching formulas, that is, relation and negation formulas which envis-
age more than two activities. As sketched in section 3.2, the presence of n
source or target activities is interpreted by DecSerFlow in a disjunctive man-
ner. More specifically, when n source activities “A1”,. . . ,“An” are used, then the
formula should be satisfied whenever “A1” or “A2” or . . . or “An” is executed;
hence, modeling a formula with disjunctive sources is a shortcut for apply-
ing the formula on each source activity. The intended meaning can then be
easily captured by replicating the SCIFF formalization for each single source
activity. The presence of n target activities means instead that the formula
is satisfiable in different ways, that is, it is true whenever it is satisfied at
least by one of the target activities. Hence, the formalization of a formula
with disjunctive targets can be expressed by considering disjunction of target
expectations (together with the corresponding temporal constraints) as rule’s
head.

Table VIII shows how such a formalization is applied to the case of a branch-
ing “responded existence” formula. It 4 tackles also the situation, not envisaged
by core DecSerFlow formulas, of a branching “responded existence” where tar-
get/source multiplicity is interpreted in a conjunctive manner. Such an inter-
pretation behaves in the opposite way w.r.t. the disjunctive one. A formula with
conjunct targets is fulfilled when it is true for all target activities, and hence
it can be formalized by replicating the corresponding Integrity Constraint for
each activity. A more complex case is the one in which the formula has conjunct
source activities: it should trigger only when all such activities are executed.
SCIFF is directly able to represent this feature: the corresponding rule will
have as body the conjunction of the involved happened events.

5.4 Extending DecSerFlow with Quantitative Temporal Constraints

Another interesting feature, due to SCIFF reasoning capabilities on content
data (and therefore also on execution times), is the possibility to extend the
basic DecSerFlow relation formulas (and the simple negation formulas, that is,
“negation response” and “negation precedence”) with quantitative information
over times, for example, to express delays and deadlines. Such an information
is used to reduce the validity of formula’s target time (or, in the negative case,

4But the same holds also for the other relation and negation formulas.

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:22 • M. Montali et al.

Table VIII. Formalization of a Branching “Responded Existence” Formula in SCIFF

Name Representation Equivalent Representation Formalization

responded existence

(A1∨A2, B)

H(performed(A1), TA)

→E(performed(B), TB).

H(performed(A2), TA)

→E(performed(B), TB).

responded existence

(A, B1∨B2)

H(performed(A1), TA)

→E(performed(B1), TB1)

∨E(performed(B2), TB2).

responded existence

(A, B1∧B2)

H(performed(A), TA)

→E(performed(B1), TB).

H(performed(A), TA)

→E(performed(B2), TB).

responded existence

(A1∧A2, B)

H(performed(A1), TA2)

∧H(performed(A2), TA2)

→E(performed(B), TB).

to delimit the forbidding of the target), by defining either a lower or an upper
bound on it.

Let us modify, for example, the photo choreography shown in Figure 3 by
specifying also that “at most 24 hours can elapse between the order of a product
and the corresponding delivery.” By assuming that times are expressed in hours,
such a statement could be represented by augmenting the “succession” formula
between the three kinds of order and the “deliver” activity with the knowledge
about the deadline: the delivery time should be after the order one, but also
less than the order one plus 24 hours (and vice versa). This could be seamlessly
modeled in SCIFF by extending the formalization of the “succession” formula
as follows (for simplicity, in the formalization we consider only activities “photo”
and “deliver”):

H(performed(photo), Tp) → E(performed(deliver), Td)

∧Td > Tp∧Td < Tp + 24. (3)

H(performed(deliver), Td) → E(performed(photo), Tp)

∧Tp < Td ∧Tp > Td − 24. (4)

To graphically show these temporal extensions, a possible choice is to anno-
tate the different DecSerFlow constraints with a time interval marked off by
two nonnegative instants (Tmin and Tmax) which could be considered both in an
exclusive or inclusive manner. As usually, parentheses ((. . .)) are used to in-
dicate exclusion and square brackets ([. . .]) to indicate inclusion. The interval
is treated as relative with respect to the time at which the source happens, and

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:23

Fig. 5. Modification of the DecSerFlow running example by adding a temporal deadline.

is translated backward or forward with respect to it depending on the nature
of the formula (i.e. whether it is a “response” or “precedence” one).

For example, let us consider again the modified running example, denoting
with To and Td the execution times of one of the order activities and “deliver”
respectively. As shown in Figure 5, the annotation of the succession formula
to reflect the declared deadline should be (0, 24), since Td has to belong to the
time interval (Tp, Tp + 24) and, conversely, To to the interval (Td − 24, Td).

This intended meaning is clarified in Figure 6, which summarizes how tem-
poral annotations could be used to model different kind of quantitative temporal
relationships in case of simple relation formulas, namely “responded existence,”
“response,” and “precedence.”

Quantitative temporal constraints should not be interpreted as a way to force
the emission of a message from a certain service; indeed, when the focus is on the
choreography the concrete interacting services execute in an autonomous way,
and cannot be controlled. Instead, temporal constraints should be considered as
a mean to specify further requirements on the interacting service, contributing
to the definition of the QoS that must be guaranteed during the interaction:
compliant executions must not only respect the modeled constraints, but also
satisfy all the temporal requirements. For example, the deadline of 24 hours
introduced in Figure 5 could represent a QoS requirement of the customer, who
considers as good candidates to interact with only photo services able to deliver
within a maximum timespan. This information can be used either to statically
select “good” photo services, that is, photo services whose behavioral interface
respects (promises to respect) the desired temporal constraint, and to check at
runtime if the real behaviour effectively satisfies it. Identifying a violation may
be useful in this setting to alert the customer that the photo service is breaking
the choreographic contract.

5.5 Cross-Flow Constraints

Similarly to the approach presented in the previous section aimed at extending
DecSerFlow specifications with respect to the temporal dimension, also other
kinds of data may be modeled and constrained by SCIFF. For example, rule 1

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:24 • M. Montali et al.

Fig. 6. Temporal constraints templates and their corresponding representation on simple
formulas.

shows how sender, receiver, and content data of a message can be seamlessly
introduced and used. However, introducing data and their corresponding con-
straints at the graphical level of DecSerFlow is a complex task, mainly because
the right balance between expressiveness and usability must be found. Even if
the introduction of data and data-related conditions into the DecSerFlow no-
tation has not been yet investigated, in this Section we briefly sketch how the
possibility of dealing with data, provided by SCIFF, could be exploited to model
a wider range of constraints.

In particular, let us review the concept of negative relationship in DecSer-
Flow. Negative relationships deal with the forbidding of an activity under cer-
tain circumstances. For example, the “negation response” between two activities
“a” and “b” states that if “a” is executed, then “b” cannot be executed afterwards.
The forbidding of “b” is limited to the case inside which “a” has been executed:
each choreography instance follows its own evolution, independentely from the
other cases. However, there could be situations in which it would be desirable
that constraints span across multiple cases. An example of a cross-flow con-
straint woule be that if the seller detect that a certain customer C is behaving
in a fraudolent way, then it will never deliver anything to C in the future, even
in new instances of execution.

SCIFF is able to easily capture this requirement. A possible solution would
be associate each activity to a case identifier, modeled as a special datum. By

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:25

default, constraints operate within the same instance, and therefore a “normal”
negation response would be modeled as follows:

H(performed(a, Case), Ta)→EN(performed(b, Case), Tb)∧Tb > Ta.

Here, the same Case variable is shared by the events associated to “a” and
“b,” and therefore if “a” is executed inside case c1, then the forbidding of “b” will
be imposed only on the same c1.

Cross-flow constraints could be therefore modeled by simply introducing two
different case variables. For example, to model that “when a seller S detect that
a customer C is behaving in a fraudolent way, it will never deliver goods to C”
the following (extended) negation response could be adopted:

H(performed(fraud detected(C), S, Case), Tf)
→EN(performed(deliver(S, C, G), Case2), Td)∧Td > Ta.

Since two different variables Case and Case2 are used, when a fraud is de-
tected the forbidding is imposed on any case (Case included): negative expecta-
tion are universally quantified. Contrarywise, the same customer C is involved
in the body and in the head of the rule, and therefore the forbidding is im-
posed only on that C, without affecting the interaction between S and other
customers.

5.6 Explicit and Implicit Formalization of DecSerFlow Templates

We have shown the mapping of core DecSerFlow templates to SCIFF Integrity
Constraints. Obviously, for a given model these different rules will be grounded
on each specific instance, substituting involved activities with the concrete
names. In this respect, for each relationships of the model the formalization will
explicitly contain a corresponding set of rules. However, it is possible to gener-
alize the formalization of DecSerFlow formulas by directly representing tem-
plates. In this way, specific concrete rules are implictly model: the translation
of a specific DecSerFlow diagram simply reduces to compile a knowledge base
with a list of facts representing the different modeled formulas.

The general formalization is realized by adding as a first conjunct in the bod-
ies of rules a predicate which represents the corresponding relationship. This
predicate will match, for a given knowledge base, with all the facts representing
instances of such relationship.

To define relation and negation templates, we therefore adopt the following
pattern:

formula Type(Source, Target)
∧body→head.

(5)

It is worth noting that in the first line of all Integrity Constraints of this
kind, variables (i.e., activities) are universally quantified. This ensures that,
when considering a specific diagram, each rule will be replicated for all concrete
(ground) activities subject to the formula addressed by the rule.

An example which clarifies this approach in case of the “response” template
follows.

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:26 • M. Montali et al.

Example 5.1. Let us consider the general specification of the “response”
relation, which is formalized as follows:

response(A, B)
∧H(performed(A), TA)→E(performed(B), TB)∧TB > TA.

(6)

This rule may be read as follows: “for each A, for each B and for each TA, if
A and B are subject to a “response” formula and A is executed at time TA, then
there should exist a TB after TA at which B is expected to be performed”.

Let us now consider the simple following knowledge base:

response(ask_for_payment, pay).
response(receive_spam, delete_spam).

During execution, SCIFF will find two different matches for the “response”
formula, automatically grounding the above Integrity Constraint on each con-
crete relationship:

H(performed(ask for payment), TA)→E(performed(pay), TB)∧TB > TA.

H(performed(receive spam), TA)→E(performed(delete spam), TB)∧TB > TA.

5.7 Implicit and Explicit Mapping of the Running Example onto SCIFF

By using this kind of “implicit” formalization we have now the possibility to
completely separate the formalization of the general DecSerFlow templates
and the formalization of a specific model. In particular, DecSerFlow can be
mapped onto an abductive logic program whose Integrity Constraints are
the ones that implicitly formalize template formulas, and whose knowledge
base is used to capture the general background knowledge of DecSerFlow
concepts. For example, in such a knowledge base we will find that the “suc-
cession” formula is defined in terms of the “response” and the “precedence”
ones:

response(A, B) ← succession(A, B).
precedence(A, B) ← succession(A, B).

Then, as already pointed out in Example 5.1, formalizing a particular Dec-
SerFlow diagram just implies to (i) compile another knowledge base which maps
the specific diagram structure enumerating all its constraints as facts, and (ii)
use it together with the general specification.

Tables IX and X show how the running example depicted in Figure 3 can
be mapped onto SCIFF by respectively adopting explicit rules grounded on
the example or by exploiting the possibility of using the general mapping and
simply formalize the specific diagram as a list of facts. It is worth noting that,
exactly as shown in Example 5.1, matching the general implicit DecSerFlow
Integrity Constraints with the knowledge base of Table X will have the effect
of obtaining the rules shown in Table IX.

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:27

Table IX. Explicit SCIFF Mapping of the DecSerFlow Running Example

G1 a H(performed(register), Tr) → E(performed(open order), To) ∧ To > Tr .

b H(performed(open order), To) → E(performed(register), Tr) ∧ Tr < To.

G2 a H(performed(photo), Tph) → E(performed(print), Tpr) ∧ Tpr > Tph.

b H(performed(poster), Tpo) → E(performed(print), Tpr) ∧ Tpr > Tpo.

c H(performed(print), Tpr) → E(performed(photo), Tph)∨Tph < Tpr
∨ E(performed(poster), Tpo)∨Tpo < Tpr .

G3 a H(performed(photo), Tp) → E(performed(deliver), Td) ∧ Td > Tp.

b H(performed(poster), Tp) → E(performed(deliver), Td) ∧ Td > Tp.

c H(performed(album), Ta) → E(performed(deliver), Td) ∧ Td > Ta.

d H(performed(deliver), Td) → E(performed(photo), Tph) ∧ Tph < Td
∨ E(performed(poster), Tpo) ∧ Tpo < Td
∨ E(performed(album), Ta) ∧ Ta < Td .

G4 H(performed(receive), Tr) → E(performed(deliver), Td) ∧ Td < Tr .

G5 H(performed(char ge), Tc) → E(performed(pay), Tp).

Table X. Mapping the DecSerFlow Running
Example to a Simple Knowledge Base

G1 succession(register, open order).
G2 succession([photo, poster], print).
G3 succession([photo, poster, album], deliver).
G4 precedence(deliver, receive).
G5 responded existence(charge, pay).

6. ENACTMENT, VERIFICATION AND DYNAMIC CHANGE
OF DECSERFLOW MODELS

The LTL and SCIFF notations of DecSerFlow enables various verification tech-
niques and even enactment of DecSerFlow models. Through the combination
of DecSerFlow as a modeling language and the two underlying semantics with
their corresponding verification techniques, we aim to realize a comprehen-
sive framework for the specification, enactment, and verification of service
choreographies (see Figure 7). DECLARE [Pesic et al. 2007] 5 is a tool that
can be used to develop and execute models specified in DecSerFlow or any
other LTL based language. Although it is not implemented as a Web service
application, DECLARE can be used to experiment with templates and models
in order to better understand templates and the execution semantics of Dec-
SerFlow models. DECLARE uses the approach described in this section for the
execution, dynamic change and verification of DecSerFlow models.

6.1 LTL Enactment and Verification

The LTL mapping of DecSerFlow enables the computer-supported execution
of local models of participating services, verification of models, monitoring
(conformance-checking) of service execution and verification of composition in-
teroperability (i.e., can different models be combined into one composition).

6.1.1 Supporting Execution of DecSerFlow Models. While interacting
within a global choreography, each service should align its execution with its

5DECLARE can be downloaded from http://declare.sf.net.

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:28 • M. Montali et al.

Fig. 7. General schema of a framework for the specification and verification of service choreogra-
phies, and its possible realization by the conjunct use of DecSerFlow, LTL and SCIFF.

local model and the global choreography model. With respect to DecSerFlow,
this means that a completed interaction must satisfy the local model of in-
teracting services and the global choreography model. A DecSerFlow model is
satisfied if it is executed in such a way that all its constraints are satisfied at
the end of the execution. Some application can regulate a correct execution of
DecSerFlow models thanks to (1) the constraint semantics expressed with LTL
formulas and (2) the possibility of generating automaton that represents all
executions that satisfy an LTL formula. The desire to generate automata for
LTL formulas and to define algorithms for this purpose originates in the field
of model checking [Clarke et al. 1999; Gerth et al. 1996; Giannakopoulou and
Havelund 2001]. In this field, systems can be checked against certain proper-
ties specified in LTL using the generated automata. The computer-supported
regulation of a correct execution of DecSerFlow relies on the automaton gener-
ated from LTL specifications of constraints in the model (i.e., one automaton is
generated for a formula representing a conjunction of all constraints) [van der
Aalst and Pesic 2006]. Because it is generated for the conjunction of all con-
straints form a DecSerFlow model, such an automaton represents exactly all
correct executions of the model (i.e., all executions that satisfy all constraints)
[Clarke et al. 1999; Gerth et al. 1996; Giannakopoulou and Havelund 2001].
In other words, using this automaton, it is possible to, during execution, (1)
monitor the current state of the execution by monitoring the current state of
the automaton, and (2) precisely identify which activities can be executed next
given the current state of the automaton. Consider, for example, the “prece-
dence” DecSerFlow template. If a DecSerFlow model contains a “precedence”
constraint between two activities “deliver” and “receive” (e.g., Figure 3), then
the automaton created for this model will allow execution of “receive” only after
“deliver” is executed, as shown in Figure 8. The theory on automata and their
generation from LTL formulas is out of scope of this paper and we refer the
interested reader to [Clarke et al. 1999; Gerth et al. 1996; Giannakopoulou and
Havelund 2001].

Note that it is possible that a constraint (and a model) is temporarily violated
at some points of execution and satisfied at the end of execution. For example,

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:29

Fig. 8. Automaton for the LTL notation of constraint “precedence(deliver,receive)”.

Fig. 9. Automaton for the LTL notation of constraint “responded existence(charge,pay)”.

the “responded existence” template and a (local or global) model containing
a “responded existence” constraint between activities “charge” and “pay” (e.g.,
Figure 3). This constraint specifies that, if “charge” is executed, then “pay” must
also be executed before or after “charge”. As long as none of these two actives
is executed, the constraint and the model are satisfied. At the moment when
“charge” is executed for the first time, the constraint and the model become
temporarily violated. This is only a temporary violation because it is still possi-
ble to satisfy this constraint and the model in the future, by executing activity
“pay.” Indeed, this execution can be considered to be a correct execution only
after activity “pay” is executed, because only then the “responded existence”
and the model become satisfied. The automata generated from LTL specifica-
tions of each constraint and the conjunction of all constraints in the model can
be used to monitor states of constraints and the model. For example, Figure 9
shows the automaton created for constraint “responded existence(charge,pay).”
This automaton can indeed be used to monitor the state of this constraint: ex-
ecuting activity “charge” brings the automaton to a non-accepting (denoted by
a single border) state “S1,” and only executing activity “pay” again brings the
automaton to the accepting (denoted by a double border) state “S2.”

The automata generated for each constraint and the conjunction of all con-
straints in a model can be used to: (1) make sure that interacting activities
execute only activities that eventually lead to the satisfaction of their local
models and the global choreography model, and (2) provide feedback about the
current state of the interaction with respect to the satisfaction of local models
and the global choreography model and the satisfaction of each constraint from
these models (state of one constraint can be monitored using the automaton
generated for the LTL notation of that particular constraint).

Note that the word “execution” should not understood literarily when it
comes to Web services because it is not possible to enforce a certain execution

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:30 • M. Montali et al.

Fig. 10. Verification of DecSerFlow models.

of a service. Instead, the method described in this section could be used as a
guideline towards a deadlock-free execution. The automata generated from a
conjunction of LTL specifications of constraints ensures that deadlocks do not
occur. On the one hand, if activities of services are executed in a way allowed by
the automata, a deadlock will not occur. On the other hand, it the automaton
is not in an accepting state, interaction constraints are not satisfied and the
interaction cannot yet be successfully completed. Note that, enforcing an exe-
cution becomes even more unrealistic when it comes to timed constraints, that
is, constraints with deadlines. For example, it is not possible to enforce that a
service executes a task within five days.

6.1.2 Verifying Local and Global DecSerFlow Models. The risk of intro-
ducing errors in DecSerFlow models is high because it is hard to maintain an
overall understanding of many different constraints. Two types of errors can
occur in DecSerFlow models due to an unwanted combination of constraints:
dead activities and conflicts.

Figure 10(a) shows a composition of one global and two local models (cus-
tomer and shop) for the photo shop example. In this case, the customer does
not change the global choreography constraints. Due to two “succession” con-
straints in the global model, each ordered photo and poster will be printed in
the shop and delivered. However, the shop developed uses a local model that
contains a “not coexistence” constraint specifying that activities “print” and
“deliver” exclude each other. This means that the shop either prints or delivers
within one order, but never both. Therefore, if activities “photo” or “poster” are
executed the choreography cannot be successfully executed because it will not
be possible to satisfy the three constraints (i.e., two “succession” constraints
and the “not co-existence” constraint). Therefore, it will never be possible to
execute activities “photo” and “poster” in the customer service, i.e., these are
dead activities. Moreover, activity “print” is also a dead activity since it should
be executed after activities “photo” or “poster,” which are dead activities.

While it is still possible to execute choreography presented in Figure 10(a)
(with ordering albums or empty orders as only possibilities), the example pre-
sented in Figure 10(b) is not executable at all, that is, it contains a conflict; this
means that the DecSerFlow model is inconsistent. As described before, the local

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:31

Fig. 11. DECLARE reports the three dead activities of model depicted in Figure 10(a).

shop model handles only album orders (i.e., preventing executions of dead activ-
ities “photo” and “poster”) in the global choreography model. The local customer
model in Figure 10(b) imposes execution of activity “photo” via constraint “1..*”
which makes it impossible for this customer and shop to interact in this global
choreography model. The Conflict in the model in Figure 10(b) is caused by
the combination of four constraints: the “1..*” constraint, the two “succession”
constraints and the “not co-existence” constraint.

6.1.2.1 Detecting Dead Activities and Conflicts. Errors such as the ones just
described can easily be detected in DecSerFlow models using the automata
generated [Clarke et al. 1999; Gerth et al. 1996; Giannakopoulou and Havelund
2001] from constraints (cf. Section 6.1.1). To verify a combination of several
models (i.e., global model and two local models), an automaton is created for a
conjunction of all constraints in all models. The generated automata allow for all
possible execution traces of the DecSerFlow model at hand. Models are executed
by triggering activities via automaton transition, where each transition triggers
none, one or more activities. A dead activity is an activity that never appears
in any of the execution traces, i.e., there is no transition in the automaton that
allows this activity. A conflict is detected when the automata does not parse
any trace, that is, the automata does not contain any state or transition.

DecSerFlow models can be verified against dead activities and conflicts in
the DECLARE tool. For a full verification support, DECLARE not only detects
errors, but also reports the smallest subset of constraints that causes the error.
The achieve this, the tool verifies the conjunctions of smaller groups of con-
straints by searching through the power set of constraints. Figure 11 shows
the verification report generated by DECLARE for model in Figure 10(a): ac-
tivities “photo,” “poster,” and “print” are dead due to the combination of three
constraints.

6.1.2.2 Interoperability Verification. Errors discovered in verification can
imply four types of problems in interoperability of service compositions, as illus-
trated by Figure 12. First, local service models can be verified (cf. Figure 12(a)).
For example, if a conflict is found, the local model has to be fixed before being
employed in any choreography, that is, the local model cannot be employed in
any choreography. Second, a global choreography model may contain errors.
Global models with conflicts cannot be enacted by a set of parties (regardless of
the local models), as shown in Figure 12(b). Third, an error can be discovered
in the composition of a local model of one party and the global choreography

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:32 • M. Montali et al.

Fig. 12. Implications of errors in DecSerFlow models.

model (cf. Figure 12(c)). In this case, the party is not compatible with the global
choreography rules. Finally, Figure 12(d) shows that an error can be discov-
ered in the service composition, that is, local models are not compatible with
each other with respect to the global model. For example, if this is a conflict
error, then the two parties cannot join the choreography. Note that the model
presented in Figure 12(b) is an example of a composition where the book shop
and the print shop are not compatible with the global choreography model (cf.
Figure 12(d)).

6.1.3 Monitoring DecSerFlow Services. Besides for execution and verifica-
tion of models and choreographes, DecSerFlow can be used for service mon-
itoring (i.e., for conformance checking of completed service executions) using
the ProM (Process Mining) framework [van der Aalst et al. 2007; van der Aalst
et al. 2005]. The ProM framework is an open-source infrastructure for process
mining techniques. One of the more than 150 plug-ins offered by ProM is the
so-called LTL Checker [van der Aalst et al. 2005]. For each process instance,
LTL Checker determines whether an LTL expression holds or not, that is, given
an LTL expression all process instances are partitioned on two classes: compli-
ant and noncompliant. Because each DecSerFlow constraint is represented by
an LTL expression, it is possible to use the ProM LTL Checker to assess con-
formance of a DecSerFlow model in the context of a real log.

6.1.4 Dynamic Change of DecSerFlow Models. DecSerFlow models can be
changed dynamically, that is, while they are being executed, by adding and
removing activities and constraints. Note that it is not allowed to remove an
activity that is involved in a constraint. This problem can be solved in two
ways: (1) removing such an activity is rejected, or (2) the activity and all re-
lated constraints are removed. In this way, we prevent situations where a model
contains a constraints involving an activity that is not in the model. When it
comes to continuing the execution after a dynamic change, DecSerFlow uses the
following procedure. First, the automaton is created from a conjunction of all
constraints in the new model and attempt is made to ‘replay’ the current execu-
tion trace (i.e., a list of all executed activities) on this automaton. If this attempt
succeeds, the execution continues using the new automata. If the attempt fails,
this means that the current execution trace contradicts to the new model. In

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:33

this case the dynamic change is rejected and the execution resumes with the
old model. Note that the automata generated for DecSerFlow constraints al-
low for execution of activities that are not involved in constraints. Consider,
for example, the automaton for constraint “responded existence(charge,pay)”
shown in Figure 9. Although this constraint involves only activities “charge”
and “pay”, it allows execution of other activities. For example, transitions “ 	 pay”
and “	 char ge∧ 	 pay” allow execution of other activities. This is a useful feature
when it comes to dynamic change for two reasons. First, it is possible to remove
an activity even after it has been executed, because it will be possible to “replay”
the removed activity on the automaton. Second, adding a new activity means
that, from that moment, it becomes possible to execute it in the automaton.

6.2 SCIFF Verification

Beside the possibility of extending the DecSerFlow notation with data-related
and quantitative temporal constraints, mapping DecSerFlow to SCIFF enables
conformance checking, both at runtime or a posteriori, of service execution with
respect to a DecSerFlow diagram (maintaining a complete support even when
considering its extensions), and mining of DecSerFlow models starting from
a set of execution traces, previously labeled as compliant or not. Furthermore,
SCIFF has been extended to deal also with static verifications (interoperability,
discovery of conflicts and dead activities).

6.2.1 Abductive Declarative and Operational Semantics of the SCIFF
Framework. Within the logic programming setting, a typical approach is to
define both a declarative and operational semantics for logic programs (in our
specific case, for SCIFF interaction specifications). Roughly speaking, declar-
ative semantics aims at defining the “meaning” of what is specified, whereas
operational semantics describes a general-purpose algorithm capable of con-
cretely exploit the specification. The main advantages of such an approach are
that specifications are interpreted in a clear and intuitive way, and that it
is possible to prove soundness and completeness of the operational semantics
with respect to the declarative one, ensuring that its behavior really respect
the intended meaning.

In the SCIFF framework, declarative semantics of interaction specifications
is given in terms of an Abductive Logic Program (ALP), whereas the correspond-
ing operational semantics is given in terms of an abductive proof procedure
[Alberti et al. 2008], thought for performing different verification tasks.

In general, an ALP [Kakas et al. 1993] is a triple 〈P, A, IC〉, where P is a
logic program, A is a set of predicates named abducibles, and IC is a set of
Integrity Constraints. Roughly speaking, the role of P is to define predicates,
the role of A is to fill-in the parts of P which are unknown, and the role if IC
is to control the ways elements of A are hypothesised, or “abduced.”

In SCIFF, similarly to the general ALP setting, an interaction specification
S is defined by the triple:

S ≡ 〈KB, E , ICS〉,
where

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:34 • M. Montali et al.

—KB is the Social Knowledge Base, suitable for specifying the static knowledge
on interacting entities;

—E is the set of abducible predicates, namely positive expectations (functor E)
and negative expectations (functor EN);

—ICS is the set of Social Integrity Constraints, used to specify the rules of
interaction.

Reasoning in abductive logic programming is usually goal-directed (being G
a goal), and it accounts to find an abductive explanation � built from predicates
in A such that P ∪ � |= G and P ∪ � |= IC. In the past, a number of proof-
procedures have been proposed to compute � ([Kakas and Mancarella 1990;
Fung and Kowalski 1997; Denecker and Schreye 1998]. In SCIFF, the major
difference is that not only the logic program has to be taken into account, but
also the (dynamic) set of occuring happened events (which incrementally com-
pose the execution trace). Furthermore, when modeling DecSerFlow constraints
in SCIFF the goal is not directly exploited; actually, we could consider as goal
the conjunction of “existence N,” “exactly N,” “absence,” and “mutual substitu-
tion” formulas inside the model: they directly impose expectations about (not)
performing certain activities indepentendly from executions (indeed, their for-
malization consists in rules with a true body).

The idea we exploited in the SCIFF framework is to adopt abduction to dy-
namically generate the expectations. Expectations are defined as abducibles,
and they are hypothesised by the SCIFF abductive proof procedure [Alberti
et al. 2008], that is, the proof procedure makes hypotheses about the expected
peers behavior. The set of abduced expectations must satisfy the Integrity Con-
straints that formalize the choreography.

6.2.2 Conformance Checking with SCIFF. As sketched in the previous sec-
tion, the main and original aim of the SCIFF framework was not only to provide
a suitable and rich language for describing global interactions, but also to equip
such a language with different verification capabilities.

The major innovation of SCIFF’s declarative semantics with respect to clas-
sical abductive frameworks is the concept of fulfillment, which defines in an
intuitive way the relationship between happened events and expectations and
makes SCIFF suitable for verification. In particular, SCIFF is thought to real-
ize the conformance checking task, namely to verify whether a set of interacting
entities behave accordingly to the specification.

The basic intuitive idea of conformance in SCIFF, which is indeed supported
both by a declarative and operational semantics, is to take into account the hy-
pothesized expectations and link them with the actual peers behavior, to check
whether happened events really adhere to expectations. In particular, a posi-
tive expectation requires a corresponding matching happened event, whereas
a negative expectation forbid the presence of a matching occurred event. When
this is the case, we say that the expectation is fulfilled.

Example 6.1. Let us consider the “time-extended” succession formula be-
tween “photo” and “deliver” activities shown in Figure 5, whose SCIFF (explicit)
formalization is described by Integrity Constraints (3) and (4).

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:35

Let us also consider the following execution trace:

H(performed(photo), 16).
H(performed(photo), 19).
H(performed(deliver), 30).

Each of the first two happened events matches with the body of (3), leading to
generate two expectations about the execution of the “deliver” activity, whereas
the third happened event triggers the “precedence” part of the “succession” for-
mula, generating a backward expectation about a previous execution of activity
“photo”:

EXP = { E(performed(deliver), Td)∧Td > 16∧Td < 40,
E(performed(deliver), Td ′)∧Td ′ > 19∧Td ′ < 43,
E(performed(photo), Tp)∧Tp < 30∧Tp > 6}

All the three expectations actually have a matching happened event in the ex-
ecution trace, which is therefore evaluated as conformant. In particular, the
SCIFF proof procedure will find two different solutions for fulfilling the expec-
tations: one with Td/30, Td ′/30, Tp/16 and one with the same unification for Td
and Td ′ but having Tp/19. Indeed, there are two different executions of activity
“photo” capable to satisfy the third expectation.

Let us now consider the same execution trace but containing the execution
of “deliver” at time 42. In this case, the history is evaluated as non conformant:
deadline about the delivery is not respected for the first execution of activity
“photo,” and the first expectation does not have any corresponding happened
event.

The formal definition of fulfillment follows the above described intuition.

Definition 6.2 (Fulfillment). Given an execution trace HAP, a set of expec-
tations EXP is fulfilled by HAP if and only if for all (ground) terms p:

∀E(p) ∈ EXP ⇒ H(p) ∈ HAP ∀EN(p) ∈ EXP ⇒ H(p) 	∈ HAP (7)

Otherwise, EXP is violated by HAP.
Starting from the concept of fulfillment, it is now possible to give a formal

definition of conformance.6

Definition 6.3 (Conformance). Given an execution trace HAP and an in-
teraction specification S, HAP is conformant to S if and only if there exists an
E-consistent7 abductive explanation EXP such that definition 6.2 holds.

Intuitively, conformance ensures that all positive expectations have indeed
a corresponding happened event, and that no forbidden event occurs.

6For the sake of simplicity, we have omitted the goal, which is considered to be true.
7A set of expectations EXP is E-consistent if and only if no event is expected to happen and not to
happen at the same time, i.e. if, for each (ground) term p:

{E(p), EN(p)} 	⊆ EXP

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:36 • M. Montali et al.

Fig. 13. Screenshot of the SOCS-SI tool.

The conformance checking task is concretely performed by the SCIFF proof
procedure, which has been proven sound and complete with respect to its declar-
ative semantics [Alberti et al. 2008]. The proof procedure is a transition system
which extends the well known IFF proof-procedure [Fung and Kowalski 1997],
by dealing with confirmation of hypothesized expectations and with dynamic
occurring happened events. The latter feature makes SCIFF able to monitor
the behavior of interacting entities both a posteriori, by analyzing a complete
execution trace of the interaction, or at runtime, by considering occurred events
as soon as they happen and waiting if expectations can be still confirmed.

The proof procedure has been wrapped into the SOCS-SI [Alberti et al. 2006]
tool, which is capable to accept different event sources and to visualize step-by-
step the status of the proof, showing pending, fulfilled and violated expectations.
SOCS-SI typically works in a runtime setting: it is able to dynamically acquire
happened events and, by exploiting the proof procedure, to raise violations as
soon as they happen. Figure 13 shows a screenshot of the tool, dealing with the
violation of Example 6.1.

Furthermore, SCIFF is being embedded into a ProM plug-in called SCIFF-
Checker, to the aim of classifying process instance with respect to declarative
SCIFF rules, in the style of LTL Checker.

6.2.3 Interoperability and Detection of Conflicts and Dead Activities in
SCIFF. The SCIFF proof procedure has been extended to deal also with veri-
fication of properties (g-SCIFF [Alberti et al. 2005]); the term “property” means
in this context a specific domain dependent property. The basic underlying idea
of g-SCIFF is to consider the desired property as the initial goal, and to apply
fulfillment of a positive expectation (see Definition 6.2) by checking whether it
already has a matching happened event and, if it is not the case, by “hypothe-
sizing” it. Hence, it operates by simulating a sequence of intensional happened
events which fulfill the positive expectations and by checking that negative

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:37

expectations are not violated. Simulated events are intensional in the sense
that they are partially specified (i.e., they may contain variables). If the given
property can be actually satisfied, g-SCIFF also returns as proof a partially
specified execution trace capable to fulfill both the Integrity Constraints and
the property.

The problem of detecting a conflict in a DecSerFlow model can be then treated
as the problem of finding a successfull g-SCIFF derivation for the goal true, by
considering the Integrity Constraints which formalize the model. If it is not the
case, then there does not exist any possible execution trace for such a model,
and therefore it is a conflicting one.

Example 6.4. Let us consider the DecSerFlow model of Figure 10(b). Its cor-
responding (explicit) SCIFF formalization is given by the Integrity Constraints
shown in Table IX, together with the following rules (for the sake of simplicity,
we omit the “init” constraint):

true → E(performed(photo), Tph). (8)
H(performed(print), Tp) → EN(performed(deliver), Td). (9)

H(performed(deliver), Td) → EN(performed(print), Tp). (10)

Rule 8 is used to model the “existence” of at least one “photo” activity, whereas
rules 9 and 10 impose the “not coexistence” between “print” and “deliver.”

To verify if the model contains conflicts, we simply invoke g-SCIFF and check
if such a proof fails. The proof procedure starts by applying rule 8 (since its body
is true), generating an expectation abouth the execution of activity “photo” (at
any time). Such an expectation becomes an happened event, which triggers
Integrity Constraints G2a and G3a, generating two forward expectations about
activities “print” and “deliver.” g-SCIFF now selects the expectation about print-
ing the photo, transforming it to an happened event. Such an event matches
with the antecedent of rules G2c and (9). Let us consider now the latter rule,
which leads to generate a negative expectation about the delivery; by explicitly
showing only the pending expectations (i.e., expectations that still do not have
a matching happened event) the status of the proof is the following:

HAP = {H(performed(photo), Tph), H(performed(print), Tp)∧Tp > Tph}
EXP = {E(performed(deliver), Td)∧Td > Tph, EN(performed(deliver), Td ′)}
The set EXP is not E-consistent: after time Tph, the “deliver” activity is

expected to happen and not to happen at the same time. As a consequence, it
is impossible to fulfill the delivery expectation, and no successfull proof can be
found by g-SCIFF. This attests that actually a conflict is present in the model.

Detecting dead activities is a very similar task. To verify whether an activity
is dead or not, it is sufficient to run g-SCIFF by giving as goal the execution
of the activity, at any time. Failure of the proof means that it is impossible
to perform the activity under study, namely that it is actually a dead activity.
From the DecSerFlow point of view, giving as goal the execution of an activity
at any time can be modeled by attaching to the activity a “1..*” cardinality
constraint. Hence, proving that an activity is dead is the same as proving that

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:38 • M. Montali et al.

Algorithm 1. Detection of dead activities with g-SCIFF

Input: SM , SCIFF formalization of the DecSerFlow model M
Output: D, the set of dead activities
D ← ∅
foreach Activity A ∈ M do

S ′
M ← SM ∪ existence(A);

if call(g-SCIFF(S ′
M)) fails then

D ← D ∪ A;
end

end

the DecSerFlow model, augmented with such an existence formula, contains
conflicts.

As an example, let us consider the DecSerFlow diagram of Figure 10(a) and
the task of verifying that activity “photo” is dead. By adding the “1..*” cardinal-
ity constraint on the “photo” activity, we obtain (except for the “init” constraint
on activity “open order”) the model of Figure 10(b), which has been proven to
contain conflicts in example 6.4; therefore, “photo” is a dead activity.

Algorithm 1 summarizes how the discovery of dead activities can be ad-
dressed by g-SCIFF.

Let us finally deal with the interoperability problem. There are many dif-
ferent definitions of interoperability [Chopra and Singh 2006; Baldoni et al.
2006], which mainly differ in the “degree of similarity” they require between
the local and the global models. DecSerFlow leads to the definition of a very
weak interoperability: as described in Section 6.1.2 a local model is considered
interoperable with respect to a global one if the composition of the two models
admits at least one execution trace, that is, if the composition is conflicts free. It
is clear that such a verification does not ensure that the two models completely
overlap, nor that if a local model is interoperable with respect to a global model
it will correctly comply with any other local model which has been proven in-
teroperable (see Figure 12). Adopting a proof-theoretic approach like the one
of SCIFF leads to face this kind of weak interoperability by simply composing
the formalizations of models under study (i.e., adopting the “implicit” approach,
by joining the knowledge bases of each specific model) and using g-SCIFF for
testing conflict freeness on the composite model.

6.2.4 Mining of DecSerFlow Specifications by UsingSCIFF as an Intermedi-
ate Language. An important advantage of adopting a logic programming rep-
resentation (likeSCIFF), relies in the possibility to apply on it all the algorithms
and techniques developed within the logic programming setting. More specifi-
cally, it makes possible to apply Inductive Logic Programming (ILP) [Muggleton
and De Raedt 1994] techniques for learning declarative models from examples
and background knowledge.

Such a possibility has been concretely exploited by adapting the system ICL
[De Raedt and Van Laer 1995] to the problem of learning SCIFF constraints.
Lamma et al. [2007] cast the problem of mining declarative specifications of

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:39

Fig. 14. The “mining-checking” cycle, in which SCIFF is used as the source/target language and
DecSerFlow as the representation notation.

processes as a learning from interpretation problem. In particular, they consider
the discriminant problem that is solved by ICL, which starts by considering a set
of positive and negative interpretations and aims to learn a clausal theory that
discriminates the two. In their case they assume to have a set of compliant and
noncompliant process execution traces and find a SCIFF theory that accurately
classifies a new trace of the process as compliant or not.

This learning process has been extended in Lamma et al. [2007] to learn
DecSerFlow models. Here, the mapping of DecSerFlow onto SCIFF presented
in this work is exploited in the opposite way: some of the learned Integrity Con-
straints can be in fact considered as the SCIFF representation of DecSerFlow
formulas, especially if the language bias of the learning algorithm is oppor-
tunely tuned. In this context, SCIFF is therefore used as an intermediate lan-
guage for learning DecSerFlow models starting from a set of execution traces,
previously labeled as compliant or not. A tool called DecMiner is actually be-
ing implemented inside the ProM framework to cover all the phases of such a
mining process.

6.2.5 The Mining-Checking Cycle. Having shown the feasibility of using
the SCIFF language as the core element of both a framework for conformance
checking and an algorithm to mine declarative process models, we may put to-
gether the two settings to realize a “mining-checking” cycle, shown in Figure 14.

From one side we may start from a set of positive and negative execution
traces and apply DecMiner to mine a SCIFF theory; such a theory can then
be partially rendered in a graphical way by applying the inverse mapping onto
DecSerFlow, and used in conjunct with the SCIFF proof procedure to classify
new execution traces.

From the other side, the modeler may design a DecSerFlow diagram for
classifying a set of process execution traces; the actual classification can be
performed by automatically mapping the diagram onto SCIFF and checking
conformance of the different logs. The classified logs may be finally used as input
of DecMiner, to induce a new SCIFF theory (and thus a new DecSerFlow model);
if the language bias is opportunely tuned, such a model could be noticeably

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:40 • M. Montali et al.

Table XI. Some Cognitive Dimensions

Closeness of mapping Closeness of representation to domain
Abstraction Types and availability of abstraction mechanisms
Consistency Similar semantics are expressed in similar syntactic forms

Hidden dependencies Important links between entities are not visible
Premature commitment Constraints on the order of doing things
Progressive evaluation Work-to-date can be checked at any time

different from the initial one, hence expressing the same classification criterion
by shifting the point of view.

7. THE FRAMEWORK IN USE

Having introduced the main components of the service choreograpies frame-
work sketched in Figure 7, an important issue is to evaluate its usability, for
what concerns both the DecSerFlow language itself and performances of the
verification tasks. We will try to briefly assess the usability of the language by
considering the Cognitive Dimensions framework [Green 1989], and then eval-
uate verification techniques by means of some benchmarks and summarizing
current available tools.

7.1 Usability of the Language

Cognitive Dimensions [Green 1989] are a useful tool to subjectively assess
the usability of languages and notations in an easy-to-comprehend way. They
have been applied to a broad range of programming languages and environ-
ments/editors, also visual [Green and Petre 1996]. Although a deep and ex-
tensive analysis of DecSerFlow from the end-users viewpoint has not yet been
carried out, we will try to briefly review its usability in terms of some Cognitive
Dimensions (whose definition is briefly listed in Table XI8).

The main strength of DecSerFlow relies on the closeness of mapping be-
tween the notation and the problem of capture choreography constraints: it
provides various expressive abstractions to constrain activities execution in
many different ways, overcoming both over-constraining and over-specification
issues. DecSerFlow diagrams can range from classical procedural models (by
only using the chain succession formula, which is the DecSerFlow counterpart of
the sequence relationship in procedural languages) to purely declarative/loosely
coupled ones (e.g., by imposing constraints such as the responded presence, or
by modeling the forbidding of activities with negation formulas). Such a flexi-
bility can be summarized by stating that DecSerFlow follows an open approach:
interacting services can freely behave where not explicitly constrained.9 In our
view, such an approach is of key importance when modeling service choreogra-
phies, which are open in nature: they should impose only the strictly necessary
rules of collaboration, allowing as much as possible different concrete services to

8See http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf.
9Note that, indeed, the “chain succession” expresses a “closed” relationship, because it completely
fixes the sequencing of involved activities.

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:41

Table XII. Basic DecSerFlow Graphical Elements and their Corresponding
Meaning

Concept Notation
unary formula cardinality constraints a lá UML
relationship source •
negation ‖
temporal ordering →

normal −
relationship’s strength alternate =

chain ≡
succession representation response + precedence formulas, e.g.:

Fig. 15. Hidden dependencies in a simple DecSerFlow model.

interoperate. This is a fundamental requirement for satisfying the re-usability
principle of Service Oriented Architecture.

DecSerFlow not only provides a plethora of different abstractions: it is also
abstraction tolerant, supporting the modeler in the definition of new constraint
templates.

Another valuable feature of DecSerFlow is the consistency of its core formu-
las: they have a representation which coherently combine only the few ba-
sic intuitive concepts shown in Table XII. For example, the representation
of “succession” relationships can be easily inferred: both semantics and rep-
resentation of this kind of formula is determined by combining/overlapping
the semantics/representation of the corresponding “response” and “precedence”
ones.

Even though DecSerFlow combines simple concepts, rendered in a consistent
way, when the complexity of models increases their readability would quickly
be compromised. The semantics of a DecSerFlow model is determined as the
conjunction of its formulas: the user is driven to adopt a non-structured ap-
proach to modeling, avoiding premature commitments; but unfortunately, from
the other side the overall meaning tends to become unclear: because of the
interplay between the different formulas, many hidden dependencies among
activities are implicitly introduced.

To better clarify the problem, let us consider the simple example of Figure 15.
Suppose that activity “a” is executed; this leads to forbid further executions
of “a” (due to the absence formula attached to it), but implicitly also to for-
bid the execution of both “b” and “c”. Actually, either by executing “b” or
“c” activity “a” should be eventually executed afterwards, but this would be

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:42 • M. Montali et al.

Fig. 16. Enactment of the simple example shown in Figure 15.

impossible, because it cannot be performed anymore. This situation arises from
the interplay between the “absence 2” and “response” formulas, which intro-
duces an hidden “negation response” in the diagram (hidden relationships are
shown in Figure 15 as dashed connections). In complex cases, such an interplay
could lead to produce diagrams containing dead activities or even inconsistent
models.

Anyway, the possibility of mapping DecSerFlow onto different logic-based
languages shown in this article comes in support: DecSerFlow models can be
verified at any time to ensure consistency and discover dead activities, satisfy-
ing the important Cognitive Dimension of progressive evaluation. In addition,
the modeler can also exploit the enactment tool in order to simulate interac-
tions and see how the state of the different formulas evolves when executing
activities.

As shown in Figure 16, the enactment of the simple DecSerFlow diagram
shown in Figure 15 leads to blocking the execution of all activities after having
performed “a” once, giving an explicit feedback about the hidden dependencies
of the model.

7.2 Quantitative Evaluation of the Proposed Techniques

In order to assess the usability of the framework, a key point is to evaluate
performances and scalability of the presented techniques. The performance
issues related to the LTL-based notation are presented in Section 7.2.1, while
Section 7.2.2 discusses the performance of the SCIFF notation. We will mainly
focus on static verification, that is, conflict detection and discovery of dead
activities (which are the most expensive one for both approaches).10

7.2.1 Performance of the LTL-Based Notation of DecSerFlow. When it
comes to the LTL-based notation of DecSerFlow, performance is an issue re-
lated to the complexity of models with a large number of constraints. Due to
the use of LTL for constraint specification, performance dramatically decreases
when the number and complexity of constraints in DecSerFlow models rises.

As described in Section 6.1, an automaton is generated for a conjunction of
formulas of all constraints (i.e., the so-called conjunction formula) in an DecSer-
Flow model. Because this automaton represents exactly all correct executions

10Note that, for the sake of efficiency and in order to avoid some trivial loops, some of the SCIFF
rules are, in this case, transformed onto an equivalent representation, which simply leads to an
a-priori pruning of some useless choice-points.

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:43

of the model, the automaton is used for the computer-supported execution
and fully automated verification of DecSerFlow models based on LTL (cf. Sec-
tions 6.1.1 and 6.1.2). Since the automata generated for an LTL formula is
exponential in the size of the formula [Clarke et al. 1999; Gerth et al. 1996;
Giannakopoulou and Havelund 2001; Latvala 2003; Demri and Schnoebelen
1998; Demri et al. 2006; Flum and Grohe 2006], the time needed for generating
these automata becomes very long for big LT formulas. This can cause various
problems in the context of DecSerFlow. For example, generating such automa-
ton for a DecSerFlow model with many complex constraints may be extremely
slow.

There are two possible causes of this problem. First, the more constraints
there are in a model, the larger the “conjunction” formula for the model will
be. Second, as shown in Appendix A.2, various DecSerFlow templates have
different LTL formulas. For example, the LTL formula for the “succession” tem-
plate is significantly more demanding from a computational point of view than
the formula for the “existence” template (both formalizations are presented in
Table V).

Consider, for example, the global choreography model presented in Figure 3.
Loading a new instance of this model in DECLARE takes approximately 17 min-
utes on a computer with a Pentium 4 processor of 3GHz and 1.49GB of RAM
using Microsoft Windows XP Professional version 2002. If the“succession” con-
straint between activities “album,” “photo,” “poster,” and “deliver” is removed
from the original DecSerFlow model, then generating the automaton for the
“conjunction” formula in DECLARE on the same computer takes approximately
30 seconds. Obviously, the size of the LTL formula for this triple-branched “suc-
cession” constraint dramatically increases the time to construct the automa-
ton for the “conjunction formula.” Naturally, DecSerFlow models with only few
simple constraints perform much better. For example, creating an automaton
for the conjunction of all constraints for the two local models shown in Fig-
ures 4(a) and 4(b) on page 15 takes approximately 200 milliseconds and 100
milliseconds, respectively.

The efficiency problem described above can occur at several points. First,
when initiating a computer-supported execution of a DecSerFlow model (cf.
Section 6.1.1), an automaton is generated for the “conjunction formula,” which
can cause the initiation to take a long time. Second, the same automaton is
created during verification of single DecSerFlow models and during interoper-
ability verification in order to identify possible errors (cf. Section 6.1.2), which
may cause the error detection to last too long. Moreover, during verification an
automaton is generated for combinations of constraints in order to identify the
cause of error, which can cause the verification to be even more time-consuming.

Existence of errors (i.e., dead activities or conflicts) in a DecSerFlow model
can significantly decrease the time needed for the generation of the automaton
for the “conjunction” of all constraints because the automaton then “represents”
a model with less possibilities (i.e., less possible executions). Consider, for ex-
ample, the DecSerFlow model for the global choreography shown in Figure 3,
for which it takes approximately 17 minutes to create the automaton. When
errors are introduced in this model (e.g., dead activities shown in Figure 10(a)

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:44 • M. Montali et al.

and a conflict shown in Figure 10(b), the performance increases. Indeed, the
automaton for the “conjunction” formula is created within approximately 14
seconds and 100 milliseconds for the two DecSerFlow models shown in Fig-
ures 10(a) and 10(b), respectively.

Note that the LTL Checker [van der Aalst et al. 2005] (cf. Section 6.1.3) does
not use the automata for conformance checking of a DecSerFlow model in the
context of a real log, and, therefore, does not encounter the above described
performance problem.

7.2.2 Performance of theSCIFF Notation of DecSerFlow. SCIFF and model
checking face the static verification problem in a complementary way: with
LTL the verification consists in first building a-priori the automaton of the
entire DecSerFlow model, and then checking the reachability of a termination
state on such an automaton; SCIFF instead adopts a generative approach,
that is, it directly employs model’s constraints trying to dynamically build a
proof in a depth-first way. Such a proof consists in an execution trace which
satisfies all constraints (this ensure that at least one possibility to execute
the model actually exists). As a consequence, also advantages and lacks are
complementary.

—SCIFF scales very well in the number of constraints in the model, whereas
LTL suffers of the state-explosion problem. Furthermore, SCIFF uses for ver-
ification only the strictly necessary rules. Actually, consistency verification
typically depends on the presence of existence (“existence N” and “exactly N”
in particular) and “mutual substitution” formulas, because they directly im-
pose the necessary execution of some activities, triggering in turn consistency
on relationships attached to such activities, and so on. While LTL builds the
whole automaton without taking into account such a peculiar feature, SCIFF
starts by considering just these kind of formulas (Figure 17 sketches how
SCIFF deals with inconsistency of the model shown in Figure 10(b)). The
extreme case is the one in which a model does not contain any “existence”
nor “mutual substitution” formula, like in the running example shown in
Figure 3: SCIFF immediately evaluates it as conflicts free, independently of
its size, because the void execution trace is accepted.

—From the other side, a distinguishing feature of LTL is its capability of han-
dling “infinite” systems, namely models which contain loops11; being SCIFF
a generative approach, it is instead not able to treat looping models, because
it loops as well. A naive solution to this problem is to change SCIFF’s search
strategy in the space of execution traces, by, for example, adopting a bounded
iterative deepening approach. Obviously, a bounded search strategy would
undermine completeness; as a consequence, we will study the insertion of
loops-detection algorithms in the proof procedure (note that this problem has
been deeply investigated in the field of logic programming [Shen et al. 2003]).
It is worth noting that such a problem only affects SCIFF when used in a

11Such kind of DecSerFlow models are evaluated as inconsistent, because they do not eventually
terminate (and this would be inconvenient for a choreography or a process model).

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:45

Fig. 17. Consistency verification of the diagram shown in Figure 10(b) with SCIFF: only the subset
of formulas “triggered” by the existence of activity “photo” is used; presence of conflicts is detected
in 350 milliseconds.

generative manner: when performing conformance verification of execution
traces, reasoning is actually driven by events contained in the log, and there-
fore SCIFF will not loop.

To study the scalability of SCIFF when discovering conflicts/dead activities,
we have tested it on some simple yet relevant benchmarks, which involve dif-
ferent formulas. All benchmarks deal with inconsistent models, to the aim of
testingSCIFF in the worst case: to prove that a model contains a conflict,SCIFF
has to explore the entire search space. Experiments have been performed on a
MacBook Intel CoreDuo 2 GHz machine.

The first benchmark aims to evaluate the scalability of the approach when
“branching responses” are used; that is, different alternatives are present in the
model. The structure of the model is the following (Figure 18 graphically shows
the benchmark in case of 7 activities). One activity, namely a1, is expected to
be executed at least once. After a1, either one between two activities should be
executed, and so on. “Branching responses” follow one another until a “fron-
tier” is reached; all the activities belonging to this “frontier” have an outgoing
“negation precedence” formula with respect to a1, and therefore no path can be
executed without leading to a conflict.

Figure 18 summarizes SCIFF’s behavior when the number of activities
(which is the same as the number of formulas, except from the “existence 1” on
the first activity) increases. Such experiments attests that SCIFF scales very
well: it is able to detect inconsistency of a model containing 4095 formulas in
less than one minute.

The two next benchmarks aim at evaluate SCIFF’s behaviour respectively
in case of “alternate” and “chain response” formulas, especially when they are
combined with existence formulas which impose more executions of the same
activity. The second (third resp.) benchmark impose at least N executions of an
activity, which is source of a sequence of K activities connected by “alternate”
(“chain” resp.) “response” formulas; the last activity of the sequence is subject
to an absence formula which imposes at most N − 1 executions (the model is
therefore inconsistent, because also such last activity should be performed at
least N times).

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:46 • M. Montali et al.

Fig. 18. Results of the branching response inconsistency benchmark.

Actually, discovering conflicts in alternate/chain response formulas when
only one execution of the source activity is imposed reduces to the case of sim-
ple responses. This is attested also by SCIFF: both for “alternate” (Figure 19)
and “chain response” (Figure 20) formulas, when N = 1 it answers almost
immediately. When N increases, verification becomes more difficult; for “alter-
nate responses” (but similarly also for “chain” formulas), this is due to the fact
that more executions of the source activity trigger the interposition part of the
formula, imposing and propagating a huge amount of temporal constrains.

Finally, note that performances in case of “chain” formulas are slower because
its formalization in SCIFF, which contains a time-constrained forbidding of all
events, is rather difficult to be handled (see Section 5). If we restrict ourselves to
the basic DecSerFlow core formulas, for performing consistency verification we
can adopt, without loosing generality, a simplified version of “chain response,”
which states that the target should happen at the immediate next integer with
respect to the source execution time.12 By adopting such a simplification, a
dramatic speedup of verification times is experienced (see Figure 20 to have an
overview about a comparison between the two formalizations).

12When times are not quantitatively constrained, we can map the concept of “next state” to the one
of “next integer”.

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:47

Fig. 19. Results of the alternate response inconsistency benchmark.

Summarizing, SCIFF is able to verify in acceptable times even complex Dec-
SerFlow models. Its performances become slower when the model contains
both existence formulas with an high repeatition value and many “strict” rela-
tionships (such as “chain responses”). However, it is rather uncommon to find
choreography models in which a certain activity is a-priori constrained by an
existence formula to be executed many times; furthermore, when the modeler
adopts many different strict relationships in the same diagram, she is breaking
DecSerFlow philosophy, which is to develop loosely-coupled choreographies: the
right choice would probably be to adopt a more classical procedural language
(like, e.g., BPMN).

The interested reader is referred to Montali et al. [2008] for further exper-
imentations/benchmarks, together with a comparison with explicit and sym-
bolic model checking. The results obtained in Montali et al. [2008] confirm that
SCIFF is clearly superior to explicit model checking when statically verifying
DecSerFlow models, and that it outperforms symbolic model checking in many
cases. Also in these benchmarks, the global trend is that SCIFF scales very
well in the number of constraints, while experiences more difficulties when
existence formulas with high repeatition values are introduced in the model.
However, establishing a precise relationship between the size of a DecSerFlow
model and the performance of SCIFF is not a trivial task: as we have seen in

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:48 • M. Montali et al.

Fig. 20. Results of the chain response inconsistency benchmark.

the presented benchmarks, the performance is affected not only by the number
of constraints, but also by the interplay between such constraints. For example,
SCIFF answers immediately when testing conflict-freedom on models contain-
ing no existence constraint, independently from the size of the model.

SCIFF verification times are even faster when performing conformance
checking of execution traces; just to give an intuition about performances,
we have exploited it to analyze real execution traces of a clinical screening
process [Chesani et al. 2007]: a SCIFF specification containing 12 rules (with
branches and constrains on both execution times and content data) has been
tested on 1950 execution traces, ranging from 1 to 18 events, in approximately
12 minutes.

Finally, the interested reader is referred to Lamma et al. [2007] and Chesani
et al. [2009] for a preliminary quantitative evaluation related to mining Dec-
SerFlow specification from labeled execution traces, using SCIFF as an inter-
mediate format.

7.3 Tool Support

As far as now, different tools can be exploited to verify DecSerFlow models;
some of them are well-established and some others are still under testing. One

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:49

Fig. 21. Tools for the specification and verification of DecSerFlow models.

of our main ongoing objectives is to integrate such tools in order to cover all the
different parts of the framework for the specification and verification of service
choreographies depicted in Figure 7.

Some of the tools have been developed as part of ProM. ProM is an open
source framework (under the Common Public License, CPL) for process min-
ing, available at http://www.processmining.org; it is plug-able, that is, people
can plugin new pieces of functionality. Beside a plethora of mining techniques,
ProM offers a wide range of plug-ins related to model transformations and
model analysis (e.g., verification of soundness, analysis of deadlocks, invari-
ants, reductions).

Figure 21 sketches current availables tools together with their relationships.
A brief description of them follows.

7.3.1 DECLARE. DECLARE [Pesic et al. 2007] is the main tool for edit-
ing and enacting DecSerFlow models. It is mainly composed by two parts: an
editor, supporting the user both in the development of new graphical mod-
els as well as in the definition of new declarative constraints (by specify-
ing their graphical appealing and the underlying LTL formalization); an en-
actment module, capable to concretely execute DecSerFlow models giving a
step-by-step feedback about constraints state. The editor also provides sup-
port for checking the correctness of designed models, by identifying con-
flicts and discovering dead activities. DECLARE can be downloaded from
http://is.tm.tue.nl/staff/mpesic/declare.htm.

7.3.2 LTL Checker. The LTL Checker [van der Aalst et al. 2005] is a ProM
plug-in for performing process analysis by exploiting LTL. It offers an envi-
ronment to provide parameters for predefined parameterized LTL expressions
and check these expressions (as properties related to activities, data, human
resources and time) with respect to some event log in MXML [van Dongen and
van der Aalst 2005] format. Currently, we do not yet provide a direct connection
between the DecSerFlow editor (tool DECLARE) and the ProM LTL checker.
Although it is possible to export DecSerFlow templates, constraints and models
to LTL checker and check conformance in ProM, it is not yet possible to visu-
alize violations on the DecSerFlow editor in DECLARE. Such a connection is

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:50 • M. Montali et al.

matter of ongoing work. The LTL Checker can be downloaded together with
Prom from http://www.processmining.org.

7.3.3 SCIFF Proof Procedure. The SCIFF Proof Procedure, downloadable
from http://lia.deis.unibo.it/research/sciff/, is a CHR-based implemen-
tation [Alberti et al. 2005] of SCIFF’s operational semantics.13 Its main applica-
tion is to verify conformance of a set of happened events with respect to a SCIFF
interaction specification, by checking whether positive (negative resp.) expec-
tations indeed have (not have resp.) a corresponding matching happened event.
By setting some options, SCIFF can also be configured to work in a generative
manner, which is the basis for performing conflicts detection and discovery of
dead activities in DecSerFlow models. An additional module containing use-
ful predicates for verifying DecSerFlow models, as well as the complete set of
SCIFF projects which have been used to quantitatively evaluate the frame-
work, can be downloaded from http://lia.deis.unibo.it/research/climb/.
We are currently developing a graphical editor which supports extended Dec-
SerFlow models (i.e., models containing complex branching and time-annotated
relationships) and automatically translates them onto SCIFF specifications.

7.3.4 SOCS-SI. SOCS-SI [Alberti et al. 2006] wraps the SCIFF proof pro-
cedure into a java-based tool, to the aim of exploiting conformance verification
at runtime. In particular, it can be interfaced with different event sources and
supports a step-by-step visualization of the proof status, showing pending, ful-
filled and violated expectations (see Figure 6.1). Violations are raised as soon
as they happen, because temporal aspects (deadlines in particular) are taken
into account. To download the software, visit http://www.lia.deis.unibo.it/
research/socs_si/.

7.3.5 SCIFF-Checker. Conformance verification of past execution traces
with respect to a SCIFF specification has been integrated inside ProM as an
analysis plug-in, which resembles the LTL Checker. In this application, called
SCIFF-Checker [Chesani et al. 2008], all the peculiar features of the SCIFF
language are extensively applied to classify execution logs by considering not
only causal relationships among activities, but also their execution times, orig-
inators and involved content data. The tool provides different template rules
(included the DecSerFlow ones) whose activity types, originators and execu-
tion times can be constrained and specialized by the user through a GUI. Re-
sults obtained by applying classification can be then directly exploited by the
DecMiner plug-in, supporting the “mining-checking” cycle sketched in Section
6.2.5. SCIFF-Checker can be downloaded as part of the latest version of ProM.

7.3.6 DecMiner. DecMiner is a ProM plug-in which implements the mining
algorithm described in [Lamma et al. 2007]. Its purpose is to mine a declarative
constraint-based specification starting from a set of MXML execution traces
previously labeled as conformant or not. Such a specification is composed by

13The proof procedure has been implemented in SICStus Prolog, available from http://www.sics.

se/sicstus/.

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:51

SCIFF rules. Because the structure of rules which can be mined by the algo-
rithm can be configured by the user, DecMiner restricts toSCIFF rules that map
DecSerFlow formulas. As a consequence, it is also able to apply the mapping
presented in this work in the opposite way, automatically obtaining a graphical
DecSerFlow model as result of the mining process. The plug-in can be down-
loaded as part of the latest version of ProM. The interested reader is referred
to Chesani et al. [2009] for a description of the plug-in and its experimentation.

8. RELATED WORK

In this work we propose a declarative DecSerFlow language for the specification
of service flows. Compared to the related research in the area, the most impor-
tant added value of DecSerFlow is in the comprehensiveness: to our knowledge
DecSerFlow is the only language which, besides for (1) the declarative mod-
elling of service interaction protocols, can be used for (2) design-time verifi-
cation (i.e., detection of contradictory constraints), (2) checking interoperabil-
ity of services, (3) preventing deadlocks, (4) monitoring service executions and
(5) learning service models from past executions. Many other approaches deal
with each of these areas, but, to our knowledge, the work presented in this
paper is the only one that tackles all of them. In the remainder of this section
we will describe the most interesting related works: each paragraph describes
the related work in one area and explains the added value of DecSerFlow.

Process modeling, enactment, and verification is the focus in the field of
workflow technology [Georgakopoulos et al. 1995]. Most process modeling lan-
guages (e.g., Petri nets, BPMN [White 2006], WS-BPEL [Andrews et al. 2003])
are highly procedural. Petri nets have been used for the modeling of workflows
[van der Aalst and van Hee 2002; Chrzastowski-Wachtel 2003; Dumas et al.
2005] but also for the orchestration of web services [Mecella et al. 2002]. An-
other example of procedural languages for modeling and verification of web
services are Message Sequence Charts (MSCs), which explicitly specify the
ordering of message exchange between services [Foster et al. 2003]. The pro-
cedural nature of such modeling languages is an obstacle in developing chore-
ographies of autonomous web services because possible orderings of message
exchange between services must be explicitly included in the model [Zaha et al.
2006]. The declarative flavor of DecSerFlow is more suitable for modeling in-
teractions of autonomous services because the possible execution orderings of
activities are implicitly derived from constraints, as all orderings that satisfy
these constraints. Furthermore, it is worth noting that even if process modeling
languages such as WS-BPEL and BPMN provide support for data, such a per-
spective is often lost when they are translated to an underlying formal language.
The mapping of DecSerFlow to SCIFF presented in this work enables the pos-
sibility of maintaining data-related and quantitative time aspects also at the
formal level. Even if the central focus is usually on the activities and their flow
dependencies, such additional perspectives are very important in settings like
service discovery and contracting. For example, quantitative time constraints
could be exploited by the user to express that she is looking for an e-shop able to
deliver the ordered items within a maximum time span; since SCIFF provides

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:52 • M. Montali et al.

support for reasoning about quantitative time constraints, such a requirement
can be used to select only the services whose behavioral interface respect it. The
interested reader may refer to [Alberti et al. 2007, 2009] for the application of
SCIFF in the context of service discovery and contracting.

Beside DecSerFlow, many other declarative languages, where possible or-
derings are implicitly derived from a set of constraints (i.e., rules), have been
proposed in order to solve this problem. In Zaha et al. [2006] propose a declara-
tive language called Let’s Dance for modeling interactions of Web services. This
language uses Computation Tree Logic (CTL) for flexible modeling of message
exchange between services. A straight-forward graphical notation is used to
represent patterns in message exchange, while π -calculus [Milner et al. 1992]
captures the execution semantics [Decker et al. 2006]. A restricted version of
LTL is used in Hallé and Villemaire [2009] and translated into XQuery for mon-
itoring of web services. LTL is also used in Deutsch et al. [2006] for verification
of correctness properties of service compositions. The SPIN model checker Holz-
mann [2003] is used in Fu et al. [2005] to verify LTL properties of service conver-
sations. DecSerFlow is also a declarative language, which uses LTL and SCIFF
mapping for formal specification of service interactions. Moreover, to the best
of our knowledge, DecSerFlow is the only declarative language for modelling
and monitoring of web services that also enables verification, interoperability
check, model learning, and deadlock-free execution.

The importance of monitoring Web services has been raised by many re-
searchers. Moreover, monitoring is addressed with several approaches: busi-
ness rules [Lazovik et al. 2004], WS-BPEL [Baresi et al. 2004], event calculus
[Mahbub and Spanoudakis 2004], WS-Agreement [Ludwig et al. 2004], etc.
Advanced conformance checking techniques described in Rozinat and van der
Aalst [2006] are used in van der Aalst et al. [2005] and implemented in the ProM
framework [van der Aalst et al. 2007]; this approach has been applied to SOAP
messages generated from Oracle BPEL. The work presented in this paper dif-
ferers from these approaches because it presents one declarative language that
can be used for monitoring, modeling, design-time verification, deadlock-free
execution, interoperability check and model learning. Rouached et al. [2006]
use an extension of the Event Calculus (EC) of Kowalski and Sergot [1986] to
declaratively model event based requirements specifications. The choice of EC
is motivated by both practical and formal needs, that are shared by the SCIFF
approach. In particular, in contrast to pure state-transition representations,
both the EC and SCIFF representations include an explicit time structure and
are very close to most event-based specifications. However, SCIFF deals with
explicit time by using suitable CLP constraints on finite domains, while they use
a temporal formalism based on Event Calculus. We plan to deeply investigate
the relations between SCIFF and EC, and possibly to integrate the approaches
in future work.

Besides for monitoring of Web services (“run-time conformance checking”),
we also propose DecSerFlow for design-time conformance, that is, detecting
errors in models before enactment. Both mappings of DecSerFlow enable a
simple mechanism that checks at design-time the correcteness of a model and
the compatibility of different services. Inheritance notions [van der Aalst and

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:53

Basten 2002] are explored in the context of workflow management and im-
plemented in Woflan [Verbeek et al. 2001]. Petri nets are used for design-time
conformance and compatibility in [Martens 2005a, 2005b; Massuthe et al. 2005;
Schlingloff et al. 2005]. For example, Martens [2005b] focuses on the problem
of consistency between executable and abstract processes while Massuthe et al.
[2005] presents an approach where for a given composite service the required
other services are generated. Also related is Foster et al. [2003], were Mes-
sage Sequence Charts (MSCs) are compiled into the “Finite State Process” no-
tation to describe and reason about web service compositions. To the best of
our knowledge, the work presented in this article is the first attempt to au-
tomatically verify declarative service models. Automatic service composition
has been addressed in OWL-S [OWL Services Coalition 2003] which looks at
how atomic services interact with the real world; the Roman model approach
[Berardi et al. 2005] that uses finite state machines, and the Mealy machine
[Bultan et al. 2003] that focuses on message exchange between services. Com-
patibility of synchronous communication via message exchange in Web services
has been investigated in [Bordeaux et al. 2004; Beyer et al. 2005; Benatallah
et al. 2006; Ponnekanti and Fox 2004], while DecSerFlow allows asynchronous
communication and focuses on the process perspective, rather than message
exchange. DecSerFlow contributes to this area are with the verification tech-
niques described in Section 6, which make it possible to easily discover er-
rors and incompatibility in declarative models. However, while the cited ap-
proaches focus on automatic composition of services (i.e., automatic choreog-
raphy generation from participating services), DecSerFlow assumes that all
relevant process models of the composition are available and then verifies their
interoperability.

In the research literature it is possible to find several definitions of interop-
erability, and there is not a complete agreement about its exactly meaning. For
example, in Baldoni et al. [2005b] state that interoperability aims to check if
a service, described by its behavioural interface, can play a given role within a
choreography. In their approach however, both choreography and behavioural
interface are described from a procedural viewpoint, and a complete specifica-
tion of all the allowed interactions is given. SCIFF has been used to address this
type of interoperability in Alberti et al. [2006]. A different notion of interoper-
ability is given in Chopra and Singh [2006], where the authors represent global
choreographies and local services in terms of state transition systems (and their
conjunction as the product of the two transition systems). They define a notion
of interoperability as a set of feature that the resulting transition system should
guarantee. Although their idea of interoperability is in some sense “broader”
that the one given in Baldoni et al. [2005b] and Alberti et al. [2006], it is still
related to the procedural aspects of the interaction between the services. The
interoperability notion discussed in this work instead is more related to assur-
ing that declarative constraints specified in terms of DecSerFlow are indeed
satisfied, given the DecSerFlow representation of both a global choreography
and of a service. DecSerFlow in fact focuses on the declarative aspects and fea-
tures of a global choreographies, leaving the interaction unconstrained as much
as possible.

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:54 • M. Montali et al.

Another issue tackled in this work is the problem of mining DecSerFlow
models starting from a set of service execution traces. Process mining [van der
Aalst and Weijters 2004; van der Aalst et al. 2003] extracts knowledge from
event logs (e.g., process models [Van der Aalst et al. 2004; Agrawal et al.
1998; Cook and Wolf 1998; Gaaloul et al. 2004; Gaaloul and Godart 2005;
Herbst 2000] or social networks [van der Aalst and Song 2004]). In particular,
Agrawal et al. [1998] introduced the idea of applying process mining to
workflow management. The authors propose an approach for inducing a
process representation in the form of a directed graph encoding the precedence
relationships. Van der Aalst et al. [2004] present the α-algorithm for mining
Petri nets from data and identifies for which class of models the approach
is guaranteed to work. The α-algorithm is based on the discovery of binary
relations in the log, such as the “follows” relation. Van Dongen and van der
Aalst [2004] describe an algorithm which derives causal dependencies between
activities and use them for constructing instance graphs, presented in terms
of Event-driven Process Chains (EPCs). A recent work of Greco et al. [2006]
describes a mining technique where a process model is induced in the form
of a disjunction of special graphs called workflow schemas. The SCIFF-based
approach sketched in Section 6.2.4 differs from all of these works. First, SCIFF
uses a declarative representation, which can be rendered as a DecSerFlow
diagram by applying an inverse mapping. Moreover, SCIFF learns from both
compliant and noncompliant traces (rather than from compliant traces only),
and is able to model and reason upon data, by exploiting either the underlying
Constraints Solver or the Prolog inference engine. Various levels of Web
services mining (Web service operations, interactions, and workflows) are pro-
posed in Gombotz and Dustdar [2005] and Dustdar et al. [2004]. Our approach
fits in their framework and shows that Web-services mining is indeed possible.

As pointed out in Baldoni et al. [2005a], Service oriented architectures and
Multi Agent Systems share many issues and features, and the problem of rep-
resenting global interactions and of verifying them has been tackled also in the
MAS field. In particular, it is possible to find in the literature two complemen-
tary approaches, as in the case of choreographies: approaches with aim to ex-
actly specify how the interaction protocol should be executed by the interacting
agents (such as for example AUML [Bauer et al. 2001]), and approaches which
consider MAS as open societies and model interaction protocols by declaratively
constraining the possible interactions. For example, in Fornara and Colombetti
[2002] the semantics of communicative acts is defined by means of transitions
on a finite state automaton which describes the concept of commitment Yolum
and Singh [2002] adopt a variant of Event Calculus to commitment-based pro-
tocols, where commitments evolve in relation to events and fluents and the
semantics of messages given in terms of predicates on such events and fluents
(to describe how messages affect commitments). Recently, Singh et al. have
applied the concept of commitment-based protocols in the context of the Ser-
vice Oriented Architecture and Business Process Management, by addressing
the problem of business process adaptability [Desai et al. 2006] and of protocols
composition [Mallya et al. 2005]. SCIFF was originally thought for dealing with
social interaction in open MAS, and the mapping proposed in this work further

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:55

attests that the MAS and SOC settings are closely related and can benefit from
each other.

9. CONCLUSIONS AND FUTURE WORKS

In this work, we have made a first step towards a framework capable to tackle
both specification and verification of service choreographies. By claiming that
a choreography is inherently declarative, we have presented the DecSerFlow
graphical language for modeling service choreographies. DecSerFlow adopts
an open and declarative approach, specifying choreographies by means of the
minimal set of constraints which should be satisfied by the interacting entities
to correctly collaborate. Thus, the approach respects the autonomous nature of
participating services and does not lead to overspecifying nor overconstraining
them.

Furthermore, we have concretely shown how the DecSerFlow concepts can
be mapped onto different underlying logic-based formalisms, namely LTL and
SCIFF (a framework based on abductive logic programming). After having in-
troduced the complete mapping onto both settings, we have described how the
related modelchecking and proof-theoretic techniques can be fruitfully applied
in order to enact DecSerFlow models and to perform a variety of different ver-
ification tasks, such as conformance checking, static verification of conflicts
and dead activities, interoperability between global and local models, mining
of DecSerFlow models from a set of compliant and non compliant histories.

We have also motivated the feasibility of the approach by briefly reviewing
the DecSerFlow language in terms of some Cognitive Dimensions, and by quan-
titatively evaluating performances and scalability of the verification techniques
(especially for what concerns static verification, which is the most difficult one
for SCIFF). Obviously, the empirical evaluation by using the Cognitive Dimen-
sions is only a first step towards the assessment of DecSerFlow’s usability; we
will therefore extend such an evaluation by conducting a comprehensive user
study covering both the use of DecSerFlow to specify choreographies and the
exploitation of the toolset to validate them.

The possibility of carrying out a suitable user study is conditioned by the
presence of a stable prototypical implementation integrating the various re-
lated tool (and relying on ProM and DECLARE as glue environments). For
the time being, the two underlying DecSerFlow formalisms are used indepen-
dently; we are currently investigating their relationships, to the aim of really
exploiting their advantages and of realizing a unified framework for choreogra-
phies specification and verification. Such an investigation will also be helpful
to understand some theoretical relationships between LTL and SCIFF.

Even if DecSerFlow is proposed as complementary with respect to classical
procedural approaches, an interesting open issue concerns how these different
approaches could benefit from each other. Relevant research issues arise when
trying to shift from one proposal to another. From one side (from procedural
languages to DecSerFlow), such a shift would enable the possibility to abstract
procedural models by focusing on their core constraints and, even more im-
portant, to make the different verification techniques described in this article

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:56 • M. Montali et al.

applicable also to procedural models.14 From the other side (from DecSerFlow
to procedural languages), DecSerFlow models could be used as core of a top-
down methodology aimed at deriving executable procedural specifications from
declarative constraints; this methodology could be applied, for instance, to de-
rive skeletons of WS-BPEL behavioral interfaces starting from a declarative
choreography specified in DecSerFlow. Another choice would be to opt for an
integration between declarative and procedural approaches, to the aim of ob-
taining semi-open specification which suitably mediate between the two. A first
investigation in this direction has been made in Pesic [2008], where a layered
approach is proposed, in which nonatomic activities belonging to a declarative
model can be specified in terms of a YAWL15 process and vice versa. An hy-
brid approach, in which declarative and procedural specifications coexist at the
same level, will be matter of future research. It is worth noting that, in this
case, the integration poses foundational issues, because a clear semantics must
be defined to specify how a closed approach and an open approach (equipped
with negative constraints) affect each other, how possible conflicts should be
resolved, and so on.

Other ongoing works concern the extension of the DecSerFlow expressive-
ness. Currently, DecSerFlow templates can relate only to service activities while
SCIFF and the ProM LTL Checker deal also with conformance checking against
properties related to activities, time and data. This limitation of DecSerFlow
can be eliminated by extending the language with such concepts.

Extension with time perspective would enable DecSerFlow to offer templates
that involve deadlines. For example, as introduced in Section 5.4, the “response”
template can be extended to specify the rule that activity “B” has to be executed
no later that 5 days after activity “A.” To be able to support the semantics of
deadlines, LTL can be replaced by the real-time temporal logic—a logic that can
be translated into timed automata [Bouajjani et al. 1996]. Further on, timed
automata can be used for execution and verification of models containing time
perspective. Thanks to the possibility of exploiting the underlying CLP solver to
adopt a temporal point algebra, SCIFF is instead directly able to capture such
an extension. An ongoing issue concerns the use of SCIFF as an enactment
module for extended models; the basic idea is to exploit the detection of dead
activities but by considering also a partial execution trace (which represents the
already executed activities inside the process instance): in this way, SCIFF can
be used to discover, step-by-step, which activities cannot be executed without
undermining model’s consistency.

Data elements would enrich DecSerFlow and allow for specifying more com-
plex templates. Consider, for example, the photo service described in Section 3.
Although it is generally possible to deliver ordered products to a home address
or to the shop, one can imagine that large format posters can only be picked up
personally. In this case, a special constraint would specify that if the size of a

14A possible solution to this problem could be to simulate and collect in a MXML log different
positive and negative executions of the procedural model, and then try to mine a DecSerFlow
model from the generated traces.
15http://www.yawl-system.com/newYAWL

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:57

poster is “large,” then type of delivery cannot be “home.” However, incorporat-
ing data perspective in DecSerFlow is a complex task. Data elements introduce
many issues that need to be solved: are templates divided into ones that involve
activities and ones that involve data, or can templates be mixed (one template
involving activities and data)? How do we deal with the data scope (e.g., data
has certain value before, after or between events, etc.)? Another complex is-
sue is to find the right graphical representation of such templates dealing with
data.

Investigating the possibility to extend DecSerFlow with time and data will
add much to the semantics of DecSerFlow and make better use of SCIFF and its
capability to express both perspectives. By adopting the implicit DecSerFlow
formalization shown in Section 5.6, information about content data and the
involved knowledge could be seamlessly expressed inside the specific knowledge
base of the formalized model.

Finally, an extended formalization capable to deal also with nonatomic activ-
ities and more complex relationships, taking into account also exceptions and
compensation issues, will be matter of future works.

ACKNOWLEDGMENTS

We would like to thank Marco Gavanelli, Evelina Lamma, Marco Alberti, Paolo
Torroni, Fabrizio Riguzzi and all colleagues that took part in the SOCS project.
We also thank the anonymous reviewers for their valuable suggestions and
helpful comments, which helped to improve this work.

REFERENCES

AGRAWAL, R., GUNOPULOS, D., AND LEYMANN, F. 1998. Mining process models from workflow logs.
In Proceedings of the 6th International Conference on Extending Database Technology. 469–483.

ALBERTI, M., CATTAFI, M., CHESANI, F., GAVANELLI, M., LAMMA, E., MELLO, P., MONTALI, M., AND TORRONI, P.
2009. Integrating abductive logic programming and description logics in a dynamic contracting
architecture. In Proceedings of the IEEE 7th International Conference on Web Services (ICWS’09).

ALBERTI, M., CHESANI, F., GAVANELLI, M., AND LAMMA, E. 2005. The chr-based implementation of
a system for generation and confirmation of hypotheses. In Proceedings of the 19th Workshop
on (Constraint) Logic Programming. A. Wolf, T. W. Frühwirth, and M. Meister, Eds. Ulmer
Informatik-Berichte, vol. 2005-01. Universität Ulm, Germany, 111–122.

ALBERTI, M., CHESANI, F., GAVANELLI, M., LAMMA, E., MELLO, P., MONTALI, M., AND TORRONI, P. 2007.
Web Service contracting: Specification and reasoning with SCIFF. In Proceedings of the 4th
European Semantic Web Conference (ESWC’07), E. Franconi, M. Kifer, and W. May, Eds. Lecture
Notes in Artificial Intelligence, vol. 4519. Springer-Verlag, 68–83.

ALBERTI, M., CHESANI, F., GAVANELLI, M., LAMMA, E., MELLO, P., AND TORRONI, P. 2005. Security proto-
cols verification in abductive logic programming: A case study. In Proceedings of the International
Workshop of Engineering Societies in the Agents World (ESAW’05). Lecture Notes in Computer
Science, vol. 3963. Springer, 106–124.

ALBERTI, M., CHESANI, F., GAVANELLI, M., LAMMA, E., MELLO, P., AND TORRONI, P. 2006. Compliance
verification of agent interaction: A logic-based software tool. Appl. Artif. Intel. 20, 2-4, 133–157.

ALBERTI, M., CHESANI, F., GAVANELLI, M., LAMMA, E., MELLO, P., AND TORRONI, P. 2008. Verifiable
agent interaction in abductive logic programming: The SCIFF framework. ACM Trans. Comput.
Log. 9, 4, 1–43.

ALBERTI, M., GAVANELLI, M., LAMMA, E., CHESANI, F., MELLO, P., AND MONTALI, M. 2006. An abductive
framework for a-priori verification of Web services. In Proceedings of the 8th International ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming. A. Bossi and M. J.
Maher, Eds. ACM, 39–50.

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:58 • M. Montali et al.

ANDREWS, T., CURBERA, F., DHOLAKIA, H., GOLAND, Y., KLEIN, J., LEYMANN, F., LIU, K., ROLLER, D., SMITH,
D., THATTE, S., TRICKOVIC, I., AND WEERAWARANA, S. 2003. Business process execution language for
Web services, version 1.1. Standards proposal by BEA Systems, International Business Machines
Corporation, and Microsoft Corporation.

BALDONI, M., BAROGLIO, C., MARTELLI, A., AND PATTI, V. 2006. A priori conformance verification
for guaranteeing interoperability in open environments. In Proceedings of the 4th International
Conference on Service-Oriented Computing (ICSOC’06). A. Dan and W. Lamersdorf, Eds. Lecture
Notes in Computer Science, vol. 4294. Springer, 339–351.

BALDONI, M., BAROGLIO, C., MARTELLI, A., PATTI, V., AND SCHIFANELLA, C. 2005a. Verifying the
conformance of web services to global interaction protocols: A first step. In Proceedings of
the International Workshop on Web Services and Formal Methods (WS-FM’05). M. Bravetti,
L. Kloul, and G. Zavattaro, Eds. Lecture Notes in Computer Science, vol. 3670. Springer, 257–
271.

BALDONI, M., BAROGLIO, C., MARTELLI, A., PATTI, V., AND SCHIFANELLA, C. 2005b. Verifying the con-
formance of web services to global interaction protocols: A first step. In Proceedings of the For-
mal Techniques for Computer Systems and Business Processes, European Performance Engineer-
ing Workshop (EPEW’05) and International Workshop on Web Services and Formal Methods
(WSFM’05). M. Bravetti, L. Kloul, and G. Zavattaro, Eds.

BARESI, L., GHEZZI, C., AND GUINEA, S. 2004. Smart monitors for composed services. In Proceedings
of the 2nd International Conference on Service Oriented Computing (ICSOC’04). ACM Press, New
York, NY. 193–202.

BARROS, A., DUMAS, M., AND OAKS, P. 2005. A critical overview of the Web services choreography
description language (WS-CDL). BPTrends Newsletter, vol. 3.

BAUER, B., MÜLLER, J. P., AND ODELL, J. 2001. Agent uml: A formalism for specifying multiagent
software systems. In Proceedings of the 1st International Workshop on Agent-Oriented Software
Engineering. Springer-Verlag, 91–103.

BELWOOD, T., CLÉMENT, L., EHNEBUSKE, D., HATELY, A., HONDO, M., HUSBAND, Y. L., JANUSZEWSKI,
K., LEE, S., MCKEE, B., MUNTER, J., AND VON RIEGEN, C. 2000. UDDI Version 3.0.
http://uddi.org/pubs/uddi v3.htm.

BENATALLAH, B., CASATI, F., AND TOUMANI, F. 2006. Representing, analysing and managing Web
service protocols. Data Knowl. Engin. 58, 3, 327–357.

BERARDI, D., CALVANESE, D., GIACOMO, G. D., LENZERINI, M., AND MECELLA, M. 2005. Automatic
service composition based on behavioral descriptions. Int. J. Coop. Inform. Syst. 14, 4, 333–376.

BEYER, D., CHAKRABARTI, A., AND HENZINGER, T. 2005. Web service interfaces. In Proceedings of the
14th International Conference on World Wide Web. 148–159.

BORDEAUX, L., SALAÜN, G., BERARDI, D., AND MECELLA, M. 2004. When are two Web services compat-
ible? In Proceedings of the 5th International Workshop on Technologies for E-Services (TES’04).
M. Shan, U. Dayal, and M. Hsu, Eds. 15–28.

BOUAJJANI, A., LAKHNECH, Y., AND YOVINE, S. 1996. Model-checking for extended timed temporal
logics. In Proceedings of the 4th International Symposium on Formal Techniques in Real-Time
and Fault-Tolerant Systems (FTRTFT’96). Springer-Verlag, 306–326.

BOX, D., EHNEBUSKE, D., KAKIVAYA, G., LAYMAN, A., MENDELSOHN, N., NIELSEN, H., THATTE, S., AND WINER,
D. 2000. Simple Object Access Protocol (SOAP) 1.1. http://www.w3.org/TR/soap.

BULTAN, T., FU, X., HULL, R., AND SU, J. 2003. Conversation specification: a new approach to design
and analysis of e-service composition. In Proceedings of the 12th International Conference on
World Wide Web (WWW ’03). ACM Press, New York, NY, 403–410.

CHESANI, F., LAMMA, E., MELLO, P., MONTALI, M., RIGUZZI, F., AND STORARI, S. 2009. Exploiting in-
ductive logic programming techniques for declarative process mining. Trans. Petri Nets Other
Models of Concurrency (ToPNoC).

CHESANI, F., MELLO, P., MONTALI, M., RIGUZZI, F., SEBASTIANIS, M., AND STORARI, S. 2008. Check-
ing compliance of execution traces to business rules: an approach based on logic pro-
gramming. In Proceedings of the 4th Workshop on Business Process Intelligence (BPI’08).
M. Castellanos, A. K. A. de Medeiros, J. Mendling, and B. Weber, Eds. Springer Verlag.
To appear.

CHESANI, F., MONTALI, M., MELLO, P., AND STORARI, S. 2007. Testing careflow process execution
conformance by translating a graphical language to computational logic. In Proceedings of the

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:59

11th Conference on Artificial Intelligence in Medicine (AIME’07). A. Abu-Hanna, R. Bellazzi, and
J. Hunter, Eds. Springer-Verlag.

CHOPRA, A. K. AND SINGH, M. P. 2006. Producing compliant interactions: Conformance, cover-
age, and interoperability. In Proceedings of the 4th International Workshop on Declarative Agent
Languages and Technologies (DALT’06). Selected, revised and invited papers. Lecture Notes in
Computer Science, vol. 4327. Springer, 1–15.

CHRISTENSEN, E., CURBERA, F., MEREDITH, G., AND WEERAWARANA, S. 2001. Web Services Description
Language (WSDL) 1.1. http://www.w3.org/TR/wsdl.

CHRZASTOWSKI-WACHTEL, P. 2003. A Top-down petri net based approach for dynamic workflow
modeling. In Proceedings of the International Conference on Business Process Management
(BPM’03), W. van der Aalst, A. ter Hofstede, and M. Weske, Eds. Lecture Notes in Computer
Science, vol. 2678. 336–353.

CLARKE, E., GRUMBERG, O., AND PELED, D. 1999. Model Checking. The MIT Press, Cambridge, MA.
COOK, J. AND WOLF, A. 1998. Discovering models of software processes from event-based data.

ACM Trans. Softw. Engin. Methodol. 7, 3, 215–249.
DE RAEDT, L. AND VAN LAER, W. 1995. Inductive constraint logic. In Proceedings of the 6th Confer-

ence on Algorithmic Learning Theory. Lecture Notes in Artificial Intelligence, vol. 997. Springer
Verlag.

DECKER, G., ZAHA, J., AND DUMAS, M. 2006. Execution Semantics for Service Choreographies. In
Proceedings of the 3rd Workshop on Web Services and Formal Method (WS-FM’06), M. Bravetti,
M. Núñez, and G. Zavattaro, Eds. Lecture Notes in Computer Science, vol. 4184. Springer-Verlag,
163–177.

DEMRI, S., LAROUSSINIE, F., AND SCHNOEBELEN, P. 2006. A Parametric Analysis of the State-
Explosion Problem in Model Checking. J. Comput. Syst. Sci. 72, 4, 547–575.

DEMRI, S. AND SCHNOEBELEN, P. 1998. The complexity of propositional linear temporal logics in
simple cases. In Proceedings of 15th Annual Symposium on Theoretical Aspects of Computer
Science (STACS’98). G. Goos, J. Hartmanis, and J. Leeuwen, Eds. Lecture Notes in Computer
Science, vol. 1373. Springer-Verlag. 61–72.

DENECKER, M. AND SCHREYE, D. D. 1998. SLDNFA: An abductive procedure for abductive logic
programs. J. Logic Program. 34, 2, 111–167.

DESAI, N., CHOPRA, A. K., AND SINGH, M. P. 2006. Business process adaptations via protocols.
In Proceedings of the IEEE International Conference on Services Computing (SCC’06). IEEE
Computer Society, 103–110.

DEUTSCH, A., SUI, L., VIANU, V., AND ZHOU, D. 2006. Verification of communicating data-driven Web
services. In Proceedings of the 25th ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS’06). ACM, New York, NY, 90–99.

DUMAS, M., VAN DER AALST, W., AND TER HOFSTEDE, A. 2005. Process-Aware Information Systems:
Bridging People and Software through Process Technology. John Wiley & Sons.

DUSTDAR, S., GOMBOTZ, R., AND BAINA, K. 2004. Web services interaction mining. Tech. rep. TUV-
1841-2004-16, Information Systems Institute, Vienna University of Technology, Wien, Austria.

FLUM, J. AND GROHE, M. 2006. Parameterized Complexity Theory. Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag.

FORNARA, N. AND COLOMBETTI, M. 2002. Operational specification of a commitment-based agent
communication language. In Proceedings of the 1st International Joint Conference on Autonomous
Agents and Multi-Agent Systems. C. Castelfranchi and W. Lewis Johnson, Eds. 535–542.

FOSTER, H., UCHITEL, S., MAGEE, J., AND KRAMER, J. 2003. Model-based verification of Web ser-
vice composition. In Proceedings of 18th IEEE International Conference on Automated Software
Engineering (ASE). 152–161.

FU, X., BULTAN, T., AND SU, J. 2005. Synchronizability of conversations among web services. IEEE
Trans. Softw. Engin. 31, 12, 1042–1055.

FUNG, T. H. AND KOWALSKI, R. A. 1997. The IFF proof procedure for abductive logic programming.
J. Logic Program. 33, 2, 151–165.

GAALOUL, W., BHIRI, S., AND GODART, C. 2004. Discovering workflow transactional behavior from
event-based log. In Proceedings of the CoopIS, DOA, and ODBASE: OTM Confederated Interna-
tional Conferences (CoopIS, DOA, and ODBASE’04), R. Meersman, Z. Tari, W. Aalst, C. Bussler,
and A. G. et al., Eds.

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:60 • M. Montali et al.

GAALOUL, W. AND GODART, C. 2005. Mining workflow recovery from event based logs. In Business
Process Management (BPM’05), W. Aalst, B. Benatallah, F. Casati, and F. Curbera, Eds. Lecture
Notes in Computer Science, vol. 3649. 169–185.

GEORGAKOPOULOS, D., HORNICK, M., AND SHETH, A. 1995. An overview of workflow management:
From process modeling to workflow automation infrastructure. Distrib. Paral. Datab. 3, 119–153.

GERTH, R., PELED, D., VARDI, M., AND WOLPER, P. 1996. Simple on-the-fly automatic verifica-
tion of linear temporal logic. In Proceedings of the 15th IFIP WG6.1 International Symposium
on Protocol Specification, Testing and Verification. Chapman & Hall, Ltd., London, UK, 3–
18.

GIANNAKOPOULOU, D. AND HAVELUND, K. 2001. Automata-based verification of temporal properties
on running programs. In Proceedings of the 16th IEEE International Conference on Automated
Software Engineering (ASE’01). IEEE Computer Society, 412.

GOMBOTZ, R. AND DUSTDAR, S. 2005. On Web Services Mining. In Proceedings of the 1st Interna-
tional Workshop on Business Process Intelligence (BPI’05). M. Castellanos and T. Weijters, Eds.
Nancy, France, 58–70.

GRECO, G., GUZZO, A., PONTIERI, L., AND SACCÀ, D. 2006. Discovering expressive process models by
clustering log traces. IEEE Trans. Knowl. Data Engin. 18, 8, 1010–1027.

GREEN, T. R. G. 1989. Cognitive dimensions of notations. People Comput. 5, 443–460.
GREEN, T. R. G. AND PETRE, M. 1996. Usability analysis of visual programming environments: A

‘cognitive dimensions’ framework. J. Visual Lang. Comput. 7, 131–174.
HALLÉ, S. AND VILLEMAIRE, R. 2009. Runtime monitoring of Web service choreographies using

streaming XML. In Procedings of the 24th Annual ACM Symposium on Applied Computing
(SAC’09).

HERBST, J. 2000. A machine learning approach to workflow management. In Proceedings of the
11th European Conference on Machine Learning. Lecture Notes in Computer Science, vol. 1810.
183–194.

HOLZMANN, G. 2003. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley,
Boston, MA.

JAFFAR, J. AND MAHER, M. 1994. Constraint logic programming: a survey. J. Logic Program. 19-20,
503–582.

KAKAS, A. C., KOWALSKI, R. A., AND TONI, F. 1993. Abductive logic programming. J. Logic Com-
put. 2, 6, 719–770.

KAKAS, A. C. AND MANCARELLA, P. 1990. On the relation between Truth Maintenance and ab-
duction. In Proceedings of the 1st Pacific Rim International Conference on Artificial Intelligence
(PRICAI’90). T. Fukumura, Ed. 438–443.

KAVANTZAS, N., BURDETT, D., RITZINGER, G., FLETCHER, T., AND LAFON, Y. 2004. Web services chore-
ography description language, Version 1.0. W3C Working Draft 17-12-04.

KOWALSKI, R. A. AND SERGOT, M. 1986. A logic-based calculus of events. New Gen. Comput. 4, 1,
67–95.

LAMMA, E., MELLO, P., MONTALI, M., RIGUZZI, F., AND STORARI, S. 2007. Inducing declarative logic-
based models from labeled traces. In Proceedings of the 5th International Conference on Business
Process Management (BPM’07). G. Alonso, P. Dadam, and M. Rosemann, Eds. Lecture Notes in
Computer Science, vol. 4714. Springer, 344–359.

LAMMA, E., MELLO, P., RIGUZZI, F., AND STORARI, S. 2007. Applying inductive logic programming to
process mining. In Proceedings of the 17th International Conference on Inductive Logic Program-
ming. Springer.

LATVALA, T. 2003. Efficient model checking of safety properties. In Proceedings of the 10th SPIN
Workshop on Model Checking of Software. Lecture Notes in Computer Science, vol. 2648. Springer
Verlag, 74–88.

LAZOVIK, A., AIELLO, M., AND PAPAZOGLOU, M. 2004. Associating assertions with business processes
and monitoring their execution. In Proceedings of the 2nd International Conference on Service
Oriented Computing (ICSOC’04). ACM Press, New York, NY, 94–104.

LLOYD, J. W. 1987. Foundations of Logic Programming, 2nd extended ed.
LUDWIG, H., DAN, A., AND KEARNEY, R. 2004. Crona: An architecture and library for creation and

monitoring of ws-agreements. In Proceedings of the 2nd International Conference on Service
Oriented Computing (ICSOC’04). ACM Press, New York, NY, 65–74.

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

Declarative Specification and Verification of Service Choreographies • 3:61

MAHBUB, K. AND SPANOUDAKIS, G. 2004. A framework for requirents monitoring of service based
systems. In Proceedings of the 2nd International Conference on Service Oriented Computing
(ICSOC’04). ACM Press, New York, NY, 84–93.

MALLYA, A. U., DESAI, N., CHOPRA, A. K., AND SINGH, M. P. 2005. Owl-p: Owl for protocol and
processes. In Proceedings of the 4rd International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS’05). F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P. Singh, and
M. Wooldridge, Eds. ACM, 139–140.

MARTENS, A. 2005a. Analyzing Web service based business processes. In Proceedings of the
8th International Conference on Fundamental Approaches to Software Engineering (FASE’05),
M. Cerioli, Ed. Lecture Notes in Computer Science, vol. 3442. 19–33.

MARTENS, A. 2005b. Consistency between executable and abstract processes. In Proceedings of In-
ternational IEEE Conference on e-Technology, e-Commerce, and e-Services (EEE’05). IEEE Com-
puter Society Press, 60–67.

MASSUTHE, P., REISIG, W., AND SCHMIDT, K. 2005. An operating guideline approach to the SOA. In
Proceedings of the 2nd South-East European Workshop on Formal Methods (SEEFM’05).

MECELLA, M., PARISI-PRESICCE, F., AND PERNICI, B. 2002. Modeling E-service orchestration through
petri nets. In Proceedings of the 3rd International Workshop on Technologies for E-Services.
Lecture Notes in Computer Science, vol. 2644. 38–47.

MILNER, R., PARROW, J., AND WALKER, D. 1992. A calculus of mobile processes. Inform. Compu-
tat. 100, 1, 1–40.

MONTALI, M., ALBERTI, M., CHESANI, F., GAVANELLI, M., LAMMA, E., MELLO, P., AND TORRONI, P. 2008.
Verification from declarative specifications using Logic Programming. In Proceedings of the 24th
International Conference on Logic Programming (ICLP). M. G. D. L. Banda and E. Pontelli, Eds.
Lecture Notes in Computer Science, vol. 5366. Springer Verlag, 440–454.

MUGGLETON, S. AND DE RAEDT, L. 1994. Inductive logic programming: Theory and methods. J.
Logic Program. 19/20, 629–679.

OWL SERVICES COALITION. 2003. OWL-S: Semantic markup for web services.
PESIC, M. 2008. Constraint-based workflow management systems: Shifting controls to users.

Ph.D. thesis, Beta Research School for Operations Management and Logistics, Eindhoven.
PESIC, M., SCHONENBERG, H., AND VAN DER AALST, W. 2007. Declare: Full support for loosely-

structured processes. In Proceedings of the 11th IEEE International Enterprise Distributed Object
Computing Conference (EDOC’07). IEEE Computer Society, 287–300.

PONNEKANTI, S. AND FOX, A. 2004. Interoperability among independently evolving web services.
In Proceedings of the 5th ACM/IFIP/USENIX International Conference on Middleware (Mid-
dleware’04). Springer-Verlag, 331–351.

REISIG, W. AND ROZENBERG, G., EDS. 1998. Lectures on Petri Nets I: Basic Models. Vol. 1491.
ROUACHED, M., PERRIN, O., AND GODART, C. 2006. Towards formal verification of web service com-

position. In Proceedings of the 4th International Conference on Business Process Management.
Lecture Notes in Computer Science, vol. 4102. Springer, 257–273.

ROZINAT, A. AND VAN DER AALST, W. 2006. Conformance testing: Measuring the fit and appropri-
ateness of event logs and process models. In Proceedings of the Workshop on Business Process
Intelligence. C. Bussler et al., Ed. Vol. 3812. 163–176.

SCHLINGLOFF, B., MARTENS, A., AND SCHMIDT, K. 2005. Modeling and model checking web services.
Electronic Notes in Theoretical Computer Science: Issue on Logic and Communication in Multi-
Agent Systems 126, 3–26.

SHEN, Y.-D., YOU, J.-H., YUAN, L.-Y., SHEN, S. S. P., AND YANG, Q. 2003. A dynamic approach to
characterizing termination of general logic programs. ACM Trans. Comput. Logic 4, 4, 417–430.

SINGH, M. P. 2000. A social semantics for agent communication languages. In Issues in Agent
Communication, F. Dignum and M. Greaves, Eds. Lecture Notes in Computer Science, vol. 1916.
Springer, 31–45.

VAN DER AALST, W. AND BASTEN, T. 2002. Inheritance of workflows: An approach to tackling problems
related to change. Theoretical Computer Science 270, 1-2, 125–203.

VAN DER AALST, W., DE BEER, H., AND VAN DONGEN, B. 2005. Process mining and verification of
properties: An approach based on temporal logic. In On the Move to Meaningful Internet Systems
2005: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA,
and ODBASE 2005, R. Meersman and Z. T. et al., Eds. Vol. 3760. 130–147.

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

3:62 • M. Montali et al.

VAN DER AALST, W., DUMAS, M., OUYANG, C., ROZINAT, A., AND VERBEEK, H. 2008. Conformance check-
ing of service behavior. ACM Trans. Internet Technol. 8, 3.

VAN DER AALST, W., DUMAS, M., AND TER HOFSTEDE, A. 2003. Web service composition languages: Old
wine in new bottles? In Proceedings of the 29th EUROMICRO Conference: New Waves in System
Architecture, G. Chroust and C. Hofer, Eds. IEEE Computer Society, Los Alamitos, 298–305.

VAN DER AALST, W., DUMAS, M., TER HOFSTEDE, A., RUSSELL, N., VERBEEK, H. M. W., AND WOHED, P.
2005. Life after BPEL? In Proceedings of the International Workshop on Web Services and
Formal Methods (WS-FM’05). M. Bravetti, L. Kloul, and G. Zavattaro, Eds. Lecture Notes in
Computer Science, vol. 3670. Springer, 35–50.

VAN DER AALST, W. AND SONG, M. 2004. Mining social networks: Uncovering interaction patterns
in business processes. In Proceedings of the International Conference on Business Process Man-
agement (BPM’04), J. Desel, B. Pernici, and M. Weske, Eds. Vol. 3080. 244–260.

VAN DER AALST, W., VAN DONGEN, B., GÜNTHER, C., MANS, R., DE MEDEIROS, A. A., ROZINAT, A., RUBIN,
V., SONG, M., VERBEEK, H., AND WEIJTERS, A. 2007. ProM 4.0: Comprehensive support for real
process analysis. In Proceedings of the International Conference on Application and Theory of
Petri Nets and Other Models of Concurrency (ICATPN’07), J. Kleijn and A. Yakovlev, Eds. Lecture
Notes in Computer Science, vol. 4546. 484–494.

VAN DER AALST, W., VAN DONGEN, B., HERBST, J., MARUSTER, L., SCHIMM, G., AND WEIJTERS, A. 2003.
Workflow mining: A survey of issues and approaches. Data Knowl. Engin. 47, 2, 237–267.

VAN DER AALST, W. AND VAN HEE, K. 2002. Workflow Management: Models, Methods, and Systems.
MIT Press, Cambridge, MA.

VAN DER AALST, W. AND WEIJTERS, A., EDS. 2004. Process Mining. Special Issue of Computers in
Industry, Volume 53, Number 3. Elsevier Science Publishers, Amsterdam.

VAN DER AALST, W., WEIJTERS, A., AND MARUSTER, L. 2004. Workflow mining: Discovering process
models from event logs. IEEE Trans. Knowl. Data Engin. 16, 9, 1128–1142.

VAN DER AALST, W. M. P. AND PESIC, M. 2006. Decserflow: Towards a truly declarative service flow
language. In Proceedings of the 3rd International Workshop on Web Services and Formal Methods,
M. Bravetti, M. Núñez, and G. Zavattaro, Eds. Lecture Notes in Computer Science, vol. 4184.
Springer, 1–23.

VAN DONGEN, B. AND VAN DER AALST, W. 2005. A meta model for process mining data. In Proceedings
of the CAiSE’05 Workshops (EMOI-INTEROP Workshop), J. Casto and E. Teniente, Eds. Vol. 2.
309–320.

VAN DONGEN, B. F. AND VAN DER AALST, W. M. P. 2004. Multi-phase process mining: Building instance
graphs. In Proceedings of the 23rd International Conference on Conceptual Modeling. Lecture
Notes in Computer Science, vol. 3288. Springer, 362–376.

VERBEEK, H., BASTEN, T., AND VAN DER AALST, W. 2001. Diagnosing Workflow Processes using Woflan.
Comput. J. 44, 4, 246–279.

VILAIN, M., KAUTZ, H., AND VAN BEEK, P. 1990. Constraint propagation algorithms for temporal
reasoning: A revised Report. In Reading Qualitative Reasoning about Physical Systems. 373–
381.

WHITE, S. A. 2006. Business process modeling notation specification 1.0. Tech. rep., OMG.
YOLUM, P. AND SINGH, M. 2002. Flexible protocol specification and execution: Applying event cal-

culus planning using commitments. In Proceedings of the 1st International Joint Conference on
Autonomous Agents & Multiagent Systems (AAMAS’02). 527–534.

ZAHA, J., BARROS, A., DUMAS, M., AND HOFSTEDE, A. 2006. Let’s Dance: A language for service be-
havior modeling. In Proceedings of the 14th International Conference on Cooperative Information
Systems (CoopIS’06), R. Meersman and Z. Tari, Eds. Lecture Notes in Computer Science, vol.
4275. Springer-Verlag, 145–162.

ZAHA, J., DUMAS, M., HOFSTEDE, A., BARROS, A., AND DEKKER, G. 2006. Service Interaction Mod-
eling: Bridging Global and Local Views. QUT ePrints 4032, Faculty of Information Technology,
Queensland University of Technology.

Received July 2007; revised May 2008, January 2009, May 2009; accepted August 2009

ACM Transactions on the Web, Vol. 4, No. 1, Article 3, Publication date: January 2010.

