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Abstract. Conformance checking is a fundamental task to detect devia-
tions between the actual and the expected courses of execution of a busi-
ness process. In this context, temporal business constraints have been
extensively adopted to declaratively capture the expected behavior of the
process. However, traditionally, these constraints are interpreted logically
in a crisp way: a process execution trace conforms with a constraint model
if all the constraints therein are satisfied. This is too restrictive when
one wants to capture best practices, constraints involving uncontrollable
activities, and exceptional but still conforming behaviors. This calls for the
extension of business constraints with uncertainty. In this paper, we tackle
this timely and important challenge, relying on recent results on proba-
bilistic temporal logics over finite traces. Specifically, we equip business
constraints with a natural, probabilistic notion of uncertainty. We discuss
the semantic implications of the resulting framework and show how prob-
abilistic conformance checking and constraint entailment can be tackled
therein.

Keywords: Declarative process models · Probabilistic temporal
logics · Conformance checking

1 Introduction

Temporal business constraints have been extensively adopted to declaratively
capture the acceptable courses of execution of a business process for conformance
checking. In particular, the Declare constraint-based process modeling language
[8] has been introduced as a front-end language to specify business constraints
based on Linear Temporal Logic over finite traces (LTLf ) [2].

In general, business constraints are interpreted logically in a crisp way. This
means that an execution trace conforms with a constraint model if all the con-
straints therein are satisfied. This is too restrictive when one wants to capture
patterns that recur in many application domains, such as:
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• best practices, captured as constraints that should hold in the majority, but
not necessary all cases (example: an order is shipped via truck in 90% of the
cases);

• outlier behaviors, i.e., constraints that only apply to very few cases that
should still considered to be conforming (example: an order is shipped via car
in less than 1% of the cases);

• constraints involving activities that are not all necessarily controlled by the
organization that orchestrates the process, and for which only some guar-
antees can be given about their proper executability (example: whenever an
order is accepted, payment is performed by the customer in 8 cases out of
10).

Surprisingly enough, to the best of our knowledge no attempt has been done,
so far, to make constraint-based process modeling approaches able to capture
this form of uncertainty. In this paper, we tackle this timely and important
challenge, relying on recent results on probabilistic temporal logics over finite
traces [5]. Specifically, we equip business constraints with a natural, probabilistic
notion of uncertainty based on the ratio of traces in a log that must satisfy the
constraint, and use the resulting probabilistic constraints to lift Declare to its
probabilistic variant that we call ProbDeclare. We then discuss the semantic
implications of this approach, showing how it has to combine logical and prob-
abilistic reasoning to tackle the semantics of probabilistic constraints and their
interplay. We finally show how this combined reasoning can be applied to verify
the consistency of a ProbDeclare model, do conformance checking, and carry
out probabilistic constraint entailment, i.e., estimate with which probability a
ProbDeclare model implies a given LTLf formula.

2 LTL over Finite Traces and the Declare Framework

As a formal basis for specifying crisp (temporal) business constraints, we adopt
the customary choice of Linear Temporal Logic over finite traces (LTLf [1,2]).
This logic is at the basis of the well-known Declare [8] constraint-based process
modeling language. We provide here a gentle introduction to this logic and to
the Declare framework.

2.1 Linear Temporal Logic over Finite Traces

LTLf has exactly the same syntax as standard LTL, but, differently from LTL,
it interprets formulae over an unbounded, yet finite linear sequence of states.
Given an alphabet Σ of atomic propositions (in our setting, representing activi-
ties), an LTLf formula ϕ is built by extending propositional logic with temporal
operators:

ϕ ::= a | ¬ϕ | ϕ1 ∨ ϕ2 | ©ϕ | ϕ1 U ϕ2 where a ∈ Σ.

The semantics of LTLf is given in terms of finite traces denoting finite, pos-
sibly empty sequences τ = 〈τ0, . . . , τn〉 of elements of 2Σ , containing all possible
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Table 1. Some Declare templates, their textual and graphical representation, the cor-
responding LTLf formalization and the LTLf formula capturing their complement (i.e.,
their logical negation).

propositional interpretations of the propositional symbols in Σ. In the context of
this paper, consistently with the literature on business process execution traces,
we make the simplifying assumption that in each point of the sequence, one
and only one element from Σ holds. Under this assumption, τ becomes a total
sequence of activity occurrences from Σ, matching the standard notion of (pro-
cess) execution trace. We indicate with Σ∗ the set of all traces over Σ. The
evaluation of a formula is done in a given state (i.e., position) of the trace, and
we use the notation τ, i |= ϕ to express that ϕ holds in the position i of τ . We
also use τ |= ϕ as a shortcut notation for τ, 0 |= ϕ. This denotes that ϕ holds
over the entire trace τ starting from the very beginning and, consequently, log-
ically captures the notion of conformance of τ against ϕ. We also say that ϕ is
satisfiable if it admits at least one conforming trace.

In the syntax above, operator © denotes the next state operator, and ©ϕ is
true if there exists a next state (i.e., the current state is not at the end of the
trace), and in the next state ϕ holds. Operator U instead is the until operator,
and ϕ1 U ϕ2 is true if ϕ1 holds now and continues to hold until eventually, in
a future state, ϕ2 holds. From these operators, we can derive the usual boolean
operators ∧ and →, the two formulae true and false, as well as additional tem-
poral operators. We consider, in particular, the following three:

• (eventually) �ϕ = true U ϕ is true if there is a future state where ϕ holds;
• (globally) �ϕ = ¬�¬ϕ is true if now and in all future states ϕ holds;
• (weak until) ϕ1W ϕ2 = ϕ1U ϕ2∨�ϕ1 relaxes the until operator by admitting

the possibility that ϕ2 never becomes true, in this case by requiring that ϕ1

holds now and in all future states.

Example 1. The LTLf formula �(accept → �pay) models that, whenever an
order is accepted, then it is eventually paid. The structure of the formula follows
what is called response template in Declare. �
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2.2 Declare

Declare [8] is a declarative process modeling language based on LTLf . More
specifically, a Declare model fixes a set of activities, and a set of constraints
over such activities, formalized using LTLf formulae. The overall model is then
formalized as the conjunction of the LTLf formulae of its constraints.

Among all possible LTLf formulae, Declare selects some pre-defined patterns.
Each pattern is represented as a Declare template, i.e., a formula with placehold-
ers to be substituted by concrete activities to obtain a constraint. Constraints
and templates have a graphical representation; Table 1 lists the Declare tem-
plates used in this paper. A Declare model is then graphically represented by
showing its activities, and the application of templates to such activities (which
indicates how the template placeholders have to be substituted to obtain the
corresponding constraint).

Example 2. Consider the following Declare model, constituting a (failed)
attempt of capturing a fragment of an order-to-shipment process:

accept reject1..* 1..*

The model indicates that there are two activities to accept or reject an order,
that these two activities are mutually exclusive, and that both of them have to be
executed. These constraints are obviously contradictory and, in fact, the model
is inconsistent, since its LTLf formula �accept∧ �reject∧ ¬(�accept∧ �reject)
is unsatisfiable. �

3 Probabilistic Business Constraints

As recalled in Sect. 2, business constraints captured with LTLf are interpreted in
a crisp way, i.e., they are expected to hold in every execution of the process. We
now extend constraints with a natural notion of uncertainty introducing proba-
bilistic constraints. Then, we show how this notion can be used to make Declare
probabilistic and discuss informally the interplay of multiple probabilistic con-
straints.

3.1 Probabilistic Constraints: Definition and Semantics

For simplicity, we only consider the case of exact probability, but all the con-
siderations we do directly carry over the more general case where the proba-
bility of a constraint is related to a given quantity with comparison operators
(≤, <, =, and their duals).

Definition 1. A probabilistic constraint over a set Σ of activities is a pair
〈ϕ, p〉, where ϕ is an LTLf formula over Σ representing the constraint formula,
and p is a rational value in [0, 1] representing the constraint probability. �
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Since a probabilistic constraint quantifies how many traces should satisfy
it, it has to be interpreted over multiple traces that, as a whole, constitute an
event log for the process of interest. In particular, the constraint holds in a log
if the ratio of traces in the log that satisfy the constraint formula is equal to the
constraint probability. This naturally leads to interpret the constraint probability
statistically as the ratio of conforming vs non-conforming traces contained in a
given log.

For simplicity, we stick here with the standard definition of event log, but
we could alternatively adopt the stochastic interpretation of an event log,
following [3].

Definition 2. An (event) log over a set Σ of activities is a multiset of traces
over Σ, i.e., a multiset over Σ∗. �

Given a log L, we write τn ∈ log to indicate that trace τ appears n times in L.
Trace τ belongs to L if τn ∈ log with n > 0. With these notions at hand, we
say that a probabilistic constraint 〈ϕ, p〉 holds in a log L or, equivalently, that
L satisfies 〈ϕ, p〉, if

∑
τn∈L,τ |=ϕ n = p.

Note that the probabilistic constraint 〈ϕ, p〉 is equivalent to the probabilistic
constraint 〈¬ϕ, 1 − p〉. In fact, given a log L, if the ratio of traces in L that
satisfies ϕ is p, then the remaining 1 − p traces in L do not satisfy ϕ, i.e., they
satisfy the constraint complement ¬ϕ.

Example 3. Consider the probabilistic constraint 〈existence(accept), 0.8〉.
It indicates that 80% of the traces in a log contain at least one
occurrence of accept or, equivalently, that 20% of the traces do not
contain any execution of accept. This constraint holds in the log:[ 〈accept〉2, 〈accept, reject〉, 〈reject〉4, 〈accept, cancel〉3, 〈accept, pay, ship〉10 ]

, since
16 out of the 20 traces contained therein include (at least) one occurrence of
accept, i.e., they satisfy existence = �accept. �

3.2 ProbDeclare and the Issue of Multiple Interacting Constraints

We now use the notion of probabilistic constraint as the basic building block to
lift Declare to its probabilistic version, which we call ProbDeclare.

Definition 3. A ProbDeclare model is a pair 〈Σ, C〉, where Σ is a set of activ-
ities and C is a set of probabilistic constraints. �

A standard Declare model corresponds to a ProbDeclare model where all
probabilistic constraints have probability 1. In the remainder of the paper, when
drawing ProbDeclare diagrams, we then adopt the following notation: (i) when-
ever a constraint has probability 1, we draw it as a standard Declare constraint;
(ii) Whenever a constraint has probability p < 1, we show it in light blue, and
we annotate it with the probability value p.

The main issue that arises when multiple, genuinely probabilistic constraints
are present in the same ProbDeclare model is that they interact with each other
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depending on their constraint formulae and probabilities. In particular, to satisfy
the probabilistic constraints contained in a ProbDeclare model, a log must con-
tain suitable fractions of traces so as to satisfy all probabilistic constraints and
their probabilities, with the effect that some of these traces may contribute to the
computation of the ratios for different constraints. The following examples intu-
itively illustrate this interplay. The first example shows that inconsistent Declare
models may become consistent if the conflicting constraints are associated with
suitable probabilities.

Example 4. Consider the following probabilistic variant of the (inconsistent)
Declare diagram shown in Example 2.

accept reject1..*{0.8} 1..*{0.1}

This model contains two mutually exclusive activities, accept and reject, and
indicates that often (in 80% of the cases) accept is selected, whereas rarely (in
10% of the cases) reject is selected. This captures a form of probabilistic choice,
which also implicitly contemplates that none of the two activities occurs. In fact,
from this very simple model, we can infer the following conditions on satisfying
logs:

1. The not-coexistence constraint linking accept and reject is crisp, and con-
sequently no trace in the log can contain both accept and reject.

2. Point 1, combined with the probabilistic existence constraint on accept,
means that a trace in the log has 0.8 probability of containing accept (which
means that reject will not occur), and 0.2 probability of not containing accept
(which means that reject may occur or not).

3. A similar line of reasoning can be applied to the existence of reject, which
must appear in 10% of the traces in the log.

All in all, combining all the constraints, we get that the 10% of traces containing
reject must be disjoint from the 80% containing accept. This implicitly means
that in the remaining 10% of the traces, none of the two activities occur. �

The second example shows that a consistent ProbDeclare model may become
inconsistent by changing the values of probabilities.

Example 5. Consider again the ProbDeclare diagram in Example 4. Clearly,
if we change to 1 the constraint probabilities attached to the two existence
constraints, the model becomes identical to that in Example 2, consequently
becoming inconsistent. More in general, the model becomes inconsistent when-
ever the sum of the two probabilities exceeds 1. This witnesses that there must
exist some traces in which both constraints are satisfied, which contradicts the
fact that accept and reject should not coexist. More precisely, if we denote by pa

and pr the probabilities attached to the two existence constraints, then there
is a probability pa +pr −1 of having a trace that contains both accept and reject.
For example, if we set pa = 0.8 and pr = 0.3, we have that 10% of the traces in
the log should contain both accept and reject, which is impossible given the fact
that every trace in the log should satisfy not-coexistence(accept, reject). �
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The last example shows that, as customary in models with uncertainty, it is
misleading to just consider the probabilities attached to single constraints when
one wants to assess the probability of satisfying all of them at once.

Example 6. Consider the following ProbDeclare model:

accept
1..*{0.8}

0..1
pay

{0.7}

The model indicates that an order can be accepted at most once, and that
often (in 80% of the cases) it is actually accepted. In addition, it captures that
with probability 0.7 it is true that, whenever the order is accepted, then it is
also consequently paid (multiple payment instalments are possible, by simply
repeating the execution of pay). Finally, payments are enabled only if the order
has been previously accepted.

By looking at the diagram, one could wrongly interpret that in 70% of the
cases it is true that the order is accepted and then paid. This is wrong because
the response(accept, pay) constraint can also be (vacuously) satisfied by a trace
that does not contain at all occurrences of accept. A natural question is then:
what is the actual probability of observing traces that at some point contain
accept and, later on, pay (possibly with other activity occurrences in between
and afterward)? The answer is that this happens in half of the cases. To jus-
tify this non-trivial answer, one has to apply combined reasoning by considering
the interplay of response(accept, pay) and existence(accept), with their corre-
sponding probabilities. More specifically, response(accept, pay) can be satisfied
in this model in two different ways:

1. by not executing at all accept;
2. by executing accept (which can be done only once, due to the presence of the

crisp absence2(accept) constraint) and, later on, at least once pay.

These two situations, which we will call later on constraint scenarios, should
altogether cover exactly 70% of the traces, as dictated by the constraint prob-
ability attached to response(accept, pay). The first scenario must have proba-
bility 0.2, because in 80% of the traces accept must appear, as dictated by the
existence(accept) constraint and its associated probability. But then, the sec-
ond scenario, which is the one we are interested in, has probability 0.7−0.2 = 0.5
(half of the traces in the log). �

In the next section, we make the reasoning carried out in the discussed exam-
ples more systematic, showing how logical and probabilistic reasoning have to
be combined towards a single, combined declarative framework.

4 Reasoning on Time and Probabilities

As we have seen in the previous section, to reason on conjunctions of probabilistic
constraints, i.e., on ProbDeclare models, we need to simultaneously take into
account the temporal semantics of constraints and their associated probabilities.
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Formally, this is done by relying on the probabilistic temporal logic over
finite traces PLTLf , recently introduced in [5]. More specifically, probabilistic
constraints as defined here have a direct encoding into the fragment PLTL0

f of
PLTLf , also investigated in [5]. We do not delve into the encoding, nor highlight
the formal details on how to carry out this combined reasoning. We instead
show algorithmically how to accomplish this, noticing that all the algorithmic
techniques discussed next are correct thanks to [5]. Again thanks to [5], we also
get that, overall, the cost of reasoning on probabilistic constraints has the same
complexity of reasoning with standard LTLf constraints, i.e., PSpace in the
length of the constraints (this complexity bound is tight).

In the remainder of this section, we fix a ProbDeclare model M = 〈Σ, C〉,
where C is partitioned into crisp constraints Ccrisp = {〈ϕ, p〉 ∈ C | p = 1}
and (genuinely) probabilistic constraints Cprob = {〈ϕ, p〉 ∈ C | p < 1}. With a
slight abuse of terminology, when we use the term “crisp constraint”, we mean
a constraint in Ccrisp , and, when we use the term “probabilistic constraint”, we
mean a constraint in Cprob . We also assume that Ccrisp is a consistent Declare
model, i.e., crisp constraints are satisfiable altogether. If not, then M has to be
discarded, as it does not admit any conforming trace.

4.1 Constraint Scenarios and Consistency of ProbDeclare Models

While crisp constraints must hold in every possible trace, probabilistic con-
straints may or may not hold (with a ratio specified by their probability). In
addition, recall that when a constraint formula does not hold, then its negation
must hold. Consequently, in the most general case, M is a compact description
for the 2|Cprob | standard Declare models, each one obtained by considering all
constraint formulae in Ccrisp , and by selecting, for each constraint 〈ϕ, p〉 ∈ Cprob ,
whether the constraint formula ϕ or its complement ¬ϕ is assumed to hold.

We call the so-obtained Declare models (constraint) scenarios. To pinpoint a
specific scenario, we fix an ordering over Cprob , and we denote the scenario with
a binary string of length |Cprob |, where position number i ∈ {1, . . . , |Cprob |} has
value 1 if the i-th probabilistic constraint in Cprob must hold, 0 otherwise.

Example 7. Consider the ProbDeclare model in Example 6. By fixing the
ordering over its probabilistic constraints where 〈existence(accept), 0.8〉 is first
and 〈response(accept, pay), 0.7〉 is second, we have the following 4 scenarios:

1. Scenario 00, where none of the two constraint formulae holds, and is conse-
quently characterized by formula �¬accept ∧ �(accept ∧ �¬pay).

2. Scenario 01, where the response constraint formula holds while the
existence one does not, and so has formula �¬accept ∧ �(accept → �pay).

3. Scenario 10, where the existence constraint formula holds while the
response one does not, and so has formula �accept ∧ �(accept ∧ �¬pay).

4. Scenario 11, where both formulae holds (�accept ∧ �(accept → �pay)). �

Among the possible scenarios, only those that are logically consistent, i.e., are
associated with a satisfiable formula, have to be retained. In fact, inconsistent
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scenarios do not admit any conforming trace. Obviously, when checking whether
the scenario is consistent, its constraint formulae have to be conjoined with those
in Ccrisp .

Example 8. Consider the 4 scenarios of Example 7. Scenario 00 has to be
discarded because it is logically inconsistent: its formula �¬accept∧ �(accept∧
�pay) is unsatisfiable (it is asking for the presence and absence of accept). The
other three scenarios are instead logically consistent. �

Example 9. Consider the ProbDeclare model in Example 4. Also for this model
there are 4 scenarios, obtained by considering the two existence constraints
and their complements. The scenario where both constraints are not satisfied
captures those traces where no decision is taken for the order, i.e., the order is
not accepted nor rejected. The scenarios where one constraint is satisfied and
the other is not account for those traces where a univocal decision is taken
for the order. The scenario where both constraints are satisfied, thus requiring
acceptance and rejection for the order, is inconsistent, due to the interplay of
such constraints and the crisp not-coexistence one. This corresponds to the
standard Declare model of Example 2. �

We have explicitly used the term logically (in)consistent scenarios since there
is no guarantee that these scenarios are actually plausible. This depends on their
corresponding probabilities, which, in turn, are obtained by suitably combining
the probabilities of their constitutive constraints in their positive or comple-
mented form. This is done by enforcing the semantics of constraint probability,
which requires to ensure the following: for every probabilistic constraint 〈ϕ, p〉,
the sum of the probabilities assigned to those scenarios where ϕ must hold must
be equal to p.

To do so, we construct a system of linear inequalities whose variables repre-
sent the probabilities of possible scenarios [5]. We denote such variables as xs,
where s is the boolean string representing the scenario the variable is associated
with. By considering a ProbDeclare model M, fixing n = |Cprob | and writing
i ∈ {0, . . . , n − 1} in binary, the system of inequalities LM is:

xi ≥ 0 0 ≤ i < 2n (xi are probabilities)
2n−1∑

i=0

xi = 1 (xi are probabilities)

∑

jth position is 1

xi = pj 0 ≤ j < n (constraint semantics)

xi = 0 if scenario i is logically inconsistent

Notably, LM combines, at once, the logical and the probabilistic content of
M, on the one hand, imposing that the scenario probabilities agree with the
constraint probabilities, and, on the other, forcing logically inconsistent scenario
to have probability 0.
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LM may admit: (i) no solution, witnessing that M is inconsistent; (ii) one
solution, returning the exact probabilities for all the scenarios of M, (iii) multiple
(possibly infinitely many) solutions, witnessing that different probability distri-
butions can be assigned to the scenarios. To obtain the ranges of probability for
each scenario, one can turn the system of inequality into several optimizations
problems where each probability variable is minimized and maximized.

It is worth noting that, when LM is solvable, its solutions may force some
scenario probabilities to be always equal to 0. This witnesses the fact that even
a logically consistent scenario may not have any conforming trace due to the
interplay of constraint probabilities. We call plausible those scenarios that have
a probability > 0.

Example 10. Consider again the ProbDeclare model in Example 7 with its 4
scenarios (one of which is logically inconsistent, as discussed in Example 8). The
four possible scenarios have corresponding probability variables x00, x01, x10 and
x11, constrained by the system of inequalities (we omit the fact that all variables
are non-negative):

x00 + x01 + x10 + x11 = 1
x10 + x11 = 0.8 semantics of 〈existence(accept), 0.8〉

x01 + x11 = 0.7 semantics of 〈response(accept, pay), 0.7〉
x00 = 0 logical inconsistency of scenario 00

The system admits a single solution, with x00 = 0, x01 = 0.2, x10 = 0.3 and
x11 = 0.5, the last matching the informal discussion given in Example 6. �

We conclude the section with an informative ProbDeclare model example that
combines parts of the examples seen so far to capture a non-trivial fragment of
an order-to-shipment process. We use parameters for constraint probabilities,
then discussing the impact of grounding such probabilities to different actual
values.

Example 11. Consider the following order-to-shipment ProbDeclare model:

accept

1..*{pa}

0..1

reject

1..*{pr}

pay

{pap}

cancel

{pax}

ship

To construct the 16 possible scenarios for this model, the following constraints
and LTLf formulae have to be considered:

• existence(accept) with formula ϕa = �accept, and its complement
�¬accept;

• existence(reject) with formula ϕr = �reject, and its complement �¬reject;
• response(accept, pay) with formula ϕap = �(accept → �pay), and its com-

plement �(accept ∧ �¬pay);
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• response(accept, cancel) with formula ϕax = �(accept → �cancel), and its
complement �(accept ∧ �¬cancel). �

Table 2 summarizes the different constraint scenarios, their logical consis-
tency and, in the last column, their probabilities computed by constructing
and solving the system of inequalities described above. Table 3 shows instead
three different groundings for the constraint probability parameters and their
impact on the probabilities of the scenarios. In particular, Case 1 is so that
all the logically consistent scenarios may actually occur, even though with dif-
ferent probabilities. The most likely scenario, accounting for half of the traces,
captures the happy path where the order is paid and shipped. Case 2 assigns a
different probability to response(accept, cancel), causing scenario 1000 to be not
plausible anymore, being associated with probability 0; intuitively, the interplay
of constraints and their probabilities makes it impossible to just execute accept
without taking further activities. Finally, Case 3 increases the probability of
response(accept, cancel) even more, resulting in an inconsistent model.

Table 2. Constraint scenarios of the ProbDeclare model in Example 11, indicating
whether they are logically consistent and, if so, providing the (shortest) conforming
trace, and the scenario probability.

Scenario Logically
consistent

Shortest conforming
trace

Scenario
probability

ϕa ϕr ϕap ϕax

0 0 0 0 N

0 0 0 1 N

0 0 1 0 N

0 0 1 1 Y Empty trace 1 − pa − pr

0 1 0 0 N

0 1 0 1 N

0 1 1 0 N

0 1 1 1 Y 〈reject〉 pr

1 0 0 0 Y 〈accept〉 2 − pa − pap − pax

1 0 0 1 Y 〈accept, cancel〉 pa + pax − 1

1 0 1 0 Y 〈accept, pay, ship〉 pa + pap − 1

1 0 1 1 N

1 1 0 0 N

1 1 0 1 N

1 1 1 0 N

1 1 1 1 N
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Table 3. Three different groundings for the constraint probabilities used in the Prob-
Declare model in Example 11, and their impact on the scenario probabilities.

Consistent scenario Case 1 Case 2 Case 3

ϕa ϕr ϕap ϕax pa = 0.8 pa = 0.8 pa = 0.8

pr = 0.1 pr = 0.1 pr = 0.1

pap = 0.7 pap = 0.7 pap = 0.7

pax = 0.3 pax = 0.5 pax = 0.7

0 0 1 1 0.1 0.1 Inconsistent

0 1 1 1 0.1 0.1

1 0 0 0 0.2 0

1 0 0 1 0.1 0.3

1 0 1 0 0.5 0.5

5 Reasoning with Constraint Scenarios

Constraint scenarios can be used to perform a variety of tasks. We focus here
on two fundamental ones: conformance checking and probabilistic constraint
entailment.

5.1 Conformance Checking

In Declare, the simplest form of conformance checking amounts to check whether
a given execution trace satisfies all constraints contained in the model, thus
returning a yes/no answer.

In ProbDeclare, this notion can be refined by considering the different con-
straint scenarios and their probabilities. Let M = 〈Σ, C〉 be a ProbDeclare
model, and τ be a trace over Σ. The plausible scenarios of M are pairwise dis-
joint subsets of the overall set Σ∗ of traces over Σ. Disjointness comes from the
fact that every pair of plausible scenarios is so that they disagree about at least
one constraint, and no trace can conform with both of them. The complement
of the traces accepted by the plausible scenarios then characterizes those traces
that are not conforming with M. To assess conformance, we can then proceed as
follows: (1) Check τ against every plausible scenario of M. (2) If one plausible
scenario is so that τ holds there, output yes together with the probability (or
range of probabilities) attached to that scenario; the scenario probability gives
an indication on whether the trace represents a “mainstream” execution of the
process, or is instead an outlier behavior. (3) If no such scenario is found, then
output no.

Example 12. Consider the ProbDeclare model captured by Case 1 in Table 3.
Trace 〈accept, cancel, pay〉 does not conform with the model, since paying and
canceling are mutually exclusive. Trace 〈accept, cancel〉 is instead conform-
ing, as it satisfies scenario 1001. Since this scenario is associated with prob-
ability 0.1, the analyzed trace represents an outlier behavior. Finally, trace
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〈accept, pay, ship, ship, pay, ship〉 represents a mainstream behavior since it con-
forms with the most likely scenario 1010, with probability 0.5. �

5.2 Constraint Entailment

It is well-known that Declare and other declarative process modeling languages
have the issue of hidden dependencies [7], namely the fact that constraints may
interact with each other in subtle ways. This becomes even more complex in the
case of probabilistic constraints. In this light, it becomes crucial to be able to
ascertain whether a constraint is implied by a given model. Checking constraint
implication in Declare is very simple: this simply amounts to check whether
the LTLf formula of the model implies the given constraint. In the case of
ProbDeclare, we extend this approach by computing, for a given LTLf formula,
what is the probability with which it is implied by the ProbDeclare model.
This is done as follows: (1) Initialize the constraint probability range to 0, 0. (2)
For every plausible scenario, check whether the scenario implies the formula of
interest in the classical LTLf sense; if so, update the constraint probability by
summing its minimum and maximum to the minimum and maximum probability
associated with the scenario. (3) Return the constraint probability range.

Example 13. Consider again the ProbDeclare model captured by Case 1 in
Table 3. We want to check to what extent the model implies that the order is
eventually shipped (�ship). Shipment only occur if a payment occurs before, and
therefore this formula is implied only by scenario 1010, consequently getting a
probability of 0.5.

We are also interested in checking to what extent the model implies that the
order is not rejected (¬�reject). This formula holds in all those scenarios where
existence(reject) is false. Therefore, this formula is implied with probability
0.9.

Finally, consider the LTLf constraint ¬(�cancel ∧ �ship), expressing
the mutual exclusion between cancel and ship. This constraint is implied
with probability 1, due to the presence of the two crisp constraints
not-coexistence(cancel, pay) and precedence(pay, ship), which must hold in
every possible scenario (including the plausible ones). �

6 Conclusions

We have studied how to enrich constraint-based process models with uncertainty,
captured as the probability that a trace will conform with a constraint or not.
We have discussed how this impacts the semantics of a constraint model, and
how logical and probabilistic reasoning have to be combined to provide core
services such as consistency and conformance checking, as well as probabilistic
constraint entailment.

Notably, all the techniques presented in this paper can be directly grounded
with existing tools: automata-based techniques for LTLf to carry out logical
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reasoning, and off-the-shelf systems to solve systems of linear inequalities (and
corresponding optimization problems) to handle probabilities.

In [6], beside a concrete implementation of the techniques presented in this
paper, we investigate the application of probabilistic business constraints to pro-
cess mining, not only considering standard problems like discovery, but also delv-
ing into online operational support and, in particular, process monitoring [4].
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